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Subtracting, we find that 841+ - +a; = (¢~ b)m and thus gy +
-+» + @ is divisible by m. ]

Application 4. A chess master who has 11 weeks to prepare for
4 tournament decides to play at least one game every day but, in
order not to tire himself, he decides not to play more than 12 g:u,nes
during any calendar week. Show that there exists a succession of

{consccutive) days during which the chess master will have played
ezactly 21 games.

Let a; be the number of games played on the first day, a, the total
number of games played on the first and second days, a3 the total
number of gaines played on the first, second, and third de;,ys, and so
on. The sequence of numbers @1,a,...,a77 is a strictly increasing
sequence® since at least one game is played each day. Moreover,

a; > 1, and since at most 12 games are played during any one week,
a7y <12 x 11 = 1323 Hence we have

15a1<ag<---<a775132.

The sequence a; +21, ay +21,...,877+21 isalso a strictly increasing
sequence:

20 +21 < +21 <o a4+ 21 € 1324 21 = 153,

Thus each of the 154 numbers
@1,a2,...,a77,4; + 21,4y +21,...,a7;7 4+ 21

is an integer between 1 and 153, It follows that two of them are
equal. Since no two of the numbers 21,42,...,a7; are equal and no
two of the numbers a;, + 2l,as + 21,...,a77 + 21 are equal, there
must be an 7 and a 7 such that a; = a; + 21. Therefore 011 days
J+1,7+2,...,i the chess master played a total of 21 games. 0O

Application 5. From the integers 1,2, .. -»200, we choose 101 inte-

gers. Show that among the integers chosen there are two such that
one of them is divisible by the other.

5 -
3%;::: ,;Tl:: :f Ithclseque;:cc is larger tllan_ the one that precedes it.
du nly place where the assumption that at most 12 games are played
uring any of the 11 ca_lendar weeks is used. Thus this assumption conld be
replaced by the assumption that at most 132 games are played in 77 days.

el ot Fu
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By factoring out as many 2's as possible, we see that any integer
can be written in the form 2% x a, where & > 0 and e is odd. For an
integer between 1 and 200, a is one of the 100 numbers 1, 3,9,...,199.
Thus among the 101 integers chosen, there are two having 's of equal
value when written in this form. Let these two numbers be 27 x «
and 2% x a. If r < &, then the second number is divisible by the first.
If r > s, then the first is divisible by the second. ]

Let us note that the result of Application 5 is the best possible in
the sense that one may select 100 integers from 1,2, ...,200 in such
a way that no one of the selected integers is divisible by any other,
for instance, the 100 integers 101,102, . .., 199, 200.

We conclude this section with another application from number
theory. First we recall that two positive integers m and n are said
to be relatively prime if their greatest common divisor! is 1. Thus
12 and 35 are relatively prime, but 12 and 15 are not since 3 is a
comnmon divisor of 12 and 15.

Application 6. (Chinese remainder theorem) Let m and n be rel-
atively prime positive integers, and let @ and b be integers where
0<e<m-—1and 0 <b<n-1 Then there is a positive integer
z such that the remainder when  is divided by m is @, and the re-
mainder when  is divided by n is b; that is, £ can be written in the
form x = pm + a and also in the form z = qn + b for some integers
p and q.

To show this we consider the n integers

e,mta2m+te,...,(n-1)m+a

Each of these integers has remainder a when divided by m. Suppose
that two of them had the same remainder 7 when divided by n. Let
the two numbers be ém + ¢ and jm +a where 0 < i <j<n-1.
Then there are integers ¢; and q; such that

imt+a=gqn+r

and
Jmta=qn+r

Subtracting the first equation from the second, we get

4Also called greatest commaon factor or highest common faclor.
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(i —iym = (q; - q)n.

The preceding equation tells us that n is a factor of the number
(7 — i}me. Since n has no common factor other than 1 with m, it
follows that n is a factor of j ~i. However, 0 < i < j<n-1
implies that 0 < j —i < n — 1, and hence n cannot be a factor of
j —i. This contradiction arises from our supposition that two of the
numbers a,m+a,2m+a,...,{n — 1)m <+ a had the same remainder
when divided by n. We conclude that each of these » numbers has a
different remainder when divided by n. By the pigeonhole principle
each of the n numbers 0,1,...,n — 1 occurs as a remainder; in par-
ticular, the munber b does. Let p be the integer with0 <p<n-1
such that the number x = pm + a has remainder b when divided by
n. Then for some integer g,

z=gn+b.

Soxz =pm+ae and z = gn+b, and = has the required properties. O

The fact that a rational number a/b has a decimal expansion that
eventually repeats is a consequence of the pigeonhole principle, and
we leave a proof of this fact for the exercises.

For further applications we will need a stronger form of the pi-
geonhole principle.

2.2 Pigeonhole Principle: Strong Form

The following theorem contains Theorem 2.1.1 as a special case.

Theorem 2.2.1 Let q1,q2,...,q, be positive integers. If
t@t-tg-n+tl

objects are put into n bozes, then either the first box contains at least
g1 objects, or the second box contains at least qo objects, . . . , or
the nth boz contains at least q, objects.

Proof. Suppose that we distribute q; + g+ -+ + g, —n + 1 objects
among n boxes. If for each i = 1,2,...,n the ith box contains fewer
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than ¢; objects, then the total number of objects in all boxes does
not exceed

-D+(p-D++(@m-D=q+q@pt+-+am-—-n

Since this number is one less than the number of objects distributed,
we conclude that for some i = 1,2, ... ,n the ith box contains at least
g; objects. 0

Notice that it is possible to distribute q; +ga+- - - +qn — 1 objects
among n boxes in such a way that for o ¢ = 1,2,...,n is it true
that the ith box contains g; or more objects. We do this by putting
q1 — 1 objects into the first box, ¢2 — 1 objects into the second box,
and so on.

The simple form of the pigeonhole principle is obtained from the
strong form by taking ¢) = g2 =--- = gn = 2. Then

n+epto-tg-nti=22n—-n+l=n+l

In terms of coloring, the strong form of the pigeonhole principle as-
serts that if each of ¢; + qu + +-- + gu — n + 1 objects is assigned one
of n colors, then there is an i such that there arc (at least) g; objects
of the ith color.

