
UNBC CPSC 101 Team Term Project Winter 2008

revised January 20, 2008 Object Oriented Design David Casperson

Overview: Object oriented analysis and design is the process by which we can start from
the statement of a problem and arrive at a probable plan for the implementation of
object-oriented software to solve the problem.

There are many and detailed methodologies for doing so. What is proposed below by
contrast is reasonably straight-forward, if not simple, and is likely to suffice for a problem
of the size of the Cpsc 101 project.

Object oriented philosophy: In large (and even small!) software projects, the problem
specifications change with time. At the same time, programming experts insist that we
should be able to create software libraries that can be reused.

How are these two statements to be reconciled? One useful observation is that problem
statements and design requirements evolve much more rapidly than the real world. For
instance, there have been several versions of Microsoft Word

TM
over the past twenty-five

years, yet our knowledge of fonts and typographical practice has changed very little in
that period.

This leads to the conclusion that the software that we produce should use real-world
concepts in its design.

Problem oriented language: In particular the choice of classes and methods and objects
should reflect the language of the problem statement. The following procedures give one
way to do this:

List of nouns: In order to arrive at a possible list of classes, read through the problem state-
ment and find all of the nouns and noun phrases. Strike from this list those nouns that
clearly have nothing to do with the problem to be solved (for instance, “air”, “patent”,
and “handout” all appear in the Score 4 specfication, but are unlikely candidate for
classes.) If in doubt, keep the noun!

List of facts: Now re-read the problem statement for the facts contained therein, and for
each noun come up with a list of related facts. For instance, for peg, one has at least:

• is a thin metal spike
• there are 16
• arranged in a 4× 4 grid

• beads slide to the bottom
• can contain 4 beads.

Some of these facts may later turn out to be irrelevant; try to avoid early judgment. For
instance, the fact that a peg is a thin metal spike is likely to be irrelevant to an Ascii-
based C++-program, but might be relevant to a robotic implementation or a high-quality
graphics version.

Paragraph descriptions: For each noun, write a short paragraph that coherently combines
the list of facts found above. Remember that good paragraphs contain a topic sentence!

ABCs
January 20, 2008

version 1 –page 1 of 3–



UNBC CPSC 101 Team Term Project Winter 2008

At this point we are ready to shift to a slightly more programming-oriented frame of mind.
The list of nouns are likely candidates for the classes of our program, and their corresponding
descriptive paragraphs are likely JavaDoc comments. We know need to find likely methods
for these classes.

It is important to remember that at this point the design should concentrate on what, not how.

Attributes: The attributes of an object help describe what distinguish it from other objects
in the same class and may limit the behaviours that object can engage in. For instance,
one attribute of a Peg may be how many beads are on it — and a Peg with four beads
should refuse to accept more beads.

More generally, attributes tell us about the state of an object, or give us access to its
subobjects.1

For each class, come up with a list of attributes for that object. Overdesign here. It may
be true that .isFull() is the same as .height()==4, but it is better to describe both
attributes at this point.

Remember that your goal here is to describe what rather than how. In programming
terms, you are describing the signatures and return types of public methods, not their
implementation, and not the corresponding private fields.

Behaviours: The behaviours of an object typically result in changes in its state reflected in
changes in its attributes. For instance an .addBead(Bead b) behaviour of a Peg changes
the state of the peg. Some behaviours might instead result in changing the state of
another object. For instance, a .printOn(Writer w) behaviour is unlikely to change the
state of the object itself, but will change the state of the object w.

In programmatic terms, behaviours likely correspond to the void methods and construc-
tors of a class.

For each class, come up with a list of behaviours for that object.

Collaborations: A collaboration is an interaction between two or more objects, especially
where those objects are not already related by aggregation. Thus board.getPeg(0,2) is
usually conceived of as finding an attribute of the board, but referee.tellTheComputer
OpponentToRestart(computerOpponent) is definitely a collaboration.

Find all of the collaborations that might exist, and for each class, note what the possible
collaborations are.

Overdesign! Design work may seem tedious. Frequently computer science students seem
reluctant to find classes, attributes, and behaviours in the problem statement. However,
it is better to overdesign. If you later decide not to implement your design you haven’t
invested a large amount of effort. You are much more likely to make mistakes adding to
your design later than you are removing from it.

1First-year programming texts that are trying to explain the notion of encapsulation sometimes overstate
the need to keep things private. If a Player has access to a board and wants to play a Bead on its A3 peg, the
player needs to be able to board.getPeg(0,2), regardless of whether the returned object is officially private or
not.

ABCs
January 20, 2008

version 1 –page 2 of 3–



UNBC CPSC 101 Team Term Project Winter 2008

Design Checklist:

• Can the objects find one another?

Another way of phrasing this question is “do your objects have enough attributes
describing their physical and logical relationships to other objects?” If a board has
pegs, do the pegs know what board they belong to? If a player has access to a
board, can the player get access to the pegs of the board? to the colour of the beads
on the pegs on the board?

• Are two words being used to mean the same thing?

Do you have both Peg and Spike ? If so, is there an important difference between
them, or are they nearly identical?

• Is one word being used to mean multiple things?

Even more importantly, are you using one word for two distinct concepts? For in-
stance, are you simultaneously using the word “location” to mean a two-dimensional
location like A3 and a three-dimensional location like the location of the third bead
on the A3 peg?
One of the most important things that your design can accomplish is to establish a
one-to-one correspondance between concepts and terminology.

To summarize: this is design, not implementation. Use problem-oriented language, not programming-
oriented language. Describe what not how.

ABCs
January 20, 2008

version 1 –page 3 of 3–


