
UNBC Laboratory Assignment
Computer Science 101—Winter 2008

Factory Methods, Clones, and Automation

Due Date:

This assignment is due Wednesday 2008-02-06.

Purpose:

To extend the Payroll system developed in Laboratory Assignment 2, and thereby gain famil-
iarity with advanced Java idioms for object construction.

More particularly, to extend the Payroll program so that the addition of new Employee sub-
classes is automated to the point that adding a new subclass of Employee is as simple as
adding the appropriate .class file to the project directory.

Reading Assignment:

Read the entire assignment and Chapter 11 of the textbook before attempting this assignment.

Be sure to understand the answers to the following questions. Discuss them with your lab
instructor if you are not sure how they work.

• What advantages does a factory method have over a constructor?
• Is a clone() method a factory method?
• Is the clone() method of the Object class public?
• Can a method that has an Employee argument also accept objects of subclasses?
• Can an overriding method declare a return-type that is a superclass of the overridden

method?
• Can an overriding method declare a return-type that is a subclass of the overridden

method?

⇒ Hand in answers to these questions attached to your lab assignment. (See the “Summary” sec-
tion on page 4.)

Copy constructors:

A copy constructor is a constructor whose sole argument is another object of the same class.
Although not as important as in C++, copy constructors greatly simplify the operation of creating
copies of objects.

⇒ If you haven’t already done so, add copy constructors to the Employee class and each of its sub-
classes.

UNBC CPSC 101

Simple clone() operations

An important part of being able to generate objects from a factory method is the ability to
clone a prototype object of a class. With copy constructors in place, this is easy to implement.
For instance in Contract the clone function can be written as

public Contract clone () { return new Contract(this) ; }

⇒ Add .clone() methods to each of Employee and its subclasses.

(Note that we are overriding the “protected Object clone() throws CloneNotSupported”
method of the Object class.)

Employee Factories

A factory method is static method of a class that returns objects of that class, or possibly
of its subclasses. This overcomes a shortcoming of constructors, which can only ever return
objects of the class that they are members of.

In particular, we want to add to the Employee class a method with signature

public static Employee getInstanceFor(EmployeeCode ec) { ... }

Although the return type is Employee we want the method to return an object of a subclass
whose .getCode() method returns the EmployeeCode ec argument.

In order to initialize the connection between various EmployeeCodes and Employee classes we
also want to have a method

protected static void register(Employee e) { ... }

We expect that the argument to this method will in fact be an object of a subclass of Em-
ployee. By using e.getCode() the register function can associate this subclass object e
with the appropriate EmployeeCode.

In order to do this in an automatated way, we need to have a data structure that relates
EmployeeCodes to Employees. The abstract java.util.Map<K,V> class and the concrete in-
stantiation java.util.TreeMap<K,V> can be used to do this.

In the Employee class we need to add

private static java.util.Map<EmployeeCode,Employee> registrations
= new java.util.TreeMap<EmployeeCode,Employee>() ;

and methods

protected static void register(Employee e) { ... }
public static Employee getInstanceFor(EmployeeCode ec) { ... }

Laboratory Assignment Factory Methods, Clones, and Automation • 2

UNBC CPSC 101

The void register(Employee e) method should register an instance of a subclass against
its EmployeeCode. If the EmployeeCode has already been registered against another class, the
program should take some emergency action.

The Employee getInstanceFor(EmployeeCode ec) method should return a clone() of the
registered instance for the EmployeeCode ec if there is one, otherwise it should either return
null or an instance of an appropriate Unknown class.

These two methods will likely use the pre-existing Map<EmployeeCode,Employee> methods

public boolean containsKey(EmployeeCode ec) ;
public Employee get(EmployeeCode ec) ;
public void put(EmployeeCode ec, Employee e) ;

Look at the online documentation for these methods if their meaning does not seem clear.

⇒ Write and add the

• the registrations field,
• the register method, and
• the getInstanceFor method

to the Employee class.

⇒ Test your Employee factory methods.

Note that by using logic like that shown in Figure 2 on page 7 the only code that now explictly
needs to be modified to add a new class is the loadClasses method.

Class static initialization

The boolean classesLoaded in Figure 2 is bit worrisome. In fact, Java provides a method for
ensuring that a piece of code is executed once per class per program. This is called a static
initialization block and is shown in Figure 3 on page 8.

However, it is even more natural to separate this static initialization into the subclasses of the
Employee class. For instance in the Contract class, have the code

static { register(new Contract()) ; }

⇒ Add static initialization blocks to each of the subclasses of the Employee class, and remove
the same initialization from other places that it may have been.

Auto-loading all of the classes in a directory

This almost completely automates the addition of classes. Unfortunately, these static-blocks
are not executed until the class is loaded, and the class is not loaded until it is mentioned.

To force the autoloading of all of the classes in the runtime directory of the program, you
need to use some additional trickery like that shown in Figure 1 on page 6. This method

Laboratory Assignment Factory Methods, Clones, and Automation • 3

UNBC CPSC 101

loads all of the .class-files in a directory1.

Here is a brief explanation of the method. The String [] list() method of java.io.File
produces a list of all of the file names in a directory. The void forName(String) static method
of the Class class loads a class with a given name. The remainder of the code searches for
strings that end with .class and removes that part of the string to get a class name.

To use this method, you can call it as shown:

loadEmployeeClasses(new File("/home/casper/Code/Java/payroll")) ;

assuming that /home/casper/Code/Java/payroll is where the appropriate class files lie.

⇒ Implement autoloading, and test it with your current classes.

⇒ Implement a Commission class that meets the description below. Compile your Commission.java
file, and without making any other changes to your code see if your program can now handle
Commission employees.

