Algorithm Analysis and Timing

Purpose:

To verify Θ -behaviour of programs by timing their performance and plotting the results.

Estimated Time:

Six hours. This laboratory exercise has not been assigned before, and so figure given is merely an estimate. It is your responsibility to find enough time to complete the assignment. I *expect* this to be much simpler than Laboratory Assignment 1.

Keep track of the time spent on this assignment and complete the attached workload sheet for a 5% bonus.

Dates:

This assignment was assigned Monday, 22 September, 2003. This assignment is due Friday, 26 September, 2003 at the beginning of class.

Assignment:

Use the StopWatch class from the previous assignment for this question. For the algorithms given in *Weiss* for this assignment there is no difference between worst-case and average-case time, so if a particular time is too small to measure, run the algorithm 10 000 times in a loop to get a measurable time, then divide by 10 000 to get an average time.

Weiss 2.7

Time each of the code segments in Problem 2.7 in *Weiss*, and plot your results on separate plots. Be sure to choose your data to get a good range of results, and be sure that the plots that you produce can be interpreted quantitatively.

In each case the running time of the algorithm is nearly a polynomial in n. You may find it helpful to plot the logarithm of the running time as a function of the logarithm of n, as this should be nearly a straight-line. The slope of the straight line gives you valuable information about the actual asymptotic behaviour of the algorithm.

 \Rightarrow Hand in your code (source and compilation and runs), your plots, your analysis, and brief comments for each on how your plots compare with your analysis.