
CPSC320
Tutorials

Robert Pringle

September 25, 2007

Robert Pringle CPSC320



L and R-expressions

I L-expressions are expressions that evaluate to a memory
location.

I In an assignment statement in C the variable identifier you are
using to assign to would be considered an l-expression as it
contains the memory location to write the result back to.

I R-expressions are expressions that evaluate to a value.
I In an assignment statement in C the expressions/value on the

right hand would be considered an R-expression as it evaluates
to a value that will stored in the variable on the left hand side.

Robert Pringle CPSC320



L and R-expression Practice

Given the following declarations in a C++ style language
determine whether or not the expressions below are l-expressions.

int j, k, l;
int ∗p;
int& j;

1. j + k

2. ∗j
3. ∗p + k

4. ∗(p + k)

5. ∗p + +

6. &j

Robert Pringle CPSC320



Parameter Passing Methods

I There are a number of different ways to pass parameters to
procedures, these include:

I Pass by value where the actual parameter’s value is copied to
another memory space. The actual parameter is not affected.

I Pass by result where the value of the formal parameter is
copied back to the actual parameter when the procedure
returns.

I Pass by value-result where the actual parameter’s value is
copied to another memory space and copied back after the
procedure is finished.

I Pass by reference where the formal parameter refers the
memory location of the actual parameter.

I Pass by name, which used lexical substitution of the formal
parameter with the actual parameter and placement within the
caller’s body.

Robert Pringle CPSC320



Pass by name

I Pass by name is slightly different from the other parameter
passing methods in that an actual lexical substitution is used
for this method.

I Pass by name is performed by the following steps:
I Replace instances of the formal name parameter with the

actual parameter, surrounded in parenthesis in the case of an
expression, in the procedure body.

I Perform lexical substitutions for local variables that conflict
variables bound in the caller’s scope.

I Perform lexical substitutions so that free variable’s in the
procedure body are still valid even if a substitution occurs in
such a way that the particular variable is no visible once the
substitutions occurs.

I Place the modified body at the place where the procedure was
called.

Robert Pringle CPSC320



Parameter Passing Practice

Consider the following code and determine the resulting output for
pass by value, result, value-result, reference and name.

int g = 20;

void mult(int b, int p) {

b = g;

p = b*g;

return;

}

int main(void) {

int g = 1, h=2, i=3;

mult(h,i);

cout << h << i << endl;

return 0;

}

Robert Pringle CPSC320



Declaration Types

I There are two ways in which the visibility of declarations
within a given scope can be determined, sequentially or
simultaneously.

I If declarations are handled sequentially then a variable
becomes visible right after it is declared.

I If declarations are handled simultaneously, then the variables
become visible only after all the declaration have been
performed for the current scope.

Robert Pringle CPSC320



Free Variable Binding

I Within a particular scope a free variable that is not declared
within that scope usually refers to a variable declared in a
parent scope.

I There are two ways to determine the binding of free variables
for a particular scope, statically and dynamically.

I Static binding looks at the lexical/textual structure of the
scope and looks at the parent scope the current scope is
nested in.

I Dynamic binding looks at the caller, as well as its callers, for a
particular procedure at runtime to determine a particular
variable binding.

I The scope closest to the current scope, either in the lexical or
call order sense, will be used for the binding of free variables.

Robert Pringle CPSC320



Binding and Declaration Practice

Given the following program determine its output for sequential
and simultaneous declarations. For each declaration type
determine what the output would be if static or dynamic binding of
free variables was used.

int g = 1;

int h = 2;

int i = 3;

int foo() {

int h = i * 2;

int i = h;

return g+i;

}

int main(void) {

int g = 4;

cout << foo() << end;

}

Robert Pringle CPSC320


