
UNBC Laboratory Assignment
Computer Science 101—Winter 2016

Searching Machines

Purpose

To practise systematizing code; preparation for interfaces.

Due Date

The completed lab assignment is due Friday, 2017-01-27 by the beginning of lecture.

Accepting states

start

rejcted

S1

S2

S3

S4

S5

S6

S7

r e s e t

Figure 1: State Machine

Finite State Machines

Finite state machines are a mathematical abstraction studing in cpsc 242 and cpsc 340.
See Figure 1.

© 2017 David Casperson. This document may
be freely copied, provided that this copyright

notice is preserved.



UNBC CPSC 101

• void reset() — reset the machine back to the beginning state so that we
can use it again.

• void addLetter(char c) — add a character c, and change state appro-
priately.

• boolean isAccepting() — is the machine currently in an accepting
state?

• boolean isRejected() — is the machine currently stuck in a non-
accepting state? (meaning that we can reject the word we are checking).

Figure 2: 101 Machine methods

A finite state machine has a certain fixed number of states (circles in Figure 1) in-
cluding a special start state. It allows has lines between states labelled by characters
(the character labels are not shown in Figure 1). Starting from the start state, it ac-
cepts characters one by one. Each time it accepts a character, its state changes (or
possibly stays the same) based on the transition lines.

Some of the states are accepting states. If the machine is in an accepting state, then
it accepts the word that got it into that state. Note that it is possible to go from
an accepting state to an undecided or rejecting state.

Some states are sinks, meaning that once you get into them you can’t get out. Once
you are in a non-accepting sink, you know that regardless of what characters re-
main, the word is going to be rejected.

Finite state machines are excellent devices for recognizing certain kinds of
patterns called regular expressions. (See the Oracle documentation of the
String.replaceAll and java.util.regex.Pattern for examples of the
use of regular expressions.)

In this laboratory assignment we’ll use a generalization of finite state machines.

CPSC 101 Machines

We can encapsulate the important ideas of a finite state machine in four meth-
ods, as shown in Figure 2.

The task in this lab assignment is to build machines with the methods shown in Fig-

Laboratory Assignment Searching Machines • 2



UNBC CPSC 101

ure 2 that recognize the words that you searched for in the previous lab assignment.

⇒ Write a stand-alone class whose objects are machines that recognize Lab 2 words
(words that contain six or more consonants, all in non-increasing order).

Although you may not yet see the reason to do so, make sure that your class can
create independent objects, and that the methods in Figure 2 are all non-static.

⇒ Re-implement Lab 2 using your machine class to recognize words.

“Degenerative” words

Some words — for instance, “comparative” and “demipriest” — contain six or more
consonants, all in increasing order. (for the purposes of this lab assignment, con-
sonants are letters that are neither vowels, nor ‘y’.)

⇒ Write another stand-alone class whose objects are machines that recognize “de-
generative” words. (words that contain six or more consonants, all in strictly in-
creasing order).

⇒ Repeat what you did in Lab 2, but for “degenerative” words, storing the result in
a file luminarist.txt.

“Abstemious” words

Some words — for instance, “abstemious” and “facetious” — contain all of the vowels
exactly once, and in order. That is to say, there is one ‘a’, one ‘e’, one ‘i’, one ‘o’, and
one ‘u’, and they occur in exactly that order.

⇒ Write yet another stand-alone class whose objects are machines that recognize “ab-
stemious” words. Repeat what you did in above, but for “abstemious” words, storing
the result in a file abstemious.txt.

One big program

⇒ Now combine your machines and logic into one program that creates the three files
tessararian.txt luminarist.txt, and abstemious.txt.

Laboratory Assignment Searching Machines • 3