In clementary mathematics the strong form of the pigeonhole
principle is most often applied in the special case when q1,92,.. -1 qn
are all equal to some integer r. In this case the principle reads as
follows:

e If n(r — 1) + 1 objects are put into n boxes, then at least one
of the boxes contains » or more of the objects. Equivalently,

o If the average of n non-negative integers my,my,...,Mn is
greater than r — 1:

my+me+---+ My
n

>r—1,

then at least one of the integers is greater than or equal to .

The connection between these two formulations is obtained by taking
n(r—1)+1 objects and putting them into n boxes. Fori =1,2,....,n
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once t.he values of ho,hi,..., ey, the so-called initial values are
prescnbec!. The recurrence relation (7.15) “kicks in” beginning ’with
n7= k. 'Fll‘St, we ignore t.he initial values and look for solutions of
S -15) without prescribed initial values. It turns out that we can find

enough” solutions by considering solutions which form geometric
sequences (and by suitably modifying them).

7 .
Example. .In this fexample we recall a method for solving linear ho-
mogeneous differential equations with constant coefficients. Consid
the differential equation . Consider

v =5y +6y =0. (7.16)

Here y is a function of a real variable z. We seek solutio f thi

equation among the basic exponential functjons y =e? Lnst ) b .
constant. Since y' = ge?* and y" = ¢%e?® we have that . _e 3: o
solution of (7.16) if and only if , nysennsa

q’e™ — 5ge®™ + 66 = .

Since the exponential function e is never zero it may be cancelled
and we obtain the following equation which does not depend on z:

q° —5¢+6 =0.

This equation has two roots, namely, g = 2 and ¢ = 3. Hence

y= 82: and y= ez

are both solutions of (7.16). Si . . ]
] — (7.16). Since the differentia] equation is linear

¥ = c1e 4 gpe™® (7.17)

; also a sol.utio.n c.-f .('i".lﬁ) for any choice of the constants ¢ and ¢p.8
ow we bring in initial conditions for (7.16). These are {:1 diti "

which prescribe both the value of y and its first derivat?: 1 1}?“5
z = 0, and with the differential equation (7.16) uniquely d : mine
Y- Suppose we prescribe the initial conditions v e

v(0)=a, ' (0)=b (7.18)

7
For those who have not studied di .
omitted. ot studied differential

BThj : .
is can be verified by computing ' and 3" and substituting into (7.16).

equations, this example can be

K

ool

©

o el )
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where a and b are fixed but unspecified numbers. Then in order that
the solution (7.17) of the differential equation (7.16) satisfy these
initial conditions we must have

yO)=ae: o+ cg=a
¥ (0 =b: 2¢)+3c2=0

This system of equations has a unique solution for cach choice of a

and b, namely,
cp=3a-b, ¢ =b-2a. (7.19)

Thus no matter what the initial conditions (7.18), we can choose c|
and c» using (7.19) so that the function (7.17) is a solution of the
differential equation (7.16). In this sense (7.17) is the general solution
of the differential equation. Each solution of (7.16) with prescribed
initial conditions can be written in the form (7.17) for suitable choice

of the constants ¢ and ¢a. m]

The solution of linear homogeneous recurrence relations proceeds
along similar lines with the role of the exponential function e?* taken
up by the discrete function ¢" defined only for non-negative integers

n (the geometric sequences).

Theorem 7.2.1 Let g be a non-zero number. Then hp = gt is o
solution of the linear homogeneous recurrence relation

hn — ajhn-t - azhp-g — - — akhn—k =0, (a'k 7& 0,n2 k) (7'20)
with constant coefficients if and only if q is a root of the polynomial
equation

If the polynomial equation has k distinct roots qi,92,-- -,k then
ho = g} + cagy + - + iy (7.22)

is the general solution of (7.20) in the following sense: No malter
what initial values for ho, Ry, ..., hg—1 are given, there are constants
C1,C2,- - -, Ck S0 that (7.22) is the unique sequence which satisfies both
the recurrence relation (7.20) and the initial condiiions.
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| Proof. We have that i, = ¢" is a solution of (7.20) if and only if

2

qn _ a;q"_l _ 02(]“— —. —akq"-k =0

for all n > k. Since we assume g # 0, we may cancel g"~*. Thus
these equations (there is one for each n > k) are equivalent to the
one equation

1

k K- -
¢ —ag" " —aagt T~ g =0

We conclude that ki, = ¢" is a solution of {7.20) if and only if g is a

root of the polynomial equation (7.21).
Since ay, is assumed to be different from zero, 0 is not a root of

(7.21). Hence (7.21) has k roots, q1, ¢y, . .., g all different from zero.
These roots may be complex numbers. In general, gy, ¢s, ..., g need

' not be distinct (the equation may have multiple roots), but we now

assume that the roots ¢, ¢, ...,qx are distinct. Thus

—_— o —
h-n—QH hu—qg, S0aq

hn = qr&-l

are k different solutions of (7.20). The linearity and the homogencity
of the recurrence relation (7.20) imply that for any choice of constants
C1:C2y...,Cp

hn =1y +c205 + -+ + cpqp (7.23)

is a.ls.o a solution of (7.20).” We now show that (7.23) is the general
solution of (7.20} in the sense given in the statement of the theorem.
Suppose we prescribe the initial valnes

hg =by, Iy =, ey and by = b ;.

