
CPSC 370 Haskell Pattern Syntax(v1) UNBC
Fall 2023

A pattern can be

a wild card: match anything,
bind nothing

an identifier match anything,
bind the identifier.

ident @ pattern ident binds to the whole match

A nulluary constructor
(e.g., [], Nothing, True)

need to match, nothing to bind

Explcit tuples of patterns
(e.g., (), (x,y))

matches a tuple value using the
corresponding pattern for
each piece

An explcit list of patterns (e.g., [\,x]),
including string constants

Matches a list of the same length

a constructor followed by patterns
(e.g., Just x)

matches a value made by that
constructor

~ followed by a pattern, ~ delays pattern matching

! followed by a pattern. ! forces the matched value

with pragma {-# LANGUAGE ViewPatterns #-}
fn -> pattern apply fn to what would have

matched there,
then match pattern against that.

with pragma {-# LANGUAGE PatternSynonyms #-}
a unser defined pattern search the web for

Haskell pattern synonyms.
See §6.7.4 of the Glasgow Haskell
Ccmpiler Guide.

Where? Patterns only occur in specific locations:

• To the left of = ◦ in top-level assignment, ◦ in a where block, and ◦ in a let-in
expression.

• To the left of -> .
• In an anonymous function, \ pat -> ...

• in case ... of { pat -> expr ;...} expressions
• To the left of <- . · in do blocks, · list compreneions, and · in guard expressions.
• To the right of -> in view patterns (see below)
• On the right hand side of pattern definition (see below)

Haskell-patterns
August 18, 2024

1 / ??

CPSC 370 Haskell Pattern Syntax(v1) UNBC
Fall 2023

Warning

• Haskell re-uses syntax, so, for instance, [a] may be an expression, a pattern, or a
type, depending on where it occurs.

• Constructors (from data and newtype declarations) explicitly provide both pat-
terns (for taking values apart) and expressions (for bluding values).

Purpose:

1. Patterns can be used to bind identifiers (variables) to values. In “f x = x+2” the
first x is a pattern. In evaluating f(5), the pattern x is bound to 5, and then x+2

is evaluated.

2. Patterns can choose between different computation scenarios.

length [] = 0

length (_:xs) = 1 + length xs

The pattern [] matches on the empty list, whereas (_:xs) matches only non-
empty lists (and binds xs to the list tail).

View Patterns

• Use the pragma {-# LANGUAGE ViewPatterns #-} at the top of a file where you
wish to use these.

• Allows patterns to have one more syntax: (fn) -> ptn1, in any place where a
pattern is allowed. The function expression fn is applied to whatever the pattern
originally would have matched, and then ptn1 is matched against it. For instance
bitSum :: Integral a => a -> a -- hangs on negative numbers

bitSum 0 = 0

bitSum ((‘divMod‘ 2) -> (k,b)) = b + bitSum k

Pattern Synonyms

• require {-# LANGUAGE PatternSynonyms #-}

• allow creating brand-new patterns.
• Example:

pattern FirstTwo x1 x2 <- (x1:x2:_)

creates a pattern that matches any list of length two or longer, for instance one
can write
\ xs - case xs of

FirstTwo a b -> show a ++ show b ++ " ..."

[q] -> "Singleton" ++ show q

[] -> "Empty list"

• the details of pattern synonyms are tricky but the idea is very powerful.

Haskell-patterns
August 18, 2024

2 / ??