Description of the Commission Employees

Commission Commissioned employees work 37.5 hours per week for a varying hourly rate.
In addition they are payed a commission on sales, and possibly other expenses related to
travel costs. A typical commission employee input record looks like

CM 19.31 4000.00 150.00

indicating an employee that earns $19.31 per hour, and had commissions totalling $4000.00

and other expenses totalling $150.00.

Deductions for commissioned employees are the same as for part time employees on
hourly wages, together with a flat 15% on commissions earned. There are no deductions
on the other payments.

Summary

Congratulations!

If you have made it this far, you have created a Java program that can be modified to handle
arbitrary new classes of Employees solely by adding .class-files for those new classes.

At this point you should feel that you have a good understanding of what distinguishes Object
Oriented Programming from other programming methodologies.

Hand in

• answers to the questions at the beginning;
• a listing of program without the Commission class attached, showing that it compiles and

runs, and that CM employee codes are dealt with as errors; and
1This code assumes that they are part of the anonymous package. If you have added package statements to your

classes, you need to modify this slightly.

Laboratory Assignment Factory Methods, Clones, and Automation • 4

UNBC CPSC 101

• show how attaching a Commission class causes the program to run differently.

The remaining section is completely optional.

[OPTIONAL] Fancy clone() operations

The Object.clone method gives a fast way to create shallow copies. However, the technique
is somewhat more complicated than the one given above:

1. First, the Employee class must implement the interface Cloneable. As this interface has
no actual methods, this is simply a matter of adding “implements Cloneable” to the
Employee class declaration.

2. Secondly, the Employee clone() method needs to handle the CloneNotSupported excep-
tion even though it will never happen! The cleanest way to do this is to write something
like

public Employee clone () {
Employee e = null ;
try {

e = (Employee) (super.clone());
} catch (CloneNotSupportedException ex) {}

return e ;
}

3. Once Employee declares that it implements Cloneable and has a clone() function that
doesn’t threaten to throw CloneNotSupportedException, the clone functions in the de-
rived classes can be as simple as (in Contract)

public Contract clone () { return (Contract) (super.clone()) ; }

4. For subclasses that have mutable fields, in order to implement a deep clone the code
should be written more as (in Contract):

public Contract clone()
{
Contract c = (Contract)(super.clone()) ; // shallow copy
c.mutableField1 = c.mutableField1.clone() ; // copy fields deeply
c.mutableField2 = c.mutableField2.clone() ;
}

5. You cannot mix this technique with the previous technique.

⇒ [optional]
Implement .clone() operations using the Object class protected method.

Laboratory Assignment Factory Methods, Clones, and Automation • 5

UNBC CPSC 101

1 public static void loadEmployeeClasses(File directory)
2 throws ClassNotFoundException
3 {
4 String[] classNames = directory.list() ;
5 final String tail = ".class" ;
6 final int tailSize = tail.length() ;
7 for (int i = 0, ell = classNames.length; i < ell; ++i)
8 {
9 String x = classNames[i] ;

10 if (x.endsWith(tail))
11 Class.forName(x.substring(0, x.length()-tailSize));
12 }
13 }

Figure 1: loadFiles

Laboratory Assignment Factory Methods, Clones, and Automation • 6

UNBC CPSC 101

1 // various import’s
2 public class Bob {
3 private static boolean classesLoaded = false ;
4 public static void loadClasses()
5 {
6 if (!classesLoaded)
7 {
8 Employee.register(new Parttime()) ;
9 Employee.register(new Fulltime()) ;

10 Employee.register(new Contract()) ;
11 classesLoaded = true ;
12 }
13 }
14

15 public static void processFiles(Reader in, Writer out)
16 {
17 loadClasses() ;
18 Report report = new Report(out);
19 report.setLinesPerPage(50) ;
20 processReport(new Scanner(in), report) ;
21 report.close() ;
22 return ;
23 }
24

25 public static void processReport(Scanner sin, Report report)
26 {
27 if (!sin.hasNext()) return;
28 EmployeeCode code = new EmployeeCode(sin.next()) ;
29 Employee current = Employee.getInstanceFor(code) ;
30 current.readFrom(sin) ;
31

32 while (true)
33 {
34 report.print(current) ;
35 if (!sin.hasNext()) break ;
36 code = new EmployeeCode(sin.next()) ;
37 current = Employee.getInstanceFor(code) ;
38 current.readFrom(sin) ;
39 }
40 return ;
41 }
42 }

Figure 2: processFiles version 2

Laboratory Assignment Factory Methods, Clones, and Automation • 7

UNBC CPSC 101

1 // various import’s
2 public class Bob {
3 static
4 {
5 Employee.register(new Parttime()) ;
6 Employee.register(new Fulltime()) ;
7 Employee.register(new Contract()) ;
8 }
9

10 public static void processFiles(Reader in, Writer out)
11 {
12 Report report = new Report(out);
13 report.setLinesPerPage(50) ;
14 processReport(new Scanner(in), report) ;
15 report.close() ;
16 return ;
17 }
18

19 public static void processReport(Scanner sin, Report report)
20 {
21 if (!sin.hasNext()) return;
22 EmployeeCode code = new EmployeeCode(sin.next()) ;
23 Employee current = Employee.getInstanceFor(code) ;
24 current.readFrom(sin) ;
25

26 while (true)
27 {
28 report.print(current) ;
29 if (!sin.hasNext()) break ;
30 code = new EmployeeCode(sin.next()) ;
31 current = Employee.getInstanceFor(code) ;
32 current.readFrom(sin) ;
33 }
34 return ;
35 }
36 }

Figure 3: processFiles version 3

Laboratory Assignment Factory Methods, Clones, and Automation • 8

