
UNBC cpsc 720 Syllabus Spring 2013

Advanced Programming Languages
Prerequisites: Permission of instructor.

Web-page: http://web.unbc.ca/~casper/Semesters/2013S/720.php (not yet created)

Instructor: David Casperson; Office: T&L 10-2040; Phone: 960-6672;
Administrative Assistant: Marva Byfield; AA’s Phone: 960-6490;
e-mail: David.Casperson@unbc.ca .

Lecture times: as arranged. This is a
reading course.

Office Hours: To be scheduled.

Text Books: none required.

References: [5, 3] are good online books.
[7, 10, 6] are definitive language refer-
ences.

Grading Scheme: There will be no for-
mally assigned examinations.

Homework: 90%
Language Comparison: 10%

Students are expected to report on ma-
terial read, and solve mutually agreed
upon homework problems as invented
by the instructor.

Course Content: The calendar says:

Topics for this course may include advanced study of general programming lan-
guage design concepts, formal reasoning about programs and languages, pragmatic
evaluation of language properties, and case studies of specific languages. The course
may be used to communicate programming language theory and practice specific to
students’ project or thesis research needs.

The course contains an introduction to logic and functional programming through
examination of particular languages including Standard ML ([11, 8, 1, 3, 9]), Haskell
([5, 4]), Scheme ([2, 10]), and Prolog ([?]). The goal of this course is to use illustrations
from particular languages to introduce more fundamental ideas such as the distinction
between strict and lazy programming languages and the difference between staticly-
typed and dynamically-typed languages. Particular attention is paid to modelling
semantics (in particular monads and game-theoretic semantics), concurrency, and other
topics relevant to individual students’ research.

Printed September 9, 2016



UNBC cpsc 720 Syllabus Spring 2013

References

[1] Matthias Felleisen and Dan Friedman, The little MLer, MIT Press, 1998, in the UNBC
library.

[2] Daniel P. Friedman and Matthias Felleisen, The little schemer (4th ed.), MIT Press, Cam-
bridge, MA, USA, 1996.

[3] Robert Harper, Programming in Standard ML, working draft ed., Carnegie Mellon Uni-
versity, Augutst 2002, available from http://www-2.cs.cmu.edu/~rwh/smlbook/

[4] P. R. Hudak and J. H. Fasel, A gentle introduction to haskell, ACM SIGPLAN Notices 27
(1992), no. 5, 1–53.

[5] Miran Lipovaca, Learn you a haskell for great good!: A beginner’s guide, 1st ed., No Starch
Press, San Francisco, CA, USA, 2011.

[6] Simon Marlow, Haskell 2010 language report.

[7] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen, The Definition of Stan-
dard ML - Revised, rev sub ed., The MIT Press, May 1997.

[8] Larry C. Paulson, ML for the working programmer, second ed., Cambridge University
Press, 1996, This is more in-depth than Ullman’s book.

[9] Riccardo Pucella, Notes on programming in in Standard ML of New Jersey, Cornell Univer-
sity, January 2001, also available from http://www.smlnj.org//doc/literature.html\

#tutorials .

[10] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten, Robby Findler,
and Jacob Matthews, Revised [6] report on the algorithmic language scheme, 1st ed., Cam-
bridge University Press, New York, NY, USA, 2010.

[11] Jeffrey D. Ullman, Elements of ML programming, ML97 (second) ed., Prentice Hall, 1998.

[12] P. L. Wadler, Comprehending monads, Proceedings of the 1990 ACM Conference on LISP
and Functional Programming, Nice (New York, NY), ACM, 1990, pp. 61–78.

Printed September 9, 2016