Can we choose the constants ¢j, ey, ..., ¢ so that h,, as given in
(7.23) satisfies thesc initial conditions? Equivalently, can we always
solve the system of equations (7.24) below no matter what the choice
of by, by,...,0617 b

(n:ﬂ) ¢ + o +°"+t’.‘k=bn

(n=1) c|q5+c2f12+"‘+(—'kflk=bl

(n-.——2) ciqf + c2qs + -+ + ckgl = by (7.24)
(m=k—=1) cagf ' +eg5™ +--- 4 cpgf~! = by,

%This can be verified by direct substitution.

|

AT

x;‘!ﬁ

i e
- g —

{

| .
5\ theorem is complete.
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Now we shall rely on a little bit of linear algebra. The coefficient
matrix of this system of equations is

I e ]
qé Q_Q et Ak

¢ @ g (7.25)
.k_ : . A g

Ui ' q!E L. fbt '

The matrix in (7.25) is an important matrix called the Vandermonde
matriz. The Vandermonde matrix is an invertible matrix if and only
if q1, @2, - . ., qi are distinct. Indeed its determinant equals

I (G-a)

1<i<j<k

and hence is non-zero exactly when qi, gz, . . . , g are distinct.'® Thus
our assumption of the distinctness of gi,4s,...,q implics that the
system (7.24) has a unique solution for each choice of by, by, ..., bk-1-

Therefore (7.23) is the general solution of (7.20) and the proof of the
]

The polynotnial equation (7.21) is called the characleristic equa-
tion of the recurrence relation (7.20) and its k roots arc the char-
acteristic roots. By Theorem 7.2.1, if the characteristic roots are
distinct, {7.22) is the general solution of (7.20).

Example. Solve the recurrence relation
oy = 20—y + hy—g — 2043, (n2 3)

subject to the initial values g =1, hy =2, and ha = 0.

The characteristic equation of this recurrence relation is
=22 —z+2=0,
and its three roots are 1,—1,2. By Theorem 7.2.1,

hn = al® + C'Z(—l)ﬂ +a2" =¢c + Cg(—l)" + 32"

WThe proof of this fact is non-trivial.
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To determine the constants, we multiply both sides of this equation
by 1+ — 1652 + 20z3 to get

2
&= (1 — 2z)(1 + 5z)e; + (1 + 5z)ez + (1 - 2z)*ca,

of degree less than k and where g(z) is a polynomial of degree k
having constant term equal to 1. To find a general formula for the
terms of the sequence, we first use the method of partial fractions to
express p(z)/q(z) as a sum of algebraic fractions of the form
c
(1 —rz)t

where ¢ is a positive integer, r is a real number, and c is a constant,
We then use (7.47) to find a power series for 1/(1 — rz)t . Combining

or, equivalently,

2
x = (cy + c2 + ¢3) + (3c1 + Bea — de3)T + (—10¢y + dea)z”.

Hence 1 + C + c3 = 0,

like terms, we obtain a power series for the generating functlon from 3¢, + 5oy — 4deg = 1
l 1

which we can read off the terms of the sequence. —10¢; + 4¢3 = 0.

Solving these equations simultaneously, we find that

Example. Let kg, h1,h2,...,Rq, ... be a sequence of numbers satis-
fying the recurrence relation
1V

2 7 -
hn+hn_.['"16hn_2+20hn_3=0, (n23) C].=_'4_9" C2=E1 and c3 = 19’
where hg =0, h) =1 and h2 =2 —1. Find a general formula for k. Therefore
Let g(z) = ho + Mz + hoz® + -+ + hyz™ + - .. be the generating . 2/49 7/49 5/49
function for kg, h1,ka,...,kn,.... Adding the four equations, g(z) = e T o 1 205 o= + = 2z)2 1+ 1+5z
gz} = ho+hizt+ hpz’+  hgzd 4. gphpat 4,
zg(x) = hoz+ hiz?+ hogd 4+ oo 4 by -, By (7.47)
~1622g(z) = = 16hoz®— 16h12% ... — 16hy_pz™ — -, 1 =
3 — 3 ok &
20z°g(z) = 20hoz + -+ + 20k 3z + -+, ,
1-2z k=0
we obtain : 1 _ i(k_l_l )2" "—Z(k+1)2k$k,
(142 —162° +202°)g(x) = ho + (hy + o)z + (he + hy — 16hg)z% + T (1-2z)? k=0 k=0
(h3+h2—16h1+20h0)$3+--'+ 1 _ i( 5)k k
(hn + hnoy — 164 n-2 + 20h,_3)z"™ + - - 1+ 5z k=0
Since hy + hp—1 — 16y + 20h,,_5 = 0, (n > 3) and since hy = 0, Hence

hy =1, and hy = ~1, we get
(1+z—162% + 20z3)g(z) = z

and hence :1:

9@ = T T v
We observe that (1 +z — 162% + 202%) = (1 - 22)(1 + 5z). Hence
for some constants ¢, co and ¢z,

2 (&) T (S K ok _i(m(—s)"z")
g(:l:) = —E (g]2kmk)+@(k§ﬁ(k+l)2m) 49 kz=0
7

) 5 k| .k
- 5[ et -9

Since g(z) is the generating function for ho, Ry, haye s Png oo

2
hy = 190

T Cy (5] c3 O

1+2— 1622+ 202°  1-2z (1-2z)2 + 145z

7 n_f__ﬁﬂ n=0,1,2,...).
2"+E(n+1)2 49( ) T
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The formula for h, above should bring to mind the solution of

recurren.ce re.lations, using the roots of the characteristic equation
as described in section 7.2. Indeed, the formula above suggests that
the roots of the characteristic equation for the given recurrence re-

lation are 2, 2, and —5. The following dj -
P ’ g discussion sh :
relationship between the two methods. should clarify the

In the preceding example we have e
- . xpressed th i -
tion g{z) in the form ® generating func

T :E(_El
9(z) 7(a)

where
g(z) = 1+ — 1622 + 2043,

Since the recurrence relation is

hn + hﬂ.—l _ 16hn-2 + 20hn_3 = 0, {n = 3,4 5 . -}

the associated characteristic equation is m(z) = 0 where
r(z) = 23 4+ 2% - 162 + 20.
If we replace z in r(z) by 1/z (this amo
unts to th i i
el e change in variable
_ 1 1 1
r(l/z) = ] + = 16; + 20,
or
z*r(l/z) =1+ z — 1622 + 20z3 = q(z).

