
UNBC Laboratory Assignment
Computer Science 101—Winter 2007

Classes, and Member Functions

Due Date:

This assignment is due 16 February 2004 at the beginning of lecture.

Information on Gregorian dates:

We tend to take dates for granted, and assume, for instance, that everyone in the world uses
the same system of dates. This, of course, isn’t true. Both the epoch (that is day one of year
one), and whether the calendar is solar- or lunar- based vary throughout the world. Even in
Western Europe common dates are only a phenomonen of the last 250 years or so. Before that,
the slowness of the Protestant countries to adopt the calendar reforms of Pope Gregory meant
that the date depended on which country you were in.

For the purposes of this assignment, we shall assume the use of the Gregorian calendar, and that
the year is 1800 or later.

Days in a month

In the Gregorian calendar there are thirty-one days in January, March, May, July, August, Octo-
ber, and December. There are thirty days in April, June, September, and November. February
has twenty-eight days except in leap years, when it has twenty-nine.

Leap years

Leap years occur every four years on years divisible by four, but exclude years ending in ’00’,
except for those divisible by four hundred. Thus, 2004, and 2008 are leap years, but 2100 is
not. By the four hundred rule, 2000 was a leap year.

Coding exercise:

⇒ Build a Date class similar to that found in Chapter 6 of Deitel and Deitel.

• Perform error checking on the initializer values for year, month, and day.

• Modify the print functions to use ISO formatted dates (2007-02-05), rather than American
“02/05/07” format.

• Provide member functions to get and set the year, month and day.

• Provide member functions void addDay() and void addDays(int) to increment the date
by one or more days. The Date object should remain in a consistent state.



UNBC CPSC 101

• [Bonus] Write a member function int daysTo(Date const&) const that computes the
number of days between two dates.

• Provide member functions Date tomorrow() const and Date yesterday() const that
return the day after or the day before the object on which they are called.

Notes

For this version of the Date class use, store the year, month, and day in three separate int vari-
ables. Feel free to add private: member functions that make it easier to implement your class.

Testing

Write a test program or test programs that carefully test the complete functionality of your
Date class. Be sure to test that adding a day that takes you from one month to another, or
from one year to another work correctly.

Try to write your test programs so that their output is short and easy for the reader to find and un-
derstand.

Re-implementation

⇒ Copy your code and tests to a new directory, and re-implement the Date class so that the year is
stored in an unsigned short variable, and the month and day are stored in unsigned char vari-
ables.

• Write test programs that show the size of the old and new Date objects.

• Carefully write down what changes you need to make in your code in order to make the
member functions work with your new representation. Provide these comments as a text
file with the rest of your assignment.

• Show that your old test programs run correctly with the re-implemented Date class.

Laboratory Assignment Classes, and Member Functions • 2


