
UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

Contents

1 The Tournament 2

2 Packaging 2

3 The General Idea 2

3.1 How Dr Casperson gets an AI Object 3

4 The Player interface 3

4.1 Well-behaved Players . 3

4.2 Exception handling . 3

4.3 Methods of the Player interface . 6

5 The Location interface 7

6 The Colour interface 8

7 The PlayerException Class 8

8 The GameOverStatus enumeration 8

9 History 8

List of Figures

1 Parts of the Player interface . 4

2 An Example of Handling Exceptions 5

3 The Location interface . 7

4 The Colour interface . 7

5 The PlayerException class . 8

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 1 of 9—

UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

6 The GameOverStatus enumeration 8

1 The Tournament

When each team has completed its implementation of Score 4, the various teams’ AIs
will compete in a tournament.

In order for your team to participate in the tournament, you must e-mail a .jar

file to Dr Casperson that contains your AI program.

This document specifies how to do so.

2 Packaging

In order that your classes not collide with other teams’ classes or Dr Casperson’s
referee classes, your code must be packaged in a package name that starts with
ca.unbc.cpsc.team name , where team name might be, say, nescafe .

This prevents your classes from colliding with another team’s classes.

3 The General Idea

The AI that you provide to Dr Casperson functions as a stand-alone object. Dr
Casperson’s referee will call your AI object using the methods of an interface that
your AI object must implement (see Figure 1).

Dr Casperson’s referee and your AI must exchange information about locations
where moves are played, and the colour that your AI is playing in a given game.
When your AI returns a move location from its .requestMoveLocation() method,
it can return any object it wants, but that object must conform to the Location

interface specified in Figure 3. Similarly, when the tournament referee tells you an
opponent’s move via .opponentPlays(Location l) , all that you can assume about
the object sent to your AI is that it conforms to Figure 3.

In the same vein, the colour that your AI receives via the .startGameAs(Colour c)

method only guarantees the methods shown in Figure 4.

The remainder of the details of the Player specification are provided in Section 4.

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 2 of 9—

UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

3.1 How Dr Casperson gets an AI Object

Dr Casperson will dynamically load a class from your .jar-file that has a static
method with signature

1 public static

2 ca.unbc.cpsc.score4.interfaces.Player getAI() ;

that is, your class’ static getAI() method returns an object that conforms to the
interface shown in Figure 1.

In order for this to work, you must supply Dr Casperson with

• a .jar file, whose name indicates the team somehow
• the complete name of a class in the jar, that is,

– a package name (that starts with ca.unbc.cpsc.team name), and
– a simple class name.

4 The Player interface

The object that your getAI() method returns can be a member of any class that you
choose, but it must implement the

ca.unbc.cpsc.score4.interfaces.Player

interface. Other requirements that your AI must satisfy are specified first below, and
then there is a method-by-method description of the Player interface.

4.1 Well-behaved Players

Your AI player must be well-behaved and make minimal assumptions about its envi-
ronment. That is, your AI player shouldn’t call System.exit, use large amounts of
memory, take excessively long to play, or assume anything about the surrounding file
system.

4.2 Exception handling

When you implment an interface or extend a class overriding methods must not
throw any more visible exceptions than the method being overridden. In order to
allow for the possibility that your implementation’s methods throw exceptions, all of
the methods of the

ca.unbc.cpsc.score4.interfaces.Player

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 3 of 9—

UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

package ca.unbc.cpsc.score4.interfaces; 1

2

import ca.unbc.cpsc.score4.enums.GameOverStatus; 3

import ca.unbc.cpsc.score4.interfaces.Colour; 4

import ca.unbc.cpsc.score4.interfaces.Location; 5

import ca.unbc.cpsc.score4.exceptions.PlayerException; 6

7

public interface Player 8

{ 9

public abstract void reset() throws PlayerException; 10

11

public abstract void startGameAs(Colour c) 12

throws PlayerException ; 13

public abstract void noteOpponentsId(int id) 14

throws PlayerException ; 15

public abstract void opponentPlays(Location ell) 16

throws PlayerException ; 17

public abstract Location requestMoveLocation() 18

throws PlayerException ; 19

public abstract Location retry() throws PlayerException ; 20

21

public abstract void noteGameOver(GameOverStatus whatHappened) 22

throws PlayerException ; 23

24

} // end interface Player 25

Figure 1: Parts of the Player interface

interface state that they may throw a
ca.unbc.cpsc.score4.exceptions.PlayerException

exception.

If you have a method that might otherwise throw an exception, you can wrap it
in a PlayerException so that your method conforms to the interface. For instance
you could write code like that shown in 2 on the following page to handle exceptions
that your own code throws.

Try to avoid such complications if you can.

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 4 of 9—

UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

1 package ca.unbc.cpsc.flat_white.ai;

2

3 import ca.unbc.cpsc.flat_white.score4.Colour;

4 import ca.unbc.cpsc.score4.exceptions.PlayerException;

5

6 public class AIPlayer

7 implements ca.unbc.cpsc.score4.interfaces.Player

8 {

9

10 //

11

12 public void reset() throws PlayerException

13 {

14 try

15 {

16 // stuff that might throw a GameStateException

17 }

18 catch (GameStateException gse)

19 {

20 // package the exception up to conform and then

21 // rethrow it.

