
Tutorial 1
Tutorial 2
Tutorial 3

CPSC320
Tutorials

Robert Pringle

September 17, 2007

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Logic review.

For the following assume symbols p and q are generic propositions,
x is an arbitrary entity and px is proposition function relying on x.

Symbol Example Meaning

∀ ∀x px For all instances of x px is true.

∃ ∃x px There exists an instance of x for which px is true.

¬ ¬p Negation of the proposition p.

∧ p ∧ q And statement that is true if both p and q are true.

∨ p ∨ q Or statement that is true if either p, q or both are true.

| p|q p is true if q is true.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

String review.

For the following assume that x and y are generic strings and a and
b are generic symbols.

Operation/Entity Example Meaning

Concatenation xy xy is the concatenation of strings x and y. Note that
xy is not the same as yx.

Alphabet {a, b} An alphabet is a finite non-empty set of symbols.

String abbaa for {a, b} A sequence of zero or more elements from an alphabet.

Length |abba| = 4 The number of symbols present in a string.

Empty String ε The string with no symbols. By definition:
εx = xε = x
{ε}A = A{ε} = A

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Set notation review.

For the following assume symbols A and B are generic sets, x and
y are generic symbols, and that n is a positive integer.

Operation/Entity Usage/Symbol Meaning Descriptive Meaning

Membership xεA x is a member of set A.

Union A ∪ B xεA ∪ B | xεA ∨ xεB A ∪ B is the set containing all elements
present in sets A or B.

Intersection A ∩ B xεA ∩ B | xεA ∧ xεB A∩B is the set containing all elements the
are present in both sets A and B.

Subset A ⊆ B ∀xεA xεB A is a subset of B if all elements of A are
contained in the set B.

Concatenation A • B or AB xyεAB | xεA ∧ yεB AB is the set containing all element con-
catenations between the sets A and B with
A’s members being the prefix and B’s mem-
bers the postfix.

Cartesian Product A× B {x, y}εA× B | xεA ∧ yεB A × B is the set that contains all possi-
ble subsets formed from all possible element
combinations of both A and B starting with
elements from A and ending with elements
from B.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Set notation review.

Operation Usage/Symbol Meaning Descriptive Meaning

Power An An = AAn−1,
A2 = AA,
A1 = A and
A0 = ε

An is a set formed by applying the con-
catenation product operation between n in-
stances of A. For example A2 = AA.

Empty Set φ φ is the set containing no elements, which
is not to be confused with the set contain-
ing the empty string, {ε}. By definition:
φ ∪ A = A
φ ∩ A = φ
φA = Aφ = φ
A× φ = φ× A = φ.

Cardinality |A| |A| is the number of elements contained in
the set A.

Kleene Operation + A+ ⋃∞
n=1 An A+ is the containing all powers of a set A

excluding A0.

Kleene Operation ∗ A∗
⋃∞

n=0 An A∗ is the containing all powers of a set.
Note that:

A∗ = A+ ∪ {ε} and

AA∗ = A∗A = A+

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Language and grammar review.

I A language over an alphabet A is defined as a subset of A∗.

I A formal grammar is used to generate, for a generative
grammar, or recognize, for an analytical grammar, strings
contained in the language it represents.

I Grammars are usually defined by a 4-tuple containing a set of
terminal symbols, a set of non-terminal symbols, a set of
productions and the set containing the starting productions
for the grammar.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Formal grammar definition example.

Let us consider the language, L, of strings having a length of at
least one and containing only 0s. Below is an example grammar for
this language.

Let G be the grammar representing the language L and P the set
productions for G. Then we have:

G = ({S ,F}, {0},P, {S})

P: S → 0S
S → F
F → 0

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Chomsky Grammar Hierarchy Review.

Figure: Chomsky Grammar Hierarchy.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Chomsky Hierarchy Grammar Restrictions.

Grammar Type Production Forms Restriction Description

Regular N → NT∗, N → T∗N or
N → T∗

Regular grammars use productions that only have one
non-terminal on the right hand side of the production
which is either the first or last symbol for right hand
side of the production.

Context-free N → (N∗T∗)∗ Context-free grammars restrict the left-hand side of
the productions to a single non-terminal symbol. Any
combination of terminals and non-terminals is accept-
able on the right hand side.

