
CPSC320
Midterm Review

Robert Pringle

October 5, 2007

Robert Pringle CPSC320

Language and grammar review.

I A language over an alphabet A is defined as a subset of A∗.

I A formal grammar is used to generate, for a generative
grammar, or recognize, for an analytical grammar, strings
contained in the language it represents.

I Grammars are usually defined by a 4-tuple containing a set of
terminal symbols, a set of non-terminal symbols, a set of
productions and the set containing the starting productions
for the grammar.

Robert Pringle CPSC320

Scanning, Parsing and Semantics

I Scanning is concerned mainly with the recognition of lexemes
within a given source string.

I Parsing is concerned with the syntactic evaluation of these
recognized lexemes to ensure they fit with the syntax of the
language the parser represents.

I Semantics relate to the meaning of a particular source string.
Though we can determine whether the source string confirms
to the syntax of our host language we cannot usually fully
determine the meaning of the source (or indeed in some cases
whether it even makes any sense).

Robert Pringle CPSC320

Scanning

I When scanning for lexemes in a source string we may come
across the situation where it is possible to form multiple
tokens with a liberal interpretation of the grammar the
scanner represents.

I Scanners usually use the longest substring principle when
attempting to form tokens. With this the token formed at the
a given point in the source will be the longest token that
could be formed at that point.

I Programming language tokens can be broken down into a
number of categories, these include the following:

I Reserved/Key Words
I Constants or Literals
I Special Symbols
I Identifiers

Robert Pringle CPSC320

Scanning Cont.

I In languages, such as C or Java, where whitespace characters
hold no meaning other than as token delimeters we say the
language is free-format while in languages where this is not the
case, such as FORTRAN, we say the language is fixed-format.

Robert Pringle CPSC320

Chomsky Hierarchy Grammar Restrictions.

Grammar Type Production Forms Restriction Description

Regular N → NT∗, N → T∗N or
N → T∗

Regular grammars use productions that only have one
non-terminal on the right hand side of the production
which is either the first or last symbol for right hand
side of the production.

Context-free N → (N∗T∗)∗ Context-free grammars restrict the left-hand side of
the productions to a single non-terminal symbol. Any
combination of terminals and non-terminals is accept-
able on the right hand side.

Context-sensitive X → Y with |X | ≤ |Y | and
X , Y ⊆ (N∗T∗)∗

Context-sensitive grammars require that rules be non-
reducing from left to right (there must always be more
terminals on the right-hand side than on the left-hand
side).

Recursively Enumerable (N∗T∗)∗ → (N∗T∗)∗ Recursively enumerable grammars have no restrictions
on their production rules.

Robert Pringle CPSC320

Regular Expressions

I A regular expression is an expression that can be used to
generate or recognize strings in a particular language.

I A regular grammar can be equivalently represented by a
regular expression.

Robert Pringle CPSC320

Regular Expressions Operators

Operation/Entity Usage/Symbol Meaning

Alternation x|y This regular expression indicates the next
symbol generated/recognized will be either
x or y.

Grouping (x) Similar to arithmetic expression this is used
to group portions of the regular expressions
together thus changing the precedence and
scope of operators applied around them.
Consider x|y+ and (x|y)+ that represent
different languages.

Repetition (0 or more) x∗ This operator is used to represent a repeti-
tion of the symbol/regular expression it is
applied to zero or more times.

Repetition(1 or more) x+ This operator is used to represent a rep-
etition of the symbol/regular expression it
applied to one or more times.

Option x? This operator is used to represent a sym-
bol/regular expression that is optional, it
can be applied one or zero times.

Robert Pringle CPSC320

Finite Automata

I A finite automata is another way one can recognize or
generate strings in a particular language.

I An automata is represented by a number of states and
transitions and can be represented as a table or graphically.

I Transitions in a finite automata are usually triggered by a
symbol in the alphabet of the language you are trying to
recognize but for nondetermistic finite automata ε transitions
are also possible.

Robert Pringle CPSC320

Finite Automata Example

Consider the following different finite automata recognizing the language

containing the ==, ! = and = strings with an alphabet { =, ! }. Below

is a discrete finite automata represented in both tabular and graphical

form for this language.

State Input

= !
→ S0 S1 S4

∗ S1 S2 SA

∗ S2 SA SA

S4 S2 SA

SA SA SA

Robert Pringle CPSC320

Regular grammars.

I A regular grammar can be left-linear or right-linear.
I Left-linear grammars have non-terminals on the leftmost side

of the right hand of the production rule.
I N → NT ∗ and N → T ∗

I Right-linear grammars have non-terminals on the rightmost
side of the right hand of the production rule.

I N → T ∗N and N → T ∗

Robert Pringle CPSC320

Grammar Derivations

I A derivation shows the steps taken through the productions of
a grammar in recognition or generation of a string.

I Left-most derivations expand productions from the left most
non-terminal of the right hand side of a production.

I Right-most derivations expand productions from the right
most non-terminal of the right hand side of a production.

I Derivations can also be represented by derivation trees whose
root is the first non-terminal use and subsequent non-leaf
subtrees the non-terminals used and the left nodes the
terminals matched.

Robert Pringle CPSC320

Ambiguous Grammars

I A grammar is considered ambiguous if there exists a string in
the language the grammar represents that has more than one
leftmost or rightmost derivation.

Robert Pringle CPSC320

Syntax Diagram

I Method to represent grammar diagrammatically.

I Terminals in a syntax diagram are represented by ovals and
non-terminals by squares.

I Each path from start to end represents a string generated or
recognized by the grammar.

I Production alternatives, BNF |, repetition of one or more,
EBNF { }+, repetition of zero or more, EBNF { } and options,
EBNF [] can all be easily represented in a syntax diagram.

