
UNBC Laboratory Assignment
Computer Science 101—Winter 2013

Inheritance and Method Overriding

Purpose:

To gain familiarity with the use of inheritance and method overriding.

Due Date:

This assignment is due Friday, 2012-02-27 at the beginning of class.

Reading Assignment:

⇒ Read, answer, and understand the following questions:

• Can constructors be polymorphic?
• When a subclass method overrides that of a superclass can the signatures be different?
• When a subclass method overrides that of a superclass can the return types be different?

Hand in answers to these questions attached to your lab assignment. Discuss them with your
lab instructor if you are not sure how they work.

Problem Description:

To implement a payroll processing system that processes records for three kinds of employ-
ees: full time (abbreviated FT), part time (abbreviated PT), and contract (abbreviated CO)
— using inheritance and polymorphism. The output format is given first; followed by a de-
scription of the kinds of employees and the input format; and then by details regarding
the internal design of the program.

Output Format

The output should look like the following:

Employee Employee Hours/ Rate/ Commision Other Deductions Take

Class Number Week Hour Home

----------------------------------------------------------------------------

FT 00613 40.0 65.00 0.00 0.00 700.00 1900.00

FT 00614 40.0 35.00 0.00 0.00 150.00 1250.00

PT 09312 20.0 15.00 0.00 0.00 10.00 290.00

CO 99001 0.0 0.00 0.00 4512.35 0.00 4512.35



UNBC CPSC 101

There should be be

• no more 50 lines per page of output, and
• page running totals for the Commission, Other, Deductions and Take Home columns, and
• grand totals for the above columns.

In each line the take-home pay should be equal to the hours-per-week multiplied by rate-per-
hour plus any commission plus other minus the deductions.

Kinds of Employees and Input Format

Each employee is represented by a one-line input record that starts with an employee kind
code (two capital letters), a space, then five-digit employee number. The format for the rest
of the input line depends on the kind of employee.

For each employee kind there are potentially wages paid at a fixed rate per hour (there is
no overtime pay in this problem), the number of hours per week that the employee works,
commissions that the employee earns, and other earnings. There are also potentially de-
ductions for tax, pensions, EI, and the like.

Details for the kinds of employees follow:

FullTime A typical input record for a full time employee looks like:

FT 00613 65.00

The first two letter are the employee class designator; the next number is the employee
number (always five digits, but the leading ones may be zeroes); and the final number is
the hourly pay rate.

Each full time employee works 40 hours per week. Employees in this class never earn
commissions or other payments. Deductions are calculated as $10.00 per week for each
dollar per hour earned between $20.00/hr and $40.00/hr; and $20.00 per week for each
dollar per hour over forty. Thus someone earning $65.00/hr pays 20 × $10.00 + 25 ×
$20.00 = $700.00 per week in deductions. Symbolically:

Wages Deductions

$ 20.00/hr × $ 0.00 = $ 0.00

$ 20.00/hr × $ 10.00 = $ 200.00

$ 25.00/hr × $ 20.00 = $ 500.00

Total $ 65.00/hr gives $ 700.00

PartTime A typical input record for a part time employee looks like:

PT 00613 20 15.00

where the 20 indicates the number of hours per week worked (always integral), and
15.00 is the hourly rate of pay.

Each part time employee works between 10 and 30 hours per week. Employees in this
class never earn commissions or other payments. Deductions are calculated as 10% of
total earnings between $200 and $500 a week, and 30% on everything in excess of $500

per week. For the example above

Laboratory Assignment Inheritance and Method Overriding • 2



UNBC CPSC 101

Employee

FullTime PartTime Contract

Figure 1: Inheritance Diagram

Wages Deductions

$ 200.00 × % 00 = $ 00.00

$ 100.00 × % 10 = $ 10.00

$ 000.00 × % 30 = $ 00.00

Total $ 300.00 gives $ 10.00

Contract A typical input record for a contract employee looks like:

CO 99001 4512.35

where 4512.35 is the amount of other income earned.

Contract employees are never paid an hourly rate and never earn commissions. Further-
more, no deductions are made from their pay.

Use of Inheritance and Polymorphism

You must use inheritance and polymorphism to to receive credit for this assignment. You must
have an Employee base class, and derive a class for each particular kind of Employee. The UML
diagram showing the inheritance relation between the main classes is shown in Figure 1.

Employee Fields

You must not use package, protected or public fields in the Employee class.

Laboratory Assignment Inheritance and Method Overriding • 3



UNBC CPSC 101

Employee Methods

On the other hand, the Employee class must have public attribute methods for each column of
the output. A derived class that does something non-trivial to compute a particular column
will override the base class implementation, so the Employee class implementations should
provide default methods that work for subclasses that don’t need them. For instance the de-
fault implementation of an Employee.getCommission method might be simply to return 0.00.

The Employee class should have a print or toString method that uses the appropriate at-
tribute methods of the Employee class. It is unlikely that this method will need to be overridden
in subclasses.

Subclass Methods

Each subclass should have a

public void readFrom(Scanner in) ;

method that reads appropriate information from in and mutates the calling object appro-
priately. Note that you cannot know which subclass to create until after you have read the
employee kind code, so the method should process the remainder of an input line.

Subclass Fields

The fields of each subclass should correspond relatively directly to the information contained
on input records for that subclass.

Example Code

The code shown in Figure 2 shows one way to write a static report producing method. Note
that this code relies on a Report-class and an UnclassifiedEmployee-class.

Figure 2 shows how to put inheritance to good effect. Aside from the if-logic and constructor
calls on lines 28–31, there is nothing specific to particular subclasses in the processReport

method, which makes it easy to modify the program to add further subclasses of employees.

Your goal is to use inheritance and polymorphism as much as possible, so that you can later ex-
tend your program to handle additional classes of employees without having to modify any of
the existing code.

It is possible to write the program in such a way that additional employee classes can be added
to the program simply by adding *.class files for the new kinds of employees. This requires
a certain amount of technical trickery, to be explained in the next laboratory assignment.

Laboratory Assignment Inheritance and Method Overriding • 4



UNBC CPSC 101

Assignment

⇒ Write code to produce reports as specified above. Your program should be able to accept a
command line argument that specifies the input file to read.

Laboratory Assignment Inheritance and Method Overriding • 5



UNBC CPSC 101

4 public static void processReport(Reader in, Writer out)

5 {

6 Scanner employeeScanner = new Scanner(in) ;

7 Report report = new Report(out);

8 report.setLinesPerPage(50) ;

9 report.print_banner(out) ;

10

11 String code = "--" ;

12 Employee current = new UnclassifiedEmployee() ;

13 bool employeeFound = false ;

14 bool done = false ;

15

16 while ( !done)

17 {

18 if (employeeFound)

19 {

20 report.print(current) ;//

21 employeeFound = false ;

22 }

23

24 done = !employeeScanner.hasNext() ;

25 if (done) continue ;

26

27 code = employeeScanner.next() ;

28 if (code.equals("FT")) current = new Fulltime() ;//

29 else if (code.equals("PT")) current = new Parttime() ;

30 else if (code.equals("CO")) current = new Contract() ;

31 else current = new UnclassifiedEmployee(code) ;//

32 current.readFrom(employeeScanner) ;//<--

33 employeeFound = true ;

34 }

35

36 report.finish() ;

37 return ;

38 }

Figure 2: processFiles version 1

Laboratory Assignment Inheritance and Method Overriding • 6