Context-sensitive X → Y with |X | ≤ |Y | and
X , Y ⊆ (N∗T∗)∗

Context-sensitive grammars require that rules be non-
reducing from left to right (there must always be more
terminals on the right-hand side than on the left-hand
side).

Recursively Enumerable (N∗T∗)∗ → (N∗T∗)∗ Recursively enumerable grammars have no restrictions
on their production rules.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Chomsky Hierarchy practice questions.

Let us consider a language L having a grammar G with
G = ({S ,A,B}, {0, 1},P, {S}). For each of the following
production definitions describe the lowest level of the chomsky
hierarchy to which G belongs.

1. S → 0S , S → 0A, A→ 1A, A→ 1B, B → 0

2. S → 0S , 0S → 1S1, A1S → 0S0, A→ 1A1, A→ B,
11B → 0

3. S → 0S0, S → A, A→ 1A1, A→ B, B → 0

4. S → 0S , S0A→ 1S1B, BS → 1A1B, A→ 0B0, B → 1

5. S → 1SA, S → 1S , A→ 1A1B, A→ 0, B → 1

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Chomsky Hierarchy practice solutions.

Let us consider a language L having a grammar G with
G = ({S ,A,B}, {0, 1},P, {S}). For each of the following
production definitions describe the lowest level of the chomsky
hierarchy to which G belongs.

1. Regular grammar.

2. Recursively Enumerable grammar.

3. Context-free grammar.

4. Context-sensitive grammar.

5. Context-free grammar.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Regular Expressions

I A regular expression is an expression that can be used to
generate or recognize strings in a particular language.

I A regular grammar can be equivalently represented by a
regular expression.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Regular Expressions Operators

Operation/Entity Usage/Symbol Meaning

Alternation x|y This regular expression indicates the next
symbol generated/recognized will be either
x or y.

Grouping (x) Similar to arithmetic expression this is used
to group portions of the regular expressions
together thus changing the precedence and
scope of operators applied around them.
Consider x|y+ and (x|y)+ that represent
different languages.

Repetition (0 or more) x∗ This operator is used to represent a repeti-
tion of the symbol/regular expression it is
applied to zero or more times.

Repetition(1 or more) x+ This operator is used to represent a rep-
etition of the symbol/regular expression it
applied to one or more times.

Option x? This operator is used to represent a sym-
bol/regular expression that is optional, it
can be applied one or zero times.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Finite Automata

I A finite automata is another way one can recognize or
generate strings in a particular language.

I An automata is represented by a number of states and
transitions and can be represented as a table or graphically.

I Transitions in a finite automata are usually triggered by a
symbol in the alphabet of the language you are trying to
recognize but for nondetermistic finite automata ε transitions
are also possible.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Finite Automata Example

Consider the following different finite automata recognizing the language

containing the ==, ! = and = strings with an alphabet { =, ! }. Below

is a discrete finite automata represented in both tabular and graphical

form for this language.

State Input

= !
→ S0 S1 S4

∗ S1 S2 SA

∗ S2 SA SA

S4 S2 SA

SA SA SA

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Regular grammars.

I A regular grammar can be left-linear or right-linear.
I Left-linear grammars have non-terminals on the leftmost side

of the right hand of the production rule.
I N → NT ∗ and N → T ∗

I Right-linear grammars have non-terminals on the rightmost
side of the right hand of the production rule.

I N → T ∗N and N → T ∗

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Regular grammar practice

For the following language descriptions define a grammar, G, that
generates the language as well as a regular expression and discrete
finite automata if the language is regular.

1. A language of 0s and 1s which is prefixed by a string of zero
or more zeros and suffixed by one or more 1s.

2. A language consisting of all combinations of the letters a, b, c
and d of length 3.

3. A language over the english alphabet recognizing all words
starting with a and ending with t.

4. A language for C++ array declarations of type int, bool and
float without initialization.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Context-free grammar practice

For the following language descriptions define a grammar, G, that
generates the language. If the language can be represented by a
regular grammar this should be indicated.