Robert Pringle CPSC320

Syntax Diagram

For the following example consider a grammar with non-terminal A
and terminal 0. Below we show the syntax diagram equivalence to
various BNF and EBNF productions.

Figure: Syntax Diagram Examples.

Position Represents Equivalent BNF or EBNF production
Top left Alternative A | 0

Top Right Repetition of one or more. { A }+

Middle Left Repetition of zero or more. { A }
Middle Right Optional [A]
Bottom General Production A 0

Robert Pringle CPSC320

Grammar Practice

For each of the following languages consider whether the language
can be represented by a regular grammar and if so represent it with
a regular formal grammar, a regular expression and a DFA. If the
grammar is not regular but is context-free represent the grammar
with a BNF, an EBNF and a Syntax Diagram.

1. The language over the english alphabet consisting of
palindromes.

2. The language consisting of C++ function prototypes.

3. The language consisting of all even integers.

4. The language over the english alphabet that contain an odd
number of a’s and even number of c’s.

5. The language representing the course numbering system used
for undergraduate courses at UNBC.

Robert Pringle CPSC320

L and R-expressions

I L-expressions are expressions that evaluate to a memory
location.

I In an assignment statement in C the variable identifier you are
using to assign to would be considered an l-expression as it
contains the memory location to write the result back to.

I R-expressions are expressions that evaluate to a value.
I In an assignment statement in C the expressions/value on the

right hand would be considered an R-expression as it evaluates
to a value that will stored in the variable on the left hand side.

Robert Pringle CPSC320

Binding, Symbol Tables and Names

I Binding refers to associating attributes to a particular name.

I Binding can occur before the execution of a program in the
static case or during run-time for the dynamic case.

I A symbol table is usually used to keep of a map of names to
their attributes.

I It is possible to have the same name represented multiple
times within a particular source but differentiated by its
presence in different blocks/scopes.

I There are two cases for names we use within a particular
program, constants whose whose values/attributes will not
change throughout the execution and variables who
values/attributes can change.

Robert Pringle CPSC320

Free Variable Binding - Scoping

I Within a particular scope a free variable that is not declared
within that scope usually refers to a variable declared in a
parent scope.

I There are two ways to determine the binding of free variables
for a particular scope, statically and dynamically.

I Static binding looks at the lexical/textual structure of the
scope and looks at the parent scope the current scope is
nested in.

I Dynamic binding looks at the caller, as well as its callers, for a
particular procedure at runtime to determine a particular
variable binding.

I The scope closest to the current scope, either in the lexical or
call order sense, will be used for the binding of free variables.

Robert Pringle CPSC320

Dynamic Memory Allocation and the Heap

I When we dynamically allocate memory in a language we
usually utilize the heap for this purpose.

I With pointers/references it is possible to have alias, multiple
names bound to the same memory location.

I It is also possible to have dangling pointers where the memory
location a variable refers to has been reclaimed.

I Not de-allocating any dynamic memory throughout the
execution of your program can lead to garbage, memory that
is allocated but is not accessible from the program.

I Garbage collection is a method to automatically reclaim
garbage memory without the programmer having to worry
about de-allocating memory.

Robert Pringle CPSC320

Denotational Semantics

I Method of showing the semantics/meaning for elements of a
particular programming language.

I Demonstrates the mapping between the execution of a
particular segment and its result.

I For example you can show the state that executing a
command generates or the state and value resulting from the
evaluation of a particular expression.

I Semantic domains and functions need to be defined before
you can show a semantic clause.

Robert Pringle CPSC320

Semantic Domains and Functions

I Semantic domains demonstrate the domains over which
various basic elements utilized by a particular programming
language are defined.

I Examples of this include domains for primitive types, memory
or generally the current state of the environment a particular
program is running in.

I Semantic functions are used to define the mapping between a
particular type of statement in a programming language to its
results.

I Examples of this include commands that cause the state of
memory to change and simply map from an old state to a new
one or expressions, which with side-effects, can map the
current state to a new state as well as generate a value.

Robert Pringle CPSC320

Direct Denotational Semantic Example

Semantic domains:
State = Memory
Memory = Identifier → Value
Value = Number × Boolean

Semantic Functions:
E : Exp → State → [[Value × State] + {error}]
C : Com → State → [State + {error}]

For our example we will be utilizing the following semantic
domains and functions for a language with operators having the
same meaning as their C++ counterparts.

Robert Pringle CPSC320

Direct Denotational Semantic Example

Let us consider the command I-=2. The semantic clause for this
command is as follows:

C[[I− = 2]]s = (E [[I]]s = (v ,m))→
m[v − 2/I],
error

If add the stipulation that I must be a numeral then we get the following
semantic clause indicating the value retrieved from I must be this
particular type. This gives us the following semantic clause:

C[[I− = 2]]s = (E [[I]]s = (v ,m))→
isNumeral(v) →

m[v − 2/I],
error,

error

Robert Pringle CPSC320

Direction Denotational Semantic Example

Let us consider the command if(E1 || E2) C1; where E1 and E2

are expressions and C1 is a command. The semantic clause for this
command which we shall name Ci f is as follows:

C[[Ci f]]s = (E [[E1]]s = (v1, s1))→
v1 →

C[[C1]]s1,
(E [[E2]]s1 = (v2, s2))→

v2 →
C[[C1]]s2,
s2,

error,
error

Robert Pringle CPSC320

Direct Denotational Semantic Practice Cont.

1. while(E1 || E2) if(E3) C;

2. if(E1) C1 else C2;

3. while(E1 && E2) C;

4. I1 = I2*2+3

Robert Pringle CPSC320

