
UNBC Laboratory Assignment
Computer Science 101—Winter 2007

Separate compilation & “make”

Purpose:

To learn how to use g++ and make to efficiently maintain multi-file programs.

Due Date:

The questions at the end of this lab are due at the beginning of class Monday, 15 January.

How C/C++ compilers work:

Although we often think of g++ as “the compiler” for C++ programs, it is in fact just a front-end
that runs several different programs corresponding to the different phases of compiling a program.
These phases are:

Compile Time

Pre-compiler

Compiler

Linker

Assembler

.ii file

.S file

.o file

executable
program

.c++ file

.h files
library
files

1. Pre-processing,
2. Compilation proper,
3. Assembly, and
4. Linking.

Pre-processing

This is the phase that replaces “#include <file.h>” lines by the contents of the appropriate
file, replaces pre- processor macro calls by the expanded macro call, etc. Pre- processors are evil,
and in C++ you usually only need to use the pre-processor to handle “#include” statements. The
pre-processor takes files that begin with .c or .cpp and produces output files with extensions like
.i or .ii. Normally these output files are suppressed and compilation happens at the same time.

UNBC CPSC 101

After inclusion of #include files the resulting piece of text is called a compilation units. Many
rules, for instance “do not define a static function twice”, apply to compilation units.

Compilation and Assembly

These two phases together take pre-processed input and convert it into a format that is almost
ready to be executed, more formally, into object files. On Unix systems (including Mac OS X
and Linux) object files typically have .o as their extension; on most other operating systems
(including Vax VMS and Microsoft Windows) the extension is usually .obj.

Object files consist of three parts: machine language, a dictionary of symbols that this object file
defines, and a dictionary of symbols that this object file requires from elsewhere. For instance, if
you compile your main function into a .o file then the dictionary of definitions will contain the
name main, and the dictionary of required symbols will most likely contain std::cout .

Usually when you run g++ each .c or .cpp file is pre- processed, compiled, and assembled into a .o
(object) file.

Linking

This is the final phase of producing a program. In this stage, several object files and libraries
(which are essentially collections of object files) are combined together to create one executable
file. This phase compares references and definitions and tries to match them up. It is this stage
that produces error messages if you are missing functions, or have compiled them twice.

Running

When you run your program, it is copied from permanent storage into main memory and the
operating system arranges for keyboard input to appear as std::cin and std::cout to be
copied to your shell window, and so on. Sometimes further linking (so called “dynamic linking”)
occurs at this time. This has the disadvantage of slowing the start of your program, but the
advantage of making your program files smaller (becuase they no longer require the contents of
the dynamically linked files). It also has the advantage that multiple running programs that use
the same libraries can sometimes share their copies in memory. Whether or not all of the linking
occurs at compile-time can be controlled by options that you pass to the compiler.

File creation and deletion

Normally g++ keeps only the files created by the last stage that it ran. For instance, if you run the
pre- compiler and the compiler, but not the assembler or linker, then g++ would keep the output
from the compiler, but discard the output from the pre-compiler after it had been passed to the
compiler.

Using the compiler efficiently:

There are two observations that allow us to use the compiler efficiently. One is that usually

Laboratory Assignment Separate compilation & “make” • 2

UNBC CPSC 101

between compilations only a few .cpp and .h files change. The second is that relatively speak-
ing, linking is much faster than compiling and assembling. The general idea then, is to only
run the pre-processor, compiler, and assembler on source code (.cpp) files that have changed
since the last compilation. Instead of having the compiler produce a “a.out” file from sev-
eral source files, you produce one object file for each source file, then link together all of the
object files that you have created.

Halting the compiler after a particular phase

From now on, instructions are specific to g++ . Most other compilers will have sim-
ilar flags and options, but you need to consult their documentation for the details. !
The default behavior of the compiler is to try to run as many phases of the compiler as makes
sense. To have the compiler halt after a particular phase, you can use one of the following flags:

-c Compile only. Halt after the assembly stage, and produce an
object file, but do not link. This is a commonly used option.

-S Stop after compilation proper; do not run the assembler. Produce
a .s file.

