
CPSC 499 [Special Topics II] — Functional Data Structures

Prerequisites: A C− in CPSC 281 and CPSC 241 and all of their pre-requisites, or
permission of the instructor.

Overview: CPSC 482-3 Data Structures II has not yet been taught, and the calendar
description needs revision. This special topics course also focusses on data structures,
but looks at them in the context of the functional programming paradigm. In pure
functional languages explicit modification of parts of a data structure is disallowed, and
instead one must copy the entire object modified. Trees continue to work well in the
functional paradigm, with O(log n) modification times, but straight-forward adaption of
array-based algorithms from imperative languages to functional languages is disasterous
as the cost of array modification goes from O(1) to O(n).

This course introduces modern functional programming languages (SML, and maybe
Haskell or Scheme). It then looks at techniques to implement purely functional
analogs of classical imperative-language data-structures. Many of these techniques, (such
as overeager evaluation and amortized cost analysis) are also applicable to strictly im-
perative approaches to data structures.

Professor: Dr. David Casperson Office: Lib 5-471 Telephone: 960-6672
e-mail: casper@unbc.ca

Text: Likely Purely Functional Data Structures by Chris Okasaki. I haven’t yet seen the
text, but I am reasonably sure that this is what I shall use.

Grading: (subject to revision) Homework : 15%
Exam 1 : 25%
Exam 2 : 25%

(Final) Exam 3 : 35%

Lecture times: MW F 10:30–11:20. Room 5-157.

Syllabus: My main goal is to discuss functional programming, using in particular Stan-

dard ML, and if time permits Haskell and Scheme. Although I intend students to
acquire a reasonably good grasp of functional programming technique, the major empha-
sis will be to explain why functional programming requires different data structure and
techniques than imperative programming languages. Topics will be chosen from among
the following.

An introduction to functional programming.

Static versus dynamic typing. Strict versus non-

strict evaluation. Some common functional pro-

gramning languages. “Pure” versus “impure”

functional programming.

Set theory review from CPSC 141. Functions and

partial functions. Cartesian products. Disjoint

unions. The notion of Currying.

Standard ML. Builtin types and literals. Tu-

ples. Lists. Declarations. Function declarations

and function values. Product types and function

types.

Pattern matching in function declarations and

function values. Case statements. datatype dec-

larations.

Recursion, tail recursion, and accumulator argu-

ments. Higher order functions for lists.

Space and time complexity for functional pro-

grams and data structures.

Amortized time analysis. Strategies for re-

adjusting time complexity. Overeager evaluation.

Lazy evaluation.

Case studies. Leftist heaps, binomial queues, and

red-black trees. Functional analogs of imperative

data-structures. Streams, queues, and arrays.

Non-strict evaluation and Haskell. Monads and

other strategies for dealing with non-functional

programming elements.


