
UNBC Laboratory Assignment
Computer Science 101—Winter 2013

A Time Class

Purpose

To consolidate your understanding of methods, pre-conditions, post-conditions, and packag-
ing in the context of a simple Time class; to explore the difference between attributes and
representation; and to gain experience with interfaces and inheritance.

Due Date

The completed lab assignment is due Friday, 2013-02-01 at the beginning of lecture.

Time Class — version 1

Write a simple Time class with whose state is consists of three private member variables rep-
resenting the hours, the minutes, and the seconds. Put your Time class in a package called
version1 .

It should have the methods specified in Figure ??.

⇒ Write a test class that uses the various methods of the Time class to show that they work. When
testing this version, the test code and the time class code should be in different directories,
and the test code should contain an “import version1.Time;” Be sure to test setting hours,
minutes, or seconds outside of the usual range to see what happens.

Show that you can convert a Time to a String without writing additional code: for instance
“System.out.println("The time is"+t)” should work for a Time t.

Time Class — version 2

Package this version in a package called “version2”.

This version should have identical public method signatures and testing, but each Time object
should have a single member variable that represents the number of seconds since midnight.

⇒ In the code comment before this Time class, comment on which methods are easier, and which
methods are more difficult for this version.

⇒ Again Write a test class that uses the various methods of the Time class to show that they work.



UNBC CPSC 101

Theory

Read Chapter 9 of the Big Java text before proceeding.

Sorting Experiments (version1b and verion2b)

Using your version 1 and version 2 Time classes, attempt to sort a Time [] array using java.

util.Arrays.sort. This will produce an error.

Now create new packages version1b and version2b that are the same as version1 and
version2 except that the class starts with

public class Time implements Comparable<Time> { ...

Repeat the sorting experiment. (It should now work).

⇒ Script your test results.

Implementing your own interface (version1c and verion2c)

Create an interface TimeInterface that looks like Figure ?? in a separate .java file.

Write test code to determine something like

TimeInterface ti = new version2.Time(12,30,0) ;

works “out of the box”. (It shouldn’t.)

⇒ Script your result.

⇒ Create new packages version1c and version2c with Time classes that explicitly
“implements TimeInterface”. Now test code like

TimeInterface ti = new version2c.Time(12,30,0) ;

works. (It should.) Script your result.

⇒ What follows is a sequence of questions about how code works. For each question, ensure
that there is output in your script file that shows the answer to the question. Comment on
why you get the results that you do.

Can you create a TimeInterface array that contains a mixture of version1c.Time and
version2c.Time objects?

What happens with code like?

TimeInterface ti = new version2c.Time(12,30,0) ;

System.out.println(ti.getSecond()) ;

Laboratory Assignment A Time Class • 2



UNBC CPSC 101

The various classes should all have the following public methods unless otherwise specified.
• Constructors

◦ Time() (creates midnight),

◦ Time(h,s,m), and

◦ Time(Time t) (initialize from another Time object).

• Accessor methods

◦ getHour,

◦ getMinute, and

◦ getSecond

that return the corresponding value from the object. The hours should be between 0

and 23, and the minutes and seconds should be between 0 and 59.
• Mutator methods

◦ setHour,

◦ setMinute, and

◦ setSecond

to set the corresponding attributes of a Time object. These should ensure that the re-
sulting time is legitimate. Decide and document what happens when you, say set the
number of seconds to 75.
• A mutator method

◦ public void advanceBy(int seconds) { ... }

that changes the time by a given number of seconds.
• A method

◦ public String toString() { ... }

that produces a string like ”22:03:12”. The hours should be between 0 and 23, and the
minutes and seconds should be between 0 and 59.
• A method

◦ public int compareTo(Time t) { ... }

that produces the number of seconds from t to this. That is,
t.advanceBy(this.compareTo(t)) should set t to the same time as this.
• A method

◦ public boolean equals(Time another) { ... }

that returns true if and only if the times have the same value.

Figure 1: Time class features

Laboratory Assignment A Time Class • 3



UNBC CPSC 101

public interface TimeInterface

{

int getHour() ;

int getMinute() ;

int getSecond() ;

}

Figure 2: Time interface specification

What happens with code like?

TimeInterface ti = new version2c.Time(12,30,0) ;

ti.setSecond(12) ;

System.out.println(ti.getSecond()) ;

What happens with code like?

TimeInterface ti = new version2c.Time(12,30,0) ;

System.out.println(ti) ; // Do you expect a hex address?? Why?

Explain your results.

Laboratory Assignment A Time Class • 4


