
UNBC Laboratory Assignment
Computer Science 101—Winter 2009

Cross Word Grid

Due Date:

This assignment is due Friday 2009-04-03.

Purpose:

To become familiar with the javax.swing.* architecture for using Graphics to produce graphi-
cal output.

Reading Assignment:

Read Chapter 18 of the textbook before attempting this assignment.

Cross Word Grid

Write a “cross-word” generating program that takes input similar to that shown in Figure 1,
and produces output similar to that shown in Figure 2.

The program should read from an input file and produce a GUI.

The format of the input file is illustrated in Figure 1. The first two lines of an input file
are numbers: the first number is the number of rows (r) in the crossword and the second
number is the number of columns (c). After that come r lines of text, each line contain-
ing exactly c-characters. The last r lines of text consist only of alphabetic characters, all of
which are either lower-case or capital ’X’.

The format of the output GUI is illustrated in Figure 2. It consists, at least conceptually, of three
components.

The first component is an r × c grid of squares that are either black or white. Xs on the
input are represented by black squares on the output. Other characters are drawn in white
squares in uppercase. White squares have a small number in the top-left corner if they are
the beginning of either a horizontal or vertical word. (It is possible that they may be both.
See the square numbered 4 in the example.) One-letter words are ignored (in the example,
the A in the top row is not considered a vertical word).

The large letters should be centered if possible. (See below.)

The second component is a column of the horizontal words with their starting numbers. The
third component is a column of the vertical words with their starting numbers.



UNBC CPSC 101

Figure 1: Sample Input

in.txt
4
5
Xcats
ehXhe
raXel
atXXl

Figure 2: Sample Output

Programming Details

The following advice is only recommended advice. If you find other ways to implement the
functionality requested, please feel free to do so.

The second and third components of the display are most easily implementable as JTextAreas.
To use a different font for the titles, make the title a JLabel, and combine it with the word
list using a JPanel with a BoxLayout layout.

The grid in the first component is the hardest component to display. One approach that is pos-
sible here is to subclass JPanel, and then use setLayout(null) to remove the layout manager,
and then explicitly set the location of each object that you wish to display, à la

add(mySubObject) ;
mySubObject.setLocation(x, y) ;

To get the grid itself to take up enough space in the overall frame, you may need to over-
ride the getMinimumSize method.

The individual cells of the can be subclassed from JComponent. If you use setBorder, it is easy
to get the black line around them. In this case you want to override the

Laboratory Assignment Cross Word Grid • 2



UNBC CPSC 101

protected void paintComponent(Graphics g)

method in order to the paint the cell. Remember to call super.paintComponent(g) first, and
then do whatever painting you need. You probably want to do a g.setColor one or more
times, a g.setFont zero or more times, and then various g.fillRect’s and g.drawStrings.
The graphics object that you get has co-ordinates relative to the cell, not the whole frame.

To center characters in a cell, you will want to use a FontMetrics object.

FontMetrics fm = graphics.getFontMetrics(getFont()) ;
... fm.charWidth(myChar);
... fm.getStringBounds(""+myChar,0,1,arg0).getHeight() ;
... fm.getDescent()

The FontMetrics object is designed for getting measurements of a character shape. The de-
scent of a font measures how much characters can fall below the baseline. The third argu-
ment of the graphics.drawString(s,x,y) function specifies the baseline for the string, not
the bottom of its bounding rectangle.

Laboratory Assignment Cross Word Grid • 3