-E Only run the pre-processor. Produce a .i or .ii file

Other useful general options are:

-v Print the commands executed to run the stages of compilation.
Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

-o Rename the output file.

Renaming the output

The default name for the file produced by the compiler depends on what phase it stops at. If
the compiler stops before the linker phase the name is constructed from the base name of the
input file followed by the appropriate ending from .i, .ii, .S, and .o. The default output from
the linker is named a.out. The -o flag changes the default output name.

Warning Be very careful about how you use the -o flag! If you accidentally write
“g++ ... -o VeryImportant.c++” you will be in for a nasty surprise. !
An example

Suppose that we have three source files: blackjack.cpp, cards.cpp, and strategy.cpp (and
associated .h files.) Also, suppose that blackjack.cpp contains the main routine, and that we
want to call the resulting program blackjack. One way to accomplish this is to type

g++ blackjack.cpp cards.cpp strategy.cpp
mv a.out blackjack

Laboratory Assignment Separate compilation & “make” • 3

UNBC CPSC 101

These can be combined on one line as

g++ -o blackjack blackjack.cpp cards.cpp strategy.cpp

However both of these methods eliminate the intermediate .o files. If we initially take a little bit
longer by using

g++ -c blackjack.cpp
g++ -c cards.cpp
g++ -c strategy.cpp
g++ -o blackjack blackjack.o cards.o strategy.o

we can then make changes to one file and re-compile the program much faster. Suppose,
for instance that we change strategy.cpp. To re-compile the program we only need to up-
date the strategy.o file and re-link:

g++ -c strategy.cpp
g++ -o blackjack blackjack.o cards.o strategy.o

The advantage of doing things the second way is that compilation is much faster. The disad-
vantage is that re- compilation takes some thought.

For very large projects it is completely infeasible to recompile everything every time that a change
is made and tested, and almost as infeasible to keep track of which files have been recompiled
recently. Consequently, large projects require some kind of tool that automates the process of
generating the code. Later in this lab, we look at one of the oldest such tools: make and Makefile’s.

Laboratory Exercise 1

⇒ Write a program to solve the following problem (slightly modified from Deitel & Deitel)

A parking garage charges a $2.00 minimum fee to park for up to three hours. The
garage charges an additional $0.50 for each hour or part thereof in excess of three
hours. The maximum charge for any given 24-hour period is $10.00. Assume that no
car parks for longer than 24 hours at a time.

Write a program that will calculate and print the charges for each of the times
stored in a file called “times.txt”. Your output should be in a neat tabular format,
and your program should compute the total time and charges. Your output should
appear in the following format:

Car Hours Charges
1 1.5 2.00
2 4.0 2.50
3 24.0 10.00

TOTAL 29.5 14.50

Assume that the times in “times.txt” are floating point numbers separated by
spaces.

Laboratory Assignment Separate compilation & “make” • 4

UNBC CPSC 101

Although it may be overkill for this assignment, write your program as at least three separate
functions: “main”, “void processFile(istream&, ostream&)”, and “double calculateCharge(
double)”, each with their own .h and .cpp file. In your script file, show that you know
how to compile the files separately.

The .h file for processFile should look something like

processFile.h
// File: processFile.h
// Created by: David Casperson <casper@lib-444.fac.unbc.ca>
// Created: Thu Jan 9 11:21:11 2003
// Lab assignment: 1
// Lab due date: Friday, January 17 2003
// Description: interface for function to process
// parking garage entries.

#if !defined(processFile_INCLUDED)

void processFile(std::istream& data_in, std::ostream& report) ;

#define processFile_INCLUDED
#endif // !defined(processFile_INCLUDED)

Laboratory Exercise 2

⇒ Create a new “main” function so that the user of the program can specify the name of the input
file on the command line. Do not change any of your pre-existing files. Instead, create a second file
that contains your new main function. Compile it separately, and link it to the appropriate pre-
viously existing .o files. In your script file make sure to show how you re-compiled your program.

Technical Note

To read command line arguments, you need to change the signature of main from int main(void);
to int main(int argc, char* argv[]); With this signature argv will contain an array of C-
style strings, where argv[0] will be the name of your program, argv[1] will the second “word”,
on the command-line, and so on. “argc” is the number of words on the command-line, and
argv[argc] is guaranteed to be a null pointer.

