More Practise with Expressions

Purpose:

To demonstrate an understanding of basic input and output in Java.

Due Date:

The completed lab assignment is due Monday 2008-01-28 at the beginning of lecture.

Problems from the Textbook¹

Programming Challenge: 12. String Manipulator

Write a program that asks the user to enter the name of his or her favourite city. Use String variables to store the input. The program should display the following:

- The number of characters in the city name
- The name of the city in all uppercase letters
- The name of the city in all lowercase letters
- The first character in the name of the city

Programming Challenge: 13. Word Game

Write a program that plays a word game with the user. The program should ask the user to enter the following:

- Her or his name
- Her or his age
- The name of a city
- The name of a post-secondary institution
- A profession
- A type of animal
- A pet's name

After the user has entered these items, the program should display the following story, inserting the user's input into the appropriate locations:

¹Starting Out with JAVATM: From Control Structures through Objects by Tony Gaddis. Addison-Wesley. 2008.

UNBC

There once was a person named name who lived in a city. At the age of age, name went to school at post secondary institute. Name graduated and went to work as a profession. Then, Name adopted a(n) animal named Petname. They both lived happily ever after!

Other Problems

- 3. Write a program to determine the precise rules used by the % operator when negative numbers are involved. That is, determine what expressions like (-8) % (-3), (-8) % 3, and 8 % (-3) compute. If possible state the precise rule used by JAVA.
- 4. Here are some questions about equality of Strings.
 - Is ("cat"==("c"+"at"))?
 - Is ("cat"=="CaT".toLowerCase()?
 - Is ("cat".equals("c"+"at"))?
 - Is ("cat".equals("CaT".toLowerCase())?

Write a program that tests the values of these expressions. Explain your results.

5. We spent a long time talking about the binary representation of numbers, but have not yet used this information. There are four operators that work directly with the bits of integers:

~	not	unary. changes 1's to 0.s and vice versa.	-
Ι	or	binary. yields 1 where either argument bit is 1.	-
&	and	binary. yields 1 where both argument bits are 1.	These operators
^	exclusive or	binary. yields 1 where exactly one argument bits is 1.	-
	* * * * *		•••••

work *bitwise*. For instance, 2|1 is 3, because (the last bits of) 2 are 10 and of 1 are 01. On the other hand, 2&1 is 0.

Write a program to determine the values of \bullet (5 | 6) \bullet (5 & 6) \bullet (5 ^ 6) \bullet (~ 5), and print them out. Are they what you expected?