The roots of the characteristic e i
- quation r(z) = 0 are 2,2 -
Slnce r(ﬂ:) = (m —_ 2)2(:c + 5), it follm,vs that 1 a-nd 5.

o(z) = 23 (% - 2)2 (i + 5) = (1 - 20)(1 + 52),

.which checks with our previous calculation,

The relationships above hold in general. Let the sequence of

numbers hg, hy, kg, ...
o 0,1, A2, ..., By, ... be defined by the recurrence relation

h, + alhn_l +-- 4 akhn_k =, (n > k)

Uhapter 7: Hecurrence Relations and Generaﬁng Functions
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| with initial values for hg, hy,...,hg_1. Recall that since the recur-

rence relation has order k, ax is assumed to be different from 0. Let
g(z) be the generating function for our sequence. Using the method
given in the examples, there are polynomials p(z) and ¢q(z) such that

x
g(x) = 22
g(z)
| where g(x) has degree k and p(z) has degree less than £. Indeed, we
have
g(z) =1+ a1z + a9z® + - -+ + axz’,
and
p(z) = ho+ (ki +aihg)z+ (he +athy + asho)z®

4o+ (hg—y +athg2+--- + ﬂk-1ho):r"'1.

The characteristic equation for this recurrence relation is r(z) =0

where
r{z) = i T T I R S R T

Hence
g(z) = z*r(1/z).

Thus if the roots of r(z) = 0 are ¢,q2,...,qk, then
ri@)=(-a)z—q) - (z-q)
and
q(z) = (1 - @z}l — goz) -+ (1 — qrz).
Conversely, if we are given a polynomial
g(z) = bo + biz + -+ + byz*
of degree k with by # 0 and a polynomial

p(z) =do+diz+ -+ dg13°!

of degree less than k, then using partial fractions and (7.47), we can
find a power series!® hg + hyz + -+ + hinz™ + - - - such that

plz) _ .
q(m)-—hu+h1$+ o+ hpz™ 4

14Phis power series will converge to p(z)/q(z) for all x with |z| < ¢ where t is
the smallest absolute value of a root of g(z) = 0. Since we assume that bo # 0, 0

is not a root of g(x) = 0.
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_. We can write the above equation in the form
I -

| dotdiz 4+ dp gzt = (bo + by + - - - + brz®)
X(ho+hiz+ -+ 4 hpz" +-- ),

| Multiplying out the right side and comparing coefficients, we obtain

1]
| boho = dy,
|=| bohy + bihg = dy,

(7.48)

[ bohk—1 + brhg—o + -+« + b hg = dk.—lv
| and

bohn +bthn—1 + - +bghn =0, (n>k), (7.49)

Since bp # 0, equation (7.49) can be written in the form

b[ bk
hy + Ehn-l +--- 4 b—o‘hn—k =0, (n > k)'

l gl}is isa li.nea{' homogeneous recurrence relation with constant coef-

l; hcn;nts Whl’Ch is sz;v,tnsl:ie(ili by ho, b, ha, ... hy,... . The initial values
0; ;. .., k_) can be determined by solving the tri

l. . . g the triangular system

| of equations (7.48), using the fact that by # 0. We summarize gn the

| following theorem.

.: Theorem 7.5.1 Let
ho, by ha . b, ..

be a sequence of numbers which satisfies the linear homogeneous re-
currence relation

ho+cithpy+ -+ ekhnk =0, ¢ #£0, (n> k) (7.50)

| of order k with constant coefficients. Then

: ils j :
9(z) is of the form generating function

_ plz)
g9(z) = @ (7.51)

; where q(:r:‘) 15 a polynomial of degree k with a non-zero constant term
and p(x) is ¢ polynomial of degree less than k. Conversely, given such
pol;{namials p(z) and g(z), there is a sequence hg, hy hg’ h
satisfying a linear homogeneous recurrence relatior; wi,th c,o.r;.;;anr:‘,‘;:t.):

| efficients of order k of the type (7.50) wh . ..
given by (7.51). ) whose generating function is

'b" i

Gost BT

e
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7.6 A Geometry Example

A set K of points in the plane or in space is said to be conves,
provided that for any two points p and ¢ in K, all the points on the
line segment joining p and ¢ are in K. Triangular regions, circular
regions, and rectangular regions in the plane are all convex sets of
points. On the other hand, the region on the left in Figure 7.2 is
not convex since, for the two points p and g shown, the line segment
joining p and g goes outside the region.

The regions in Figure 7.2 are examples of a polygonal regions, that
is, regions whose boundaries consist of a finite number of line seg-
ments, called their sides. Triangular regions and rectangular regions
are polygonal, but circular regions are not. Any polygonal region
must have at least three sides. The region on the right in Figure 7.2
is a convex polygonal region with six sides.

Figure 7.2

In a polygonal region the points at which the sides meet are
called corners (or vertices). A diagonal is a line segment joining two
non-consecutive corners.

Let K be a polygonal region with n sides. We can count the
number of its diagonals as follows. Each corner is joined by a diagonal
to n — 3 other corners. Thus counting the number of diagonals at
each corner and summing, we get n{n — 3). Since each diagonal has
two corners, each diagonal is counted twice in this sum. Hence the
number of diagonals is n{n—3)/2. We can arrive at this same number
indirectly in the following way. There are

(n) _ a(n—1)
2 2

line segments joining the n corners. Of these, n are sides of the
polygonal region. The remaining ones are diagonals. Hence there
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Special Counting
Sequences

We have already considered several special counting sequences in the

previous chapters. The counting sequence for i
ermuta
of n elements is p utations of a set

0L1L2, .. ,al,....
The counting sequence for derangements of a set of n elements is
Dﬂ:DlvD2!---1Dﬂ|“

where D, has been evaluated in Theorem 6.3.1. I iti
. . .3.1. add t
investigated the Fibonacci sequence n addition we have

fﬂsfl:fi’y--'!fnv--i

and a formul.a for- fn has been given in Theorem 7.1.1. In this chapter
we study primarily four famous and important counting sequences,
the sequence of Catalan numbers, the sequences of the Stirling num-

bers of the first and second kind and th
e ) e sequence of th
partitions of a positive integer n. q e number of

8.1 Catalan Numbers
The Catalan sequence! is the sequence

Cﬂ,C[, 02’ caay Cn
'After Eugéne Catalan (1814-1894).

geoe
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where

L (2"), (n=0,1,2,...)

