UNBC Laboratory Assignment

Computer Science 101—Winter 2007

Strings & Pointers

Purpose:

1. To practice using the std: :string class. 2. To use pointers to check how memory is organized.

Due Date:

This lab is due at the beginning of class Monday, 22 January.

Strings:

From Deitel and Deitel
= 5.33

Write a program that uses random number generation to create sentences. The program should
use four arrays of pointers to char called article, noun, verb, and preposition. The program
should create a sentence by selecting a word at random from each array in the following order:
article, noun, verb, preposition, article, and noun. Use the C+ string library to create a
string to which each word is added as it is picked. (If you are unfamiliar with the C+ string
library you might want to look at Deitel and Deitel Chapter 15.) The words should be separated
by spaces. When the final sentence is output, it should start with a capital letter and end with
a period. The program should generate 20 such sentences.

The arrays should be filled as follows: the article array should contain the articles "the",
"a", "one", "some", and "any"; the noun array should contain the nouns "boy", "girl",
"dog", "town", and "car"; the verb array should contain the verbs "drove", "jumped", "ran",
"walked", and "skipped"; the preposition array should contain the prepositions "to", "from",
"over", "under", and "on".

Pointers and memory diagrams:

Pointer review exercise

= Write a routine with signature:
bool isSorted(double const * beginning, unsigned int length) ;
that checks to see whether a section of an array is in sorted order. For instance, to test whether
the array data had entries [2], [3], [4], and [5] in order, you would call
isSorted(&datal2] ,4). Make sure that your routine works correctly when length is very small.

= Write a driver routine that shows that your isSorted function works correctly.



=

=

UNBC CPSC 101

Memory diagrams

You can print the hexadecimal location of a variable or object by casting its address to void* as in
cout << static_cast<void*>(&i) ;

Printing the address of function pointers is a little bit more tricky to do in a standard con-
forming way. The following seems to work:

cout << reinterpret_cast<void*>(
reinterpret_cast<unsigned long>(&main)) ;

(This may not work on platforms where the size of an unsigned long is smaller than the size of a
function pointer, or where the size of an object pointer is less than the size of a function pointer.)

Using these ideas, find the relative locations of the heap, stack, global and static memory, and
the code regions of a small C+ program.

We have drawn stack frames as growing “up”. Write a short program that determines whether
in fact stack frames stack “up” or stack “down”.

Determine as best you can what order local variables are stored inside one stack frame.
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