22 throw new PlayerException("bad reset", gse) ;

23 }

24 }

25

26 // ... lots more

27 }

Figure 2: An Example of Handling Exceptions

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 5 of 9—

UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

4.3 Methods of the Player interface

void reset() This method should cause the AI to go to its beginning of game
state, ready to play either white or black. An AI should be prepared to accept
a reset() call at any time, because the tournament referee might need to cope
with errors in the opponent’s program.

void noteOpponentsId(int id) The tournament referee will call this method of
your AI after doing a reset() to let the AI know who it is playing against.
Each opponent has a unique identification number. You may choose to ignore
this information if you wish.

void startGameAs(Colour c) (See Section 6 on page 8 for the definition of Colour .)
The tournament referee will call this method of your AI after doing a reset()

to let the AI know what colour it is playing in this game. Your AI can rely
on this method being called only after a reset() or noteOpponentsId(int)

method call.

Location requestMoveLocation() (See Section 5 on the following page for the def-
inition of Location’s .) The tournament referee will call this method when it
is your AI’s turn to play. Your AI should return a valid location (that is, the
location of a non-empty peg) where it wishes to play. If the tournament ref-
eree doesn’t like your choice of location, it will call the AI’s retry method ,
otherwise it will silently accept your AI’s move, and call one of

• reset()

• noteGameOver(...)

• opponentPlays(...)

Location retry() The tournament referee will call this method only if the previous
call to requestMoveLocation() or retry() resulted in an invalid move. Note
that the referee will not have added your previous move to its understanding of
the game board.

void opponentPlays(Location ell) The tournament referee calls this method af-
ter your opponent has made a valid move to let your AI know what its op-
ponent has done. Beware that the tournament referee may call reset() or
noteGameOver(...) instead, depending on what happens.

void noteGameOver(GameOverStatus ...) When the game ends normally, either
through one player making a winning move or the tournament referee noticing
that neither player can win (no matter what they do), the tournament referee
calls this method. The result received is from the AI’s point of view (that
is, GameOverStatus.LOSS means that the AI lost this game). Beware that

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 6 of 9—

UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

package ca.unbc.cpsc.score4.interfaces; 1

2

public interface Location 3

{ 4

public static final int MAX_ROW = 3; 5

public static final int MIN_ROW = 0; 6

public static final int MAX_COLUMN = 3; 7

public static final int MIN_COLUMN = 0; 8

9

public abstract int getRow() ; // in [MIN_ROW,MAX_ROW] 10

public abstract int getColumn() ; // ... 11

} 12

Figure 3: The Location interface

package ca.unbc.cpsc.score4.interfaces; 1

2

public interface Colour 3

{ 4

public abstract boolean isBlack() ; 5

public abstract boolean isWhite() ; 6

} 7

Figure 4: The Colour interface

the tournament referee may insead call reset() instead, depending on what
happens.

5 The Location interface

See Figure 3.

Locations are how moves are communicated between AI’s and the tournament
referee. They are two-dimensional (row and column, but not height) and zero-indexed.
When your AI responds to a requestMoveLocation or retry request it can return
any object that it wants provided that that object conforms to the

ca.unbc.cpsc.score4.interfaces.Location

interface. However, note that when the AI receives a Location via opponentPlays

it cannot assume anything other than what the interface specifies.

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 7 of 9—

UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

package ca.unbc.cpsc.score4.exceptions; 1

2

public class PlayerException extends Exception 3

{ 4

public PlayerException() { this("Unknown Player Exception") ; } 5

public PlayerException(String s) { super(s) ; } 6

public PlayerException(Throwable t) { super(t) ; } 7

public PlayerException(String s, Throwable t) { super(s,t) ; } 8

} 9

Figure 5: The PlayerException class

package ca.unbc.cpsc.score4.enums; 1

2

public enum GameOverStatus { LOSS, DRAW, WIN ; } 3

Figure 6: The GameOverStatus enumeration

6 The Colour interface

See Figure 4 on the preceding page. In the Player interface, Colour’s are only used
to indicate whether the AI plays first or second.

7 The PlayerException Class

See Figure 5. As discussed in Section 4 the only exceptions that the AI is allowed
to throw are PlayerException’s. These are a standard non-RuntimeException
Exception class.

Note that these exceptions inherit getCause() and getMessage() from Exception

(originally specified in java.Lang.Throwable).

8 The GameOverStatus enumeration

The Gameoverstatus enumeration is shown in Figure 6. Note that the tournament
referee reports from the AI’s point of view.

9 History

This is the second version of this specification, created on 2018-02-26. It repairs the
GameOverStatus figure, and corrects a few typos.

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 8 of 9—

UNBC CPSC 101 Team Term Project

Interface Specification
Winter 2018

Previous version

2018-01-12 This was the initial version.

Dr David Casperson 2018-01-12

2018-cpsc101-project-interface-spec
February 26, 2018

version 2 —page 9 of 9—

	The Tournament
	Packaging
	The General Idea
	How Dr Casperson gets an AI Object

	The Player interface
	Well-behaved Players
	Exception handling
	Methods of the Player interface

	The Location interface
	The Colour interface
	The PlayerException Class
	The GameOverStatus enumeration
	History

