Laboratory Assignment
 Computer Science 100—Winter 2008

More Practise with Expressions

Purpose:

To demonstrate an understanding of basic input and output in Java.

Due Date:

The completed lab assignment is due Monday 2008-01-28 at the beginning of lecture.

Problems from the Textbook ${ }^{1}$

Programming Challenge: 12. String Manipulator

Write a program that asks the user to enter the name of his or her favourite city. Use String variables to store the input. The program should display the following:

- The number of characters in the city name
- The name of the city in all uppercase letters
- The name of the city in all lowercase letters
- The first character in the name of the city

Programming Challenge: 13. Word Game

Write a program that plays a word game with the user. The program should ask the user to enter the following:

- Her or his name
- Her or his age
- The name of a city
- The name of a post-secondary institution
- A profession
- A type of animal
- A pet's name

After the user has entered these items, the program should display the following story, inserting the user's iinput into the appropriate locations:

[^0]There once was a person named name who lived in a city. At the age of age, name went to school at post secondary institute. Name graduated and went to work as a profession.
Then, Name adopted a(n) animal named Petname. They both
lived happily ever after!

Other Problems

3. Write a program to determine the precise rules used by the \% operator when negative numbers are involved. That is, determine what expressions like (-8) \% (-3), (-8) \% 3, and $8 \%(-3)$ compute. If possible state the precise rule used by Java.
4. Here are some questions about equality of Strings.

- Is ("cat"==("c"+"at")) ?
- Is ("cat"=="CaT".toLowerCase() ?
- Is ("cat". equals("c"+"at")) ?
- Is ("cat".equals("CaT".toLowerCase()) ?

Write a program that tests the values of these expressions. Explain your results.
5. We spent a long time talking about the binary representation of numbers, but have not yet used this information. There are four operators that work directly with the bits of integers:

\sim	not	unary. changes 1's to o.s and vice versa.
$।$	or	binary. yields 1 where either argument bit is 1.
$\&$	and	binary. yields 1 where both argument bits are 1.

work bitwise. For instance, $2 / 1$ is 3, because (the last bits of) 2 are 10 and of 1 are 01 . On the other hand, $2 \& 1$ is 0 .
Write a program to determine the values of • (5 | 6) • (5 \& 6) • (5 - 6) • (~ 5), and print them out. Are they what you expected?

[^0]: ${ }^{1}$ Starting Out with Java ${ }^{T M}$: From Control Structures through Objects by Tony Gaddis. Addison-Wesley. 2008.