E n+lin
is the nth Catalen number. The first few Catalan numbers are

Co=1 C5=42
Ci=1 Csg=132
Co=2 (C7=429
Ci=58 Ca=1430
Ci=14 Cg=4862

The Catalan number

arose in section 7.6 as the number of ways to divide a convex polygo-
nal region with n+1 sides into triangles by inserting diagonals which
do not intersect in the interior. The Catalan numbers occur in sev-
eral seemingly unrelated counting problems and we discuss some of
them in this section.

/ Theorem 8.1.1 The number of sequences
G1,82,...,02n (8'1)

of 2n terms that can be formed by usingn +1's and n —1’s whose
partial sums satisfy

aj+as+--tap 20, (k=1,2,...,2n) (8.2)

equals the nth Catalan number

Cn . 1 (2ﬂ) H (ﬂ' 2 O)'

T n+1l\n

Proof. We call a sequence (8.1) of n +1'sand n ~1's acceptable if it
satisfies (8.2) and unacceptable otherwise. Let A, denote the number
of acceptable sequences of n +1's and n —1’s, and let U,, denote
the number of unacceptable ones. The total number of sequences of

n +l'sandn —1'sis
(21:\ _ {2n)!
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| since Sutfh sequences can be regarded as the permutations of objects
of two different types with n objects of one type {the +1's) and n of
the other (the —1's). Hence

Al’l + Un = (2ﬂ) N
n

a;rd we evaluate A, by first evaluating U, and then subtracting from
18
( n )

Cousider an unacceptable sequence (8.1) of n +1’s and n —1’s.

Because the sequence is unacceptable there is a smallest £ such that
the partial sum

aytax+---tag

is negative. Because k is smallest there is an equal number of +1's
and —1's preceding ai, and we have

g +ax+---+ap_ =0,
and
a, =-1.

In particular, k is an odd integer. We now reverse the signs of each of
I the first & terms; that is, we replace @; by —a; foreach i =1,2,...,k
and leave unchanged the remaining terms. The resulting sequence

i) i ]
Q)yCQyy. .. 8y,

is a sequence of (n +1) +1's and (n — 1) —1’s. This process is

reversible: Given a sequence of (n+1) +1's and {(n—1) —1's, there

is a first instance when the number of +1's exceeds the number of
.- -1's (since there are more +1's than —1's). Reversing the +1's and
]' —1’s up to that point results in an unacceptable sequence of n +1’s
i and n —1’s. Thus there are as many unacceptable sequences as
there are sequences of (n +1) -+1's and (n —1) —1's. The number
of sequences of (n +1) +1's and (n +1) —1's is the number

(2n)!
(n+ Dln - 1)!
of permutations of objects of two types, with n + 1 objects of one
type and n — 1 of the other. Hence

\ . = (2n)!
" (n+ Dn-1)
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and therefore

(2n)! (2n)!
ninl  (n+ 1)in—1)!

_ (2n)! 1 1

T oal{n -1 (n n+ 1)
_ (2n)! ( 1

T oalfn— 1 \n(n+ 1))

_ 1 n
T an+iln)

There are many different interpretations of Theorem 8.1.1. We
discuss two of them in the next examples.

An =

]

Example. There are 2n people in line to get into a theatre. Admis-
sion is 50 cents.2 Of the 2n people, nn have a 50 cent piece and n have
a 1 dollar bill. The box office at the theatre rather foolishly begins
with an empty cash register. In how many ways can the people line
up so that whenever a person with a $1 doilar bill buys a ticket, the
box office has a 50 cent piece in order to make change?

If we regard the people as «indistinguishable” and identify a 50
cent piece with a +1 and a dollar bill with a —1, then the answer is

the number
1 2n)
Cn = n+1 ( n)

of acceptable sequences as defined in Theorem 8.1.1. If the people
are regarded as “distinguishable”, the answer is

(al) (n) —— (2") - B}

n+lin n+1

(5eo Exareple 410, -6 of Bogarts fext) °

' Example. A big city lawyer works n blocks north and n blocks east

of her place of residence. Every day she walks 2n blocks to work.
(See the map below for n = 4.) How many routes are possible if she
never crosses (but may touch) the diagonal line from home to office?

2This problem shows its age!
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Office

Home

Each acceptable route is either above the diagonal or below the
diagonal. We find the number of acceptable routes above the diag-
onal, and multiply by 2. Each route is a sequence of n northerly
blocks and n easterly blocks. We identify north with +1 and east
with —1. Thus each route corresponds to a sequence

a1,82,...,042,

ofn +l'sand n —1's, and in order that the route not dip below
the diagonal we must have

k
doai20, (k=1,...,2n).

i=1

Hence by Theorem 8.1.1 the number of acceptable routes above the

diagonal equals the nth Catalan number and the total number of
acceptable routes is

2 2n
2 —
N o=r1(n)

We next show that the Catalan numbers satisfy a homogeneous
recurrence relation of order 1 (but with a non-constant coefficient).

We have
C. = 1 (2n 1 (2n)!
£ = —
n+l\n n+1 ninl
and
c . 1{2n-2\ 1 (2n-2)
n-1= - = = .
n\n-1 n(n—1)(n-1)
Dividing, we obtain
Cn _dn-2
Ca-t n+1'
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Therefore the Catalan sequence is determined by the following re-
currence relation and initial condition:

4n — 2
= Cn-1, (21
Cn n+1 n—1 ( )

| Co = 1 (8.3)
1

| We have previously noted that Cy = 4862. It follows from the recur-
i rence relation (8.3) that

38 8,
_' Cro =37 Co= T7(4862) = 16,796,

We now define a new sequence of numbers
*
C},C3,.--,Cqs-..

which, in order to refer to them by name, we call the pseudo-Catalan
numbers. We let

C: =niCasr, (n=1,2,3,...).

n

We have
Ci=1(1)=1

and using (8.3) with n replaced by n — 1, we obtain

C, = nlCp
4n -6

= (4n —ﬂﬁ)(n - Ch—2
= (4n-6)C,_,-

Thus the pseudo-Catalan numbers are determined by the following
recurrence relation and initial condition:

Cr = (n-6)Cr.,, (n22)
c = 1L (8.4)

Using this recurrence relation we calculate the first few pseudo-
Catalan numbers:

Ci=1 C;=12

C; =2 C5=1680

C: =12 Cg = 30240.
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We can write the above equation in the form
do+diz+ - +dpzF! = (bﬂ+b1$+'--+bk:ck)
X(hg + hyz+ -« + hpz" +-- ).
Multiplying out the right side and comparing coefficients, we obtain

bOhD = d(},
bﬂhl + blho = dl,

. (7.48)
bohg—1 +brhg_o+ -+ b_1hy = dk.—ls
and
bohn +bihn_1 + - +bha_t =0, (n>k) (7.49)
Since bp # 0, equation (7.49) can be written in the form

b
hn+_1hn--]_+"'+b—k

bo bo hp_x =0, (n>k).

