
UNBC Laboratory Assignment
Computer Science 101—Winter 2007

Forward Class Declarations and the
Compiler Firewall Idiom

Purpose:

To understand two of the purposes of using forward class declarations: decoupling tangled classes,
and hiding class information from the compiler, and from class users.

Due Date:

This assignment is due 5 March 2007 at the beginning of lecture.

Forward Class Declarations

Recall that it is possible to say that Person will be a class without actually listing the members
of the class, by using a forward class declaration, namely,

class Person ;

In this set of exercises, we explore two reasons why forward class declarations are useful.

Tangled Classes

The C++ programming allows objects of one class to contain physically member variables that are
objects of a second class (this contrasts with Java). Of necessity, these containment relations are
linearly ordered. If a Firetruck object contains an Engine object, then the Firetruck.h file
must include the Engine.h file. More generally, if you wish to declare a variable of a particular
class type, or if you wish to use the members of an object of a particular class type, you must
be able to see the complete class declaration at that point.

However, sometimes you may have two or more classes that refer to each other in some way other
than physical containment. For the sake of amusement, assume that we are modelling Snakes
and Lizards, and that they can eat each other, and that once eaten, they die. Thus the Snake
class has member functions something like those shown in Figure 1, and the Lizard class has
symmetric functions. In order for the Snake.cpp file to be able to call Lizard::die, it must
include Lizard.h . The file inclusion structure ends up looking like that shown in Figure 2.

This .pdf created February 25, 2007.



UNBC CPSC 101

void Snake::eat(Lizard& godzilla)
{

cout << "A snake is about to eat a lizard" ;
godzilla.die() ;

}

void Snake::die()
{

if (!dead++)
cout << "A snake dies."

}

Figure 1: Snake member functions

animals.h

Snake.h Lizard.h

Snake.cpp Lizard.cppmain.cpp

Figure 2: File inclusion diagram

Laboratory Assignment Forward Class Declarations and the Compiler Firewall Idiom • 2



UNBC CPSC 101

concept.h Impl.h

concept.cpp Impl.cppclient.cpp

concept.o Impl.oclient.o

Compiler Firewall

Compilation 
dependency

included in

Figure 3: The Compiler Firewall idiom

Programming:

Implement a very small program consisting of the six files shown in Figure 2, that at least give
each of the two animal classes the functions illustrated in Figure 1. Your driver program should
show the unhappy fate of at least one snake and one lizard.

The Compiler Firewall Idiom

The compiler firewall idiom is a programming strategy that uses forward class declarations to
make the private section of a class in effect even more private. It can be used for two purposes:

1. to prevent changes in the implementation of a class from affecting the clients of the class.
In particular the clients neeed not be recompiled even if the implementation objects change
shape.

2. to allow implementers of a class to keep all of the details of a class, including its list of
private member variables, secret.

The compiler firewall idiom works by separating a class into a proxy class (corresponding to the
concept.h, concept.cpp and concept.o files in Figure 3) that provides the public interface,
and the implementation class (corresponding to the Impl.h, Impl.cpp and Impl.o files in Fig-
ure 3).

Laboratory Assignment Forward Class Declarations and the Compiler Firewall Idiom • 3



UNBC CPSC 101

The proxy interface file

When you are using a proxy class in the compiler firewall idiom, its .h-file looks something like

#if !defined(Date_INCLUDED)

class DateImplementation ; // does all the work

class Date {

Date& operator=(const Date&) ; // forbids assignment of Date Objects

public:

// constructors, etc. At least one for each of DateImplementation

Date() ;

Date(const Date&) ; // must be defined, see elsewhere

~Date() ; // must be defined.

// usual public member function declarations

private:

DateImplementation * impl_ptr ;

} ;

#define Date_INCLUDED

#endif // !defined(Date_INCLUDED)

Note that

• We avoid needing access to the DateImplementation.h file by forward declaring the
class, and only using a pointer to it in the implementation.

• The shape of the Date class will not change regardless of changes to the
DateImplementation class becauseDate objects always consist of exactly one pointer.

• We must explicitly declare all of the constructors and destructors of the Date class, even
if they would normally be compiler supplied.

The proxy definition file

Note that the proxy definition file is behind the compiler firewall. It needs to include the dec-
laration of the implementation class, because it refers to member functions of the implementation
class.

Ordinary member functions

Almost all of the member functions of the proxy class simply refer to the implementation to
do the work. For instance, one might write:

int Date::getDay() const {return impl_ptr->getDay() ;}

or

Laboratory Assignment Forward Class Declarations and the Compiler Firewall Idiom • 4



UNBC CPSC 101

void Date::setDay(int d) {impl_ptr->setDay(d) ; return ;}

(the code here is condensed for space reason; this is generally not good coding style.)

Constructors and destructors

Unfortunately constructors and destructors are more complicated, because the implementation
objects must live on the heap. The zero-argument constructor and copy constructor must
be explicit and are likely coded as

Date::Date()

: impl_ptr(new DateImplementation())

{}

Date::Date(Date const& rhs)

: impl_ptr(new DateImplementation(*rhs->impl_ptr))

{}

Again, note how the Date class is really just referring the work to the corresponding DateImplementation
class functions. Other constructors in the DateImplementation class must have corresponding
analogs in the Date class. The destructor must free up the implementation storage

Date::~Date()

{ delete impl_ptr ; impl_ptr = 0 ; }

Although this looks ahead to Chapter 8, the assignment operator can be made public and coded
as:

Date& Date::operator=(Date const& rhs)

{

*impl_ptr = *rhs.impl_ptr ;

return *this ;

}

Optional programming exercise

The following programming exercise is optional. You are not required to hand it in, although
you are responsible for understanding the ideas that it contains.

In Lab assignment 4 you implemented two different versions of a Date class. By renaming them,
use these to provide two distinct implementations of a DateImplementation class.

• Write a Date class that acts as a proxy class, using the ideas provided above. (The
tomorrow() and yesterday() member functions require some additional thought.)

Laboratory Assignment Forward Class Declarations and the Compiler Firewall Idiom • 5



UNBC CPSC 101

• Your driver and/or test programs from Lab assignment 4 should work with the new Date
class. Test that your Date proxy class, one of your DateImplementation classes and your
driver program work together.

• Show, through the use of a Makefile or otherwise, that you can substitute the .o-file of
one of the DateImplementation objects for the other and relink the executable without
being forced to recompile any code.

Review Questions:

You should now be able to answer the following questions about the compiler firewall idiom. Do
not hand these in, but be prepared to answer similar questions on Midterm II.

1. If we did not use the compiler firewall idiom, why would we be forced to recompile the
client program (client.o in Figure 3, the driver programs in the optional programming
exercise) when we changed the implementation of the class (Date in Lab Assignment 5)?

2. Why must we use copy constructors in the proxy class?

3. Why must the proxy class implementation be able to see the full implementation class
declaration?

4. Using a proxy class as in the compiler firewall idiom, how would you write a function like
Date::tomorrow() that returns a Date object?

Laboratory Assignment Forward Class Declarations and the Compiler Firewall Idiom • 6


