
Notes on Arrays and ArrayLists

March 31, 2009

These are lecture notes for CPSC 101-3 Winter 2009 (in particular 2009-
04-01). These notes discuss topics from Chapter 7 of Big Java by Cay
Horstman. 3

rd edition.

1 A Comparison of Arrays and ArrayLists

In many ways arrays and ArrayLists are different. The former are built
into the Java programming language, the latter are provided through a
generic class in the java.util package. However, they are more similar
than they are different, and perhaps it is worth starting with a comparison
of the similarities. Table 1 shows how similar some operations are.

Arrays ArrayList<E>

T [] data = ArrayList<T> data =

int [] data = no direct equivalent

data[j] = x; data.set(j,x);

x = data[j]; x = data.get(j);

data.length data.size()

Table 1: Common Features of Arrays and ArrayLists

The biggest difference between an array and an ArrayList<> is that
an ArrayList<> object can change shape. In particular, an ArrayList<E>

1



offers the methods
.add(x) add an E at the end.

.add(i,x) add an E at spot i, shifting the previous
contents from location i and higher up-
wards.

.remove(i) remove the element at location i.

.remove(x) remove the first occurrence of x, if
present.

.clear() empty the current contents
There are also methods to remove a range of data, or to insert an entire
collection of data.

Although an array object cannot change shape, an array object variable
can point at differently shaped objects over its lifetime. For instance,

double [] data = new double [500] ;

data = new double [30] ;

is perfectly legal.

2 Wrapper Classes

Each builtin type (boolean, byte, char, short, int, long, float, and long)
has a corresponding subclass of Object. Most of these classes are capital-
ized versions of the corresponding builtin type (e.g., Float), with Integer

and Character being the two exceptions.

The Java language now makes it very easy to convert between a builtin
type and its corresponding object type; see section 7.3 of the text for de-
tails. Note that the objects of these classes are immutable, so that

Integer n = 35 ;

Integer m = n ;

++n ;

is actually safe. The compiler converts ++n into n = new Integer(1+

n.intValue ()) .

2



Arrays ArrayList<E>

arrays can contain builtin
types

ArrayLists must contain ob-
jects.

array objects have a fixed
shape

ArrayLists can be grown
and shrunk

array objects can have initial
slots created by using a call
new Type[size]

ArrayList objects can
have initial space re-
served by using a call
new ArrayList<Type>(size),
but slots still must be created
using the .add() method.

arrays implement no particu-
lar interface

ArrayList<E>s implement
the interfaces List<E> and,
indirectly, Collection<E>.

arrays are close to machine
language and easier to inter-
face with other programming
languages through native

ArrayList<>’s have a certain
amount of inefficiency, partic-
ularly with respect to builtin
types.

Table 2: Differences between Arrays and ArrayLists

3



public static void removeOutliers(ArrayList<Double> data,

double average, double stdDev)

{

int i,j,n ;

n = data.size() ;

for (i=0,j=0; j<n; ++j)

{

double zScore = (data.get(j)-average) / stdDev ;

if (Math.abs(zScore) <= 3.0)

data.set(i++,data.get(j)) ;

}

for (;i<n;--n)

data.remove(i) ;

}

Figure 1: Removing Outliers in place

3 Examples

Here is the same problem solved thrice, once using arrays, and twice
using ArrayList<E>s. The problem is to eliminate all of the data that is
more than three standard deviations from some fixed value from an array.

First we do this in-place with an ArrayList as shown in Figure 1. The
slightly tricky way of getting rid of the extra values is a little bit more
efficient than the more straight-forward method shown in Figure 2. In
Figure 1, it is always true that i is pointing at the next place that we want
to put a value that we are keeping. After the loop, all of the values that we
want to keep have been copied to a location less than i, so we can safely
delete the rest of the data.

In Figure 2, we remove bad values as soon as we encounter them.
Notice the idea of going backward when changing the shape.

What goes wrong if we write a forward-loop?

Finally, in Figure 3, we show how to handle the problem using builtin
arrays. Here, we need to determine the size of the answer first, then cre-

4



public static void removeOutliers2(ArrayList<Double> data,

double average, double stdDev)

{

int j,n ;

n = data.size() ;

for (j=n-1; j>=0; --j)

{

double zScore = (data.get(j)-average) / stdDev ;

if (Math.abs(zScore) <= 3.0)

data.remove(j) ;

}

}

Figure 2: Another way to remove outliers in place

ate an array of the appropriate size, then copy the desired data into the
answer.

5



public static double [] removeOutliers(double [] data,

double average, double stdDev)

{

int i,j,n, m ;

n = data.length ;

m = 0 ;

for (j=0; j<n; ++j)

{

double zScore = (data[j]-average) / stdDev ;

if (Math.abs(zScore) <= 3.0)

++m ;

}

double [] answer = new double [m] ;

for (i=0,j=0; j<n; ++j)

{

double zScore = (data.get(j)-average) / stdDev ;

if (Math.abs(zScore) <= 3.0)

{

answer[i++] = data[j] ;

}

}

return answer ;

}

Figure 3: Removing outliers by copying

6