This is a linear homo
geneous recurrence relation with constant
* . - - coef-
ﬁcu;nts which is satisfied by ho, k1, ha,..., hy,,... . The initial values
0: R1y..., hg—1 can be determined by solving the triangular system

of equations (7.48), using the fact that b o
following theorem., at by # 0. We summarize in the

Theorem 7.5.1 Let
ho, b1, hay ..o by, ...

.

hnt+ethpoy+ - tephak =0, #0, (n>k) (7.50)
of order k with constant coefficients. T 3 ; 1
RS 3. Then its generaling function
p(z)
g9(z) = ==
where g(z) is a polynomial of degree k with a non
. : -zero consiant &
and p(a:).zs a polynomial of degree less than k. Conversely giv:n 512
polg{nomtals ;?(z:) and q(z), there is a sequence hg, hy hz, h
salisfying a linear homogeneous recurrence relation with c’anst‘m;, ca-

efficients of order k of the t ) o
given by (7.51). f the type (7.50) whose generating function is

o ———ca.

“76 A Geometry Example
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A set K of points in the plane or in space is said to be convez,

provided that for any two points p and ¢ in K, all the points on the
line segment joining p and q are in K. Triangular regions, circular
regions, and rectangular regions in the plane are all convex sets of
points. On the other hand, the region on the left in Figure 7.2 s
not convex since, for the two points p and ¢ shown, the line segment
joining p and g goes outside the region.

The regions in Figure 7.2 are examples of a polygonal regions, that
is, regions whose boundaries consist of a finite number of line seg-
ments, called their sides. Triangular regions and rectangular regions
are polygonal, but circular regions are not. Any polygonal region
must have at least three sides. The region on the right in Figure 7.2
is a convex polygonal region with six sides.

LA

Figure 7.2

In a polygonal region the points at which the sides meet are
called corners (or vertices). A diagonal is a line segment joining two
non-consecutive corners.

Let K be a polygonal region with n gides. We can count the
aumber of its diagonals as follows. Each corner is joined by a diagonal
to n — 3 other corners. Thus counting the number of diagonals at
each corner and summing, we get n(n — 3). Since each diagonal has
two corners, each diagonal is counted twice in this sum. Hence the
number of diagonals is n{n—3)/2. We can arrive at this same number
indirectly in the following way. There are

ny n(n-1)
2/ 2

line segments joining the n corners. Of these, n are sides of the
polygonal region. The remaining ones are diagonals. Hence there
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are
n(n—1) _ n{n-3)
7 T T
diagonals.

Now assume that K is convex. Then each diagonal of K lies
wholly within K. Thus each diagonal of K divides K into one convex
polygonal region with k sides and another with n — k + 2 sides for
some k= 3,4,...,n—1.

We can draw n — 3 diagonals meeting a particular corner of K
and in doing so divide K into n — 2 triangular regions. But there art;
other ways of dividing the region into triangular regions by inserting
n — 3 diagonals no two of which intersect in the interior of K, as the
example in Figure 7.3 shows for n = 8. ’

Figure 7.3

In the following theorem we determine the number of different
ways.to divide a convex polygonal region into triangular regions by
d.ra.wmg diagonals which do not intersect in the interior. For nota-
tional convenience we deal with a convex polygonal region of n + 1

sides which is then divided into n — 1 triangular regions by n — 2
diagonals.

Theorem 7.6.1 Let h, denote the number of ways of dividing a
convez polygonal region with n 4 1 sides into triangular regions by
inserting diagonals which do not intersect in the interior. Define
hy = 1. Then h,, saiisfies the recurrence relation .

hy = Rbhaa+hhp ga+---4 hn-1h1
n—1
= Z hehpn_g, (n>2).

2 (7.52)

Sec. 7.0 A tuliguly s

.. The solution of this recurrence relation is

1{2n-2
hy = —( " ), (n=1,2,3,...). (7.53)

n\in—-1

Proof. We have defined h; = 1, and we think of a line segment as
a polygonal region with two sides and no interior. We have hy =1
since a triangular region has no diagonals, and it cannot be further
subdivided. The recurrence relation (7.52) holds for n = 2,'% since

2-1 1
3 hiho =D hhyo = hihy = 1.
k=1 k=1

Now let 7 > 3. Cousider a convex polygonal region K withn+12>4
sides. We distinguish one side of K and call it the base. In each
division of K into triangular regions, the base is a side of one of the
triangular regions T', and this triangular region divides the remainder
of K into a polygonal region K with k + 1 sides and a polygonal
region Kp with n—k+1 sides, for some k = 1,2, ...,n—1 (see Figure
7.4).

The further subdivision of K is accomplished by dividing K\
and Ko into triangular regions by inserting diagonals of K\ and Ka,
respectively, which do not intersect in the interior. Since K has k+1
sides, K; can be divided into triangular regions in hy ways. Since
Kohasn—k+1 sides, Ko can be divided into triangular regions
in h,_x ways. Hence, for a particular choice of the triangular region
T containing the base, there are hih,_i ways of dividing K into
triangular regions by diagonals that do not intersect in the interior.
Hence there are a total of

n-1
by = Z hiha—k
k=1

ways to divide K into triangular regions in this way. This establishes

\ the recurrence relation (7.52).

