UNBC Laboratory Assignment

Computer Science 101—Winter 2007

Strings & Pointers

Purpose:

1. To practice using the std: :string class. 2. To use pointers to check how memory is organized.

Due Date:

This lab is due at the beginning of class Monday, 22 January.

Strings:

From Deitel and Deitel
= 5.33

Write a program that uses random number generation to create sentences. The program should
use four arrays of pointers to char called article, noun, verb, and preposition. The program
should create a sentence by selecting a word at random from each array in the following order:
article, noun, verb, preposition, article, and noun. Use the C+ string library to create a
string to which each word is added as it is picked. (If you are unfamiliar with the C+ string
library you might want to look at Deitel and Deitel Chapter 15.) The words should be separated
by spaces. When the final sentence is output, it should start with a capital letter and end with
a period. The program should generate 20 such sentences.

The arrays should be filled as follows: the article array should contain the articles "the",
"a", "one", "some", and "any"; the noun array should contain the nouns "boy", "girl",
"dog", "town", and "car"; the verb array should contain the verbs "drove", "jumped", "ran",
"walked", and "skipped"; the preposition array should contain the prepositions "to", "from",
"over", "under", and "on".

Pointers and memory diagrams:

Pointer review exercise

= Write a routine with signature:
bool isSorted(double const * beginning, unsigned int length) ;
that checks to see whether a section of an array is in sorted order. For instance, to test whether
the array data had entries [2], [3], [4], and [5] in order, you would call
isSorted(&datal2] ,4). Make sure that your routine works correctly when length is very small.

= Write a driver routine that shows that your isSorted function works correctly.



=

=

UNBC CPSC 101

Memory diagrams

You can print the hexadecimal location of a variable or object by casting its address to void* as in
cout << static_cast<void*>(&i) ;

Printing the address of function pointers is a little bit more tricky to do in a standard con-
forming way. The following seems to work:

cout << reinterpret_cast<void*>(
reinterpret_cast<unsigned long>(&main)) ;

(This may not work on platforms where the size of an unsigned long is smaller than the size of a
function pointer, or where the size of an object pointer is less than the size of a function pointer.)

Using these ideas, find the relative locations of the heap, stack, global and static memory, and
the code regions of a small C+ program.

We have drawn stack frames as growing “up”. Write a short program that determines whether
in fact stack frames stack “up” or stack “down”.

Determine as best you can what order local variables are stored inside one stack frame.

Laboratory Assignment Strings & Pointers e 2