1. A langauge of arithmetic expressions consisting of the binary
operations * and / and the operands c and d.

2. A language of 0s and 1s consisting of palindromes.

3. A language of 0s and 1s where the number of 0s and 1s in the
string is equivalent.

4. A language over the english alphabet recognizing words that
do not start a and end with t and having the character d
between the first and last letters of the word.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Grammar Derivations

I A derivation shows the steps taken through the productions of
a grammar in recognition or generation of a string.

I Left-most derivations expand productions from the left most
non-terminal of the right hand side of a production.

I Right-most derivations expand productions from the right
most non-terminal of the right hand side of a production.

I Derivations can also be represented by derivation trees whose
root is the first non-terminal use and subsequent non-leaf
subtrees the non-terminals used and the left nodes the
terminals matched.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Grammar Derivation Example

Consider the grammar, G = ({E}, {a, b,+,−},P, {E}) with the P
defined as the following set of productions:

P: E → E + E
E → E − E
E → a
E → b

For the string a+b-a we have the following derivations:
Leftmost derivation: E ⇒ E + E ⇒ a + E ⇒ a + E − E ⇒ a + b − E ⇒ a + b − a

Rightmost derivation: E ⇒ E + E ⇒ E + E − E ⇒ E + E − a⇒ E + b − a⇒ a + b − a

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Grammar Derivation Example

For the string a+b-a with the grammar and derivations from the
previous slide we have the following derivation tree:

Figure: Example derivation tree.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Ambiguous Grammars

I A grammar is considered ambiguous if there exists a string in
the language the grammar represents that has more than one
leftmost or rightmost derivation.

I Practice: Would you consider the grammar used in the
previous example to be ambiguous? Why or why not?

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Backus Naur Form

I A method to represent grammars using meta-symbols.
I Production rules are assigned to non-terminals through the

::= symbol.
I Elements contained in < > are used to represent

non-terminals.
I When a non-terminal has more than one production rule the

symbol | can be used to show production options for the
non-terminal.

I Symbols in the grammar productions that overlap symbols in
this form are usually surrounded by single or double quotes to
indicate that they are symbols from the language and not
meta-symbols.

I Practice: Reform the grammars from the context-free practice
to BNFs.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Extended Backus Naur Form

I An extension to BNF to allow for a more condensed
representation of a grammar.

I Elements contained in () form a group somewhat like an
embedded production rule.

I { }+ is used to indicate that whatever is contained in the { }
is repeated one or more times.

I { } or { }∗ is used to indicate that whatever is contained in
the { } is repeated zero or more times.

I [] is used indicate that whatever is contained in-between is
optional and occurs zero or one times.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Syntax Diagram

I Method to represent grammar diagrammatically.

I Terminals in a syntax diagram are represented by ovals and
non-terminals by squares.

I Each path from start to end represents a string generated or
recognized by the grammar.

I Production alternatives, BNF |, repetition of one or more,
EBNF { }+, repetition of zero or more, EBNF { } and options,
EBNF [] can all be easily represented in a syntax diagram.

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Syntax Diagram

For the following example consider a grammar with non-terminal A
and terminal 0. Below we show the syntax diagram equivalence to
various BNF and EBNF productions.

Figure: Syntax Diagram Examples.

Position Represents Equivalent BNF or EBNF production
Top left Alternative A | 0

Top Right Repetition of one or more. { A }+

Middle Right Repetition of zero or more. { A }
Middle Left Optional [A]
Bottom General Production A 0

Robert Pringle CPSC320

Tutorial 1
Tutorial 2
Tutorial 3

Grammar Practice

For each of the following languages define a formal grammar that
generates or recognizes strings in the language. After this form an
equivalent BNF, EBNF and syntax diagram for the grammar.

1. A conditional statement in the form commonly found in C.
Assume that the production for arithmetic expressions is
already defined as EXP, the set of terminals this productions
uses is defined as as TEXP and non-terminals as NEXP . Also
assume that the productions for other C statements is already
defined as STMT, the set of terminal this production uses is
defined as TSTMT and non-terminals as NSTMT .

2. Arithmetic expressions on integers allowing the binary
operations +,-,* and /.

Robert Pringle CPSC320

	Tutorial 1
	Tutorial 2
	Tutorial 3