15This is why we defined b = 1.
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Kz
{n—k+ 1 sides)

Base
Polygonal region with n + 1 siges

@ Figure 7.4

We now turn to the solution of (7.52) with the initial condition
/ hy = 1. Ths recurrence relation is not linear. Moreover, h, does
[ not depend on a fixed number of values that come before it, but on
all the values hy, kg, ..., ha_y that come before it. Thus none of our
J methods for solving recurrence relations apply. Let

glz) =hyz+hox® + - L hyg" ...
!_ be the generating function for the sequence hy, ho,hy, ... Wy, ... .
‘ Multiplying g(x) by itself, we find that
| (9(2))? = hz? + (hyhg + hohy)z + (hihy + hahg + hah))z!

I 4+ (Arhpoy + hahy_g + - + ha—thy)z® +---.

Using (7.52) and the fact that &y = hy = 1, we obtain

(9(5‘:})2 = h—fﬂfz + hyz? + haxt + -
hyz® + hax® + hyz! + .
= y(:x:) - h]:,L' = !](37) ~ .

“+hpz" -
R N Y ~al SR

I

Thus g(x) satisfics the equation
(9(2))* — gz} +z = 0.

This is a quadratic equation for g(z), and so by the quadratic for-

mula!® g(z) = g(z) or g(z) = ga(z) where
+vI=1 Y
| g1(s) = =5 and go(z) = 21 =z

'®But omitting some subtletics.

|
|
i,

|
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From the definition of g(z), it follows that g(0) = 0. Since g,(0) =1
and g2(0) = 0, we conclude that

1-v1-4 1 1 :
9(z) = pals) = ——— = 5 - Z(1 - 42)'/2.

By Newton’s binomial theorem (sce, in particular, the calculation
done at the end of section 5.6),

(1+z)"2—1+2 e ; (?_‘f)z", (I < 1).

n—l

If we replace z by —4xz, we get

2 (-1t fom -2
(1-4z)'% = 1+an2,,n1 R (S Vi e
2(2n-=2
— 1 — 2n—l_ n
+HZ_]( L, n(n—l)m
2n — 1
= 1-22 (’ ) , (el < 3
n=1
Thus
1 1 1{2n-2
== 21~ 1/2 - " 7.54
ole) = 5 - 5(1~ 42) gn(n-l)“" (750
and hence
l1/2n-2
= — >
hq n(n 1), (n>1)
]

The numbers
_1- 2n -2
n\n-—1

in the previous theorem are the Catalan numbers, and these will be
investigated more throughly in Chapter 8.
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The defining formula for the Catal
an numbers and th iti
of the pseudo-Catalan numbers imply the formula e definition

2n-2
n—1

Cﬁ=(ﬂ—1)!( ), (n2>1)

for the pseudo-Catalan number i
s. This formul .
from the recurrence relation (8.4, rmula can also be derived

Example. Let aj,a,,...,8, be n numbers. By a multiplicati

schc:lne.l'or. these numbers we mean a scheme for carryingpout :zﬂ
multlp!lca.ttmI.l ofa),as,...,a,. A multiplication scheme requires °
1 multiplications between two numbers, each of which is either :n_
of aj,ay,...,a, or a partial product of them. Let A denote l;he
nur‘nber of multiplication schemes for n numbers. Wenhave h = ]
(this can be taken as the definition of h1) and he = 2 since net

(a1 x a3) and (a2 x @)

a;e two possible'schemes. This example serves to show that the order
o' th;a numbers in the multiplication scheme is taken into considera-
tion.” If n = 3, there are 12 schemes: :

(a1 X (a2 x a3)) (ay x (a1 x a3)) (a a

((02 X 0.3) X a|) ((al x a;:) X 0.32) g(;lxx(:-:)xx :3
(a1 x (a3 x 82)) (a3 x (a3 x @1)) (a3 x (ag x a;))
((a;. X az) X aI) ((0.3 X al) X a2) ((0.2 x al) x 83).

Th'us h; = 12. Each multiplication scheme for three numbe
quires two multiplications and each multiplication corres ondsrst v
set of p'fzren_theses. The outside parentheses allows us to idzntify :cz
mu.ltnphcatlon X with a set of parentheses. In general, each multe: li
cation schseme can be obtained by listing ay,a,,... a,: in some lg :
and then inserting n — 1 pairs of parentheses, s0 ’that each :_1' elt:
pa.renl:.heses designates a multiplication of two factors. But i: ol:d:r
to derive a recurrence relation for h, we look at it in an inductive
way. Each schexfle for aj,ay,...,ay can be gotten from a scheme fo
@1,83,...,8z-1 In exactly one of the following ways: )

a
In more algebraic lan i
holds. guage, we are not assuming that the commutative law

o e : :-'"_ F
g e N -.':.‘ ’

1
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(i) Take a multiplication scheme for a;,as,...,an-1 (which has
n—2 multiplications and n—2 sets of parentheses) and insert an
on either side of either factor in one of the n—2 multiplications.
Thus each scheme for n — 1 numbers gives 2 x 2 x (n — 2) =
4(n - 2) schemes for n numbers in this way.

(ii) Take a multiplication scheme for a,@z,...,0s— and multiply
it on the left or right by e,,. Thus each scheme for n— 1 numbers

gives two schemes for n numbers in this way.
To illustrate, let n = 6 and consider the multiplication scheme
((ay x ag) % ((aa % a4) X a5)).

for ay,asz, as,as,as.} There are 4 multiplications in this scheme. We
take any one of them, say the multiplication of (a3 X a4) and as, and
insert ag on either side of either of these two factors to get

(a1 x a2) x ({(as % (a3 x a4)) % as))
((ay % a2) x (((a3 X as) X ag) X as))
({21 x a2) x ({a3 % a4} x (a5 x @s)))
((ay x a2) % ((a3 X a4) % (a5 X ag}))-

There are 4 x 4 = 16 schemes for a1, 82, az,a4,85, 06 obtained in this
way. Besides these we have two additional schemes in which ag enters

into the final multiplication, namely,

(as % ((a1xa2) x ((aa xag)xas))), (((a1xaz)x({as X a4) X as)) X @s)-

Thus each multiplication scheme for five numbers gives 18 schemes
for six numbers; and we have hg = 18hs.

