
UNBC Laboratory Assignment
Computer Science 101—Winter 2007

Virtual Functions

Purpose:

To gain familiarity with the use of virtual functions and programming using inheritance. This
laboratory assignment is substantially similar to ones given in previous years.

Due Date:

This assignment is due Wednesday 4 April.

Assignment:

Problem statement

The problem is to implement a payroll processing system that consists of an Employee class,
and three derived classes: FullTime, PartTime, and Contract. Your task is to write a program
that reads information from an istream (details about the format of the input information
follow) and writes information to an ostream.
The output should look like the following:

Employee Employee Hours/ Rate/ Commision Other Deductions Take

Class Number Week Hour Home

--

FT 00613 40.0 65.00 0.00 0.00 750.00 1850.00

FT 00614 40.0 35.00 0.00 0.00 150.00 1250.00

PT 09312 20.0 15.00 0.00 0.00 15.00 285.00

CO 99001 0.0 0.00 0.00 4512.35 0.00 4512.35

--

Totals: 4 100.0 0.00 4512.35 915.00 7897.35

In order to make the output nicely aligned you should use the setw and setprecision func-
tions or their equivalents. See Chapter 11 of Deitel and Deitel for the details.

Give your Employee base class virtual functions to compute hours per week, rate/hour, com-
mission, other, deductions, and take home pay; and a pure virtual1 function to read employee
data from cin. In each case, think about how you want to implement these so that the de-
rived classes have the minimum amount to define.

1If pure virtual functions haven’t been covered in class by the time you start coding this, use an ordinary virtual
function. Changing the function to pure virtual later is trivial.

UNBC CPSC 101

Your “main” program must use an Employee* variable to keep track of the current input em-
ployee. After output is displayed for a particular employee, the employee should be deleted;
and the next employee record allocated. You probably want your main program to look some-
thing like

while (cin && !cin.eof())
{
EmployeeCode code ;
Employee* current = 0 ;
cin >> code ;
current = get_instance(code) ;
current->read_details(cin) ;
cout << *current << endl ;
delete current ;
}

where get_instance is a function that returns an Employee* pointer to a newly allocated
object of the appropriate derived class.

Use an explicit class called EmployeeCode that contains the two-letter codes identifying various
categories of employees.

Details for the derived classes are as follows:

FullTime Each full time employee works 38 hours per week. Employees in this class never
earn commissions or other payments. Deductions are calculated as $10.00 per week for
each dollar per hour earned between $20.00/hr and $35.00/hr; and $20.00 per week for
each dollar per hour over thirty-five. Thus someone earning $65.00/hr pays 15× $10.00 +
30× $20.00 = $750.00 per week in deductions.

A typical input record for a full time employee looks like:

FT 00613 65.00

PartTime Each part time employee works between 10 and 30 hours per week. Employees
in this class never earn commissions or other payments. Deductions are calculated as
15% of total earnings in excess of $200 per week but less than $500 a week, and 25% on
everything in excess of $500 per week. A typical input record for a part time employee
looks like:

PT 00613 20 15.00

Contract Contract employees are never paid an hourly rate and never earn commissions. Fur-
thermore, no deductions are made from their pay. A typical input record for a contract
employee looks like:

CO 99001 4512.35

Laboratory Assignment Virtual Functions • 2

UNBC CPSC 101

Implementation

⇒ Implement and test the above program.

You may assume that input comes from cin and that output goes to cout in your main program
if you so choose, but the rest of the functions that read or write should be passed istream or
ostream arguments.

Your main program must use an Employee* pointer, and the actual employee-derived ob-
jects must be created on the heap.

Do not put protected or private member variables for each of the Employee’s virtual attributes
in the Employee class. Instead include these variables as private member variables in the appro-
priate derived class.

Do use virtual member functions for each of the attributes of an Employee, in particular,
those that show up on the print-out.

Give each class a separate .h and .cpp-file. If possible, use a Makefile for your program.
When you have finished designing and testing your program prepare a script file that shows
your code and some sample input and output. Be sure to document your code properly.

The following part of the assignment is optional. There are some important ideas and
programming techniques here, but you may find that you don’t have time to com-
plete this by the end of the course.

The goal of the next part of this assignment is to re-write the program above so that in order
to add a new class derived from Employee it is sufficient to compile a .o-file for the new
class and link it with the pre-existing .o-files. In particular, you shouldn’t have to modify any
pre-existing code or recompile any pre-existing .o-files.

