UNBC Laboratory Assignment

Computer Science 101—Winter 2007

Miscellaneous Etudes

Due Date:

This assignment is due 28 March 2007 at the beginning of lecture.

Static member functions, constructors, and assigment oper-
ators

One reason why you might want to overload the assignment operator and copy constructor is
when you have a class where each object has a unique identification number.

For this exercise imagine that you wish to model SpeedingTickets. Each speeding ticket
should have a unique id number (and, for this exercise, this means unique even if created by
a copy constructor). It should be possible to create an array of SpeedingTickets and have each
SpeedingTicket get a unique id. Each ticket should have a fine. There should a be a static
member function that tells you how many ticket objects currently exist.

Programming exercises:

Create a SpeedingTicket class that has:

1. appropriate constructors and destructors,

2. a static member function that sets the default fine for newly created tickets,

3. an overloaded assignment operator that does not change the ticket id of the ticket being
assigned to,

a copy constructor that guarantees the uniqueness of ticket ids,

a static member function int numberOfTickets that returns the number of currently ex-
isting SpeedingTicket objects,

an int getID() const member function that returns the unique id number of a ticket,
getFine and setFine member functions,

an overloaded << operator,! and

9. whatever other member or non-member helper functions or variables you need.

Bl

® N>

Create test program(s) that show:

1. that it is possible to create an a array of tickets, and that each ticket created has a different
id;

that the static member function that sets the default fine works correctly;

that the copy constructor works;

that the count of currently existing tickets works; and

that the getFine, setFine, and overloaded << operator work.

Gt D

*+This .pdf created March 19, 2007.
Loverloaded by a non-member function.



© 0 N A W N e

s
B W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

UNBC CPSC 101

SmartDatePointer.h

#if !defined(SmartDatePointer_INCLUDED)// This file is really —*-C++—%-
// Description: header comments here

class Date ;

class SmartDatePointer

{
public:
SmartDatePointer() ; // creates a bad pointer
SmartDatePointer(Date array[]l, int size) ; // points at elt O
SmartDatePointer(Date array[], int size, Date * ptr) ;
// points at a given element of an array
void setArrayAndSize(Date array[], int size) ; // change the array
// properties
Date* base_array_ptr () const ; // return a pointer to element 0
int base_array_size () const ; // return the size of the array
bool isValid() const ; // return true if current pointer is ok
Date& operator*() const ; // dereference if valid
Date* operator->() const ; // yield a pointer if valid
private:

Date * array_ptr ;
int array_size ;
Date * ptr ;
} ;// end class SmartDatePointer

SmartDatePointer operator+(SmartDatePointer const&, int) ;
SmartDatePointer operator+(int, SmartDatePointer const&) ;
SmartDatePointer operator-(SmartDatePointer const&, int) ;
int operator-(SmartDatePointer const&, SmartDatePointer const&) ;

#define SmartDatePointer_INCLUDED
#endif// 'defined(SmartDatePointer_INCLUDED)

Figure 1: Interface for a SmartDatePointer class

Overloading the arrow operator

The arrow operator (->) is a little strange. It must be overloaded by member function and its
return type must be a pointer. Although it is technically a binary operator, it must be overloaded
as if it were unary. Suppose for instance that we have a SmartDatePointer class with a member
function

Date * operator->() const
and we have an object
SmartDatePointer sdp ; // presumably initialized later!

If we write something like “sdp->setDay(12)”, the compiler converts this to (sdp.operator->())
-> setDay(12) . The second arrow here is an HTG? arrow operator.

2Honest To Gertrude

Laboratory Assignment Miscellaneous Etudes o 2



UNBC CPSC 101

The main reason for overloading the “->” operator is when you wish to create a class of ob-
jects that behave like pointers, but have extra functionality. In the following exercise, you
write a SmartDatePointer class whose objects behave almost like Date * objects, but which
are only allowed to point at elements of an array of Date objects, and which check to make
sure that bad pointer arithmetic is never done.

Programming exercises:

Write a SmartDatePointer class that has an interface similar to that shown in Figure 1. Write
a driver program that tests your SmartDatePointer class on a small array of Date objects,
including a test of the —=> operator. Your SmartDatePointer class doesn’t have to have exactly
the same class declaration, but it must have similar functionality.

Decide on a consistent strategy to adopt when an illegal pointer operation is attempted. This
can be as simple as printing an error message and exiting the program.

For bonus marks, add all of the other operators that pointers normally have (for instance, ++
prefix and postfix, [, and so on).

Laboratory Assignment Miscellaneous Etudes o 3