Let n > 2. Then generalizing the analysis above we see that
each of the h,.; multiplication schemes for n — 1 numbers gives
4(n - 2) + 2 = 4n — 6 schemes for n numbers We thus obtain the

recurrence relation

hy = (dn — 6)hp_1, (2> 2)
which together with the initial value hy = 1 determines the entire

sequence hy,ha,....0n,... . This is the same type of recurrence

41Which multiplication x corresponds to each set of parentheses above?
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relation with the same initial value sati
atisfied by th
numbers {8.4). Hence y the pseudo-Catalan

2n -2
n-1

hn=C,:=(n—1)!( ), (n>1).

a

‘ 'In t!l(‘. preceding example, suppose that we count only those mul-
tiplication schemes in which the n numbers are listed in the order
1,82, - . -,an. Thus, for instance, ((a, Xa1)Xa3) is no longer counted
[fet gn denote the number of multiplication schemes with this add'.
tional restriction. Then h,, = nlg, and hence i

gn=£!1=_6'_;_1 2n-—2

since we consider only one of n! possible orders.

‘ -We can also derive a recurrence relation for 9n, using its defi-
mt:o_n as ff?llows. In each scheme for a),as,...,a6, there is a final
multiplication x (corresponding to the outer parentheses):

((scheme for qy,... , @) X (scheme for Chtly--+,05)).

The multiplif:ation scheme for ay,...,a, can be chosen in gL ways
and the.multlphcatlon scheme for axy,,...,a, can be chosen in g k'
ways. Since k can be any of the numbers 1,2,...,n—1 we have "

In =gtIn-t +920n-2+ -+ ga_1g1, (n>2). (8.5)

Th_:s recurrence.rela.l:ion, along with the initial condition n =1
uniquely determines the counting sequence ’

91.:92,93, ...y Gny. .. .

Thus the solution of the recurren .
ce relat i ;
initial condition g1 = 1 is elation (8.5) which satisfies the

C: 1f{n-—
gn=—2=_(nr 2), (nzl).

nl n\n-1

The rzcdm:rence .relation' (8.5) is the same recurrence relation that
occurred tn section 7.6 in connection with the problem of dividing

-
=
i

as g e
Bt e

L2

3
L]

T e
]
i DT

kT

i,
i
L2
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a convex polygonal region into triangles by means of its diagonals.
Thus we have a purely combinatorial derivation® of the formula ob-
tained in section 7.6, and we conclude that the number of ways to
divide a convex polygonal region with n 4 1 sides into triangular
regions by inserting diagonals which do not intersect in the interior
is the same as the number of multiplication schemes for n numbers

given in a specified order!

a4

(24as)

(as(asas))

ag dg

(aaz)

((a1a2)(a3(a4as)))

(((a132)aa(aaas)))(@sar))

Figure 8.1

The correspondence between the multiplication schemes for the n
numbers @, as, ...,a, and triangularizations of a convex polygonal
regions of n + 1 sides is indicated, in the Figure 8.1, for n = 7. Each
diagonal corresponds to one of the multiplications other than the last,
with the base of the polygon corresponding to the last multiplication.

8.2 Difference Sequences and Stirling Numbers

Let
hﬂ:hlvh2y'°'1hnr-'- (8.6)
be a sequence of numbers. We define a new sequence
Ahg, Ahy, Ak, ..., Aby,..., (8.7)

5The derivation in section 7.6 is analytic in nature.
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Chapter 4. Counting Permutations

Prove that

HELas B+ Y (4.15)

Let us enumerate integer partitions whose Ferrers shape fits within
an m x n rectangle according to their sizes. That is, let

ﬂvﬁsu =u QV = Mﬂ_p_u
a

where @ ranges over all integer partitions that have at most m rows
and at most n columns, and |a| denotes the integer of which a is a
partition. For instance, p(2,2,q) =1+q+2¢> + ¢ +¢*.

Prove that p(m,n,q) = Tu..au_.

\Mm._ We say that a permutation avoids the pattern 132 if it does not have
/.m\ three elements that relate to each other the same way as 1, 3, and

33.

34.

35.
36.

2. That is, if p = p1p2 - - - Pa, then p is 132-avoiding if there are no
three indices i < j < k so that p; > px > p;i. That is, there are no
three entries in p among which the leftmost is the smallest and the
one in the middle is the largest, just as in 132. For instance, 42351
is 132-avoiding, but 35241 is not, for the three entries 3, 5, and 4.
So we will say that 35241 contains 132.

Prove that the number of 132-avoiding n-permutations is the nth
Catalan number.

Let ¢ be any permutation of length k, and define g-avoiding permu-
tations in an analoguous way to 132-avoiding permutations, with g
playing the role of 132. Let Sp(g) be the number of n-permutations
avoiding the pattern q. For what permutations g does the result of
the previous exercise immediately imply that Su(q) = Cy?

Prove that if the n-permutation p = p1p2---pn contains a 312-
pattern, then it must contain a 312-pattern in which entries playing
the role of the entries 3 and 1 of the 312-pattern are conseculive
entries in p.

Find a non-generating function proof for the result of Example 3.34.

A regular tetrahedron is a solid with four vertices, six edges, and
three faces, so that each edge is of the same length. See Figure 4.5
for an illustration.
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4.8. Solutions to Exercises
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Figure 4..

(a) Find the numbe

(b) Find the numb:
that can be obti

(c) Symmetries of
vertex set. Does
us whether the «
series of rotatiol

4.8 Solutions to
1. Recall that A(n, k)

descents. If p = p12
P’ = PaPn-1---P1, ht
descents. In other w
set, of permutations ¢
counted by A(n,n +

Alternatively, instea
That is, for p = p1po
entryisn+1—p;. 1
has k — 1 ascents, ar

2. In a permutation co

t

an increasing sequer.
increasing sequence.
entries, we know th
easy to prove compu
is taken for i = |n/2

3. Let w= .ﬂ.mp.mw.mu
blocks mf .