- Using

$$
\sin x= \begin{cases}-\sin (-x) & \text { if } x<0 \\ \sin (x-2 \pi) & \text { if } x \geq 2 \pi \\ -\sin (x-\pi) & \text { if } x \geq \pi \\ \sin (\pi-x) & \text { if } x \geq \pi / 2 \\ 3 y-4 y^{3} & \text { if } y=\sin (x / 3)\end{cases}
$$

and, Equation (1),

$$
\begin{equation*}
\sin x \approx x\left(1-\frac{x^{2}}{6}\left(1-\frac{x^{2}}{20}\left(1-\frac{x^{2}}{42}\right)\right)\right) \quad \text { for } 0 \leq x<0.01 \quad(x \text { in radians }) \tag{1}
\end{equation*}
$$

write a function (or functions) using guards to compute $\sin x$.
Call your function something other than sin (perhaps mySin?) to avoid accidentally confusing your functions results with the Prelude function
sin :: Floating a => a -> a.
Bonus
If you are interested in how computer hardware actually does trig, you may find below interesting. (However, calculation of $\sin x$ to several hundred digits is best done by a different method (See the Wikipedia entry on the Arithmetic Geometric Mean for a starting point).)

- Compare your function against the builtin sin function on the range $[0, \pi / 2]$. Where does your function differ most from the builtin function?
- Equation (1) is an approximation of the Taylor series

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \cdots
$$

factored as

$$
\sin x=x\left(1-\frac{x^{2}}{2 \cdot 3}\left(1-\frac{x^{2}}{4 \cdot 5}\left(1-\frac{x^{2}}{6 \cdot 7}(1-\cdots)\right)\right)\right) .
$$

In Equation (1), the (worst) error is $\sim x^{7}$. By carrying the series out to the $x^{21} / 21$! term, the error also becomes $\sim x^{21}$. This means that you can use it for $x<0.1$ (rather than $x<0.01$) and still get an answer accurate to 20 digits or so.
The equation

$$
\sin x=3 y-4 y^{3} \quad \text { where } y=\sin (x / 3)
$$

is mathematically exact, but rounding errors creep in every time that you use it.

+ Write a helper function to compute $x\left(1-\frac{x^{2}}{2 \cdot 3}\left(1-\frac{x^{2}}{4 \cdot 5}\left(1-\frac{x^{2}}{6 \cdot 7}(1-\cdots)\right)\right)\right.$, and see if you get a more accurate sin function.