Ask your lab instructor if you are confused as to how to get a file name from the command line.

What Makefiles are:

Each phase of the compilation process depends on the previous one. Similarly, making (compil-
ing) certain files depends on other files having been made. Doing things the second way above, the
file blackjack depends on the files blackjack.o cards.o and strategy.o; and the file cards.o

Laboratory Assignment Separate compilation & “make” • 5

UNBC CPSC 101

Figure 1: Useful flags for Makefiles.
-f -f filename. Use filename instead of makefile or Makefile.
-k Continue after errors. Normally the make process stops as soon

as an error is detected. With this option make will continue if it
is reasonable to do so.

-n This flag causes make to print out the list of commands it would
execute to update the target, but doesn’t actually execute any
commands. Useful for debugging makefiles.

-t Touch. Rather than execute the commands specified in a makefile
to update targets, make just changes their time-stamps.

depends on the file cards.cpp. We can tell whether the blackjack file needs updating by compar-
ing the time at which it was created against the creation times of the files blackjack.o cards.o
and strategy.o. If any of the latter were created more recently than the blackjack file, then
presumably the blackjack file needs to be updated. A makefile is a file used by the make program.
It contains a list of dependencies and rules. For our example, it would contain the two lines

blackjack : blackjack.o cards.o strategy.o
g++ -o blackjack blackjack.o cards.o strategy.o

as well as others. The first line specifies which line depends on which other. The second line
specifies the commands to run in order to do the update should the dependent program need
updating. Command lines like the second line shown above must begin with a TAB (Ctl-i, or
Ascii 0x9) character. Some text editors will automatically substitute a string of spaces for a tab
character. If your text editor does this you need to figure out how to over- ride this behavior
when you are creating a makefile. Makefiles can become extremely complicated; and are often
difficult to create correctly. The simplest strategy is often to have one standard makefile which
you then modify slightly to work for a particular program or set of programs.

Makefiles are almost always named either makefile or Makefile; although most “make” programs
let you choose a makefile with a different name.

Makefiles are complicated to create; but extremely easy to use. You simply type “make target”,
where target is the name of the file that you want the computer to create, and it automat-
ically checks all of the appropriate dependencies and runs the commands necessary to en-
sure that the target is up to date.

Most make programs accept a bewildering variety of command- line flags, and the meaning of
these flags often depends to some extent on the operating system being used. Some of the more
common and useful ones are shown in Figure 1.

Laboratory Exercise 3

⇒ Create a makefile for the program in Exercise 2, and use it to compile your program. It should
look something like the makefile shown in Figure 2. Be sure to include the answers to the
following questions with your assignment.

Laboratory Assignment Separate compilation & “make” • 6

UNBC CPSC 101

Figure 2: Makefile

1 #This line is a comment.
2 #The following two lines are abbreviations.
3 GPP = /opt/sfw/gcc-3/bin/g++
4 CPPFLAGS = -g2
5

6 process : main.o processFile.o calculateCharge.o
7 −〉|$(GPP) $(CPPFLAGS) -o process main.o processFile.o calculateCharge.o
8

9 %.o: %.cpp
10 −〉|$(GPP) $(CPPFLAGS) -c $<
11

12 clean :
13 −〉|-rm *.o

Note that in the following listing, spaces are shown as “ ”, and tabs are shown as “ −〉|”. Tab
characters must be typed as shown.
Also note that if you compile with /opt/sfw/gcc-3/bin/g++, you need to ensure that your
$LD_LIBRARY_PATH contains /opt/sfw//opt/sfw/gcc-3/lib! .

⇒ Modify calculateCharge.cpp by adding a comment to the beginning of the file. Re-execute
make. What commands are executed?

⇒ What do you think make clean will do? Try it out. What commands are executed?

⇒ After make clean, what do you think

make GPP=/csd3/local/GCC-2.95.2/bin/g++ process

will do? Try it out. What commands are executed?

Laboratory Assignment Separate compilation & “make” • 7