If you have done the previous parts correctly, you should be close to this goal. In fact, only
the get_instance function should need modification each time you add a class. If your main
program is more tightly linked to the possible classes than this, carefully review how you are
using virtual functions and change your program.

In order to change your program so that the get_instance function does not require change

Laboratory Assignment Virtual Functions • 3

UNBC CPSC 101

each time you add a class, you need to do some work.

“Virtual” constructors

First you need to add an Employee* clone() const member function to each class derived
from Employee that returns a copy of the object that calls it. There is no such thing as a virtual
constructor; and this is about as close as you can get. As an example the FullTime::clone
function might be defined as

Employee*
FullTime::clone() const { return new FullTime(*this) ; }

Note the upcasting of a Fulltime* to an Employee*.

Making the EmployeeCode class keep track of Employee classes

The next trick is to modify the EmployeeCode class. The idea here is that the EmployeeCode class
will have static member variables and static member functions that keep track of the relation
between specific EmployeeCode’s and the derived class that represents them. By adding a
new constructor that also takes an Employee* argument, you can associate a class with an
EmployeeCode by storing an Employee* pointer to an object of the class in some kind of table
that connects EmployeeCode’s and Employee*’s.

Suppose we add a constructor and static members to an EmployeeCode class something like:

class Registration ;
class EmployeeCode
{
public:

EmployeeCode(const char*) ;
EmployeeCode(const char* code, Employee* example)
{ // do the standard stuff

register_code(*this, example) ;
}

static Employee* get_instance(const EmployeeCode& code)
{ return get_ptr()->get(code) ; }

private:
static void register_code(const EmployeeCode& code, Employee* e)
{ get_ptr()->register_code(code,e) ; }

static Registration* get_ptr() ;
} ;

(The Registration class will be explained below.)

Now you can write your get_instance function something like

Laboratory Assignment Virtual Functions • 4

UNBC CPSC 101

Employee* get_instance(const EmployeeCode& code)
{ return EmployeeCode::get_instance(code)->clone() ; }

with some appropriate error checking added.

Now if you add a static EmployeeCode member variable to each class derived from Employee
you can ensure that each derived class is registered before the main program begins with code like:

EmployeeCode PartTime::code("PT", new PartTime()) ;

Because PartTime::code is constructed before the main program begins, the appropriate con-
nection between "PT" and the PartTime class will be noted by the EmployeeCode class before
the program begins. Note that the code identifying this connection is contained entirely in the
PartTime.cpp file, and requires no explicit coding in any other file!

Implementing Registration

Because of the unpredictable order in which static member variables in different .o files are
initialized, it is necessary to use a static member function rather than a static Registration*
member variable in EmployeeCode.

However, this function can be written as

Registration* EmployeeCode::get_ptr()
{ static Registration* ptr = new Registration() ;

return ptr ;
}

An easy way to code the actual Registration class is to make use of a couple of classes in the
Standard Template Library (see Deitel & Deitel section 20.3.4). Something like the following will
work:

#include <map>
class Registration
{
public:

Employee* get_instance(const EmployeeCode& c)
{

return theMap[c] ;
}

void register_instance(const EmployeeCode& c, Employee* e_ptr)
{

theMap[c] = e_ptr ;
}

private:
map<EmployeeCode, Employee*> theMap ;

} ;

Laboratory Assignment Virtual Functions • 5

UNBC CPSC 101

Of course you should add error checking to the above. A map object will return a default
value if the key specified hasn’t been entered. In the case of Employee* objects, the default
value is a null pointer. In order for the code to work as written, the EmployeeCode needs
to have an overloaded “<” operator.

⇒ Modify your previous program to include the ideas suggested above. Then modify your pro-
gram to add a new class of employee, the commission worker.

Commission Commissioned employees work 37.5 hours per week for a varying hourly rate.
In addition they are payed a commission on sales, and possibly other expenses related to
travel costs. A typical commission employee input record looks like

CM 19.31 4000.00 150.00

indicating an employee that earns $19.31 per hour, and had commissions totalling $4000.00

and other expenses totalling $150.00.

Deductions for commissioned employees are the same as for part time employees on
hourly wages, together with a flat 15% on commissions earned. There are no deductions
on the other payments.

⇒ Produce a script file for your modified program.

⇒ Carefully describe what parts of the existing program you had to modify in order to add commission
employees. Comment on how you might have been able to reduce the amount of code you had to modify.

Laboratory Assignment Virtual Functions • 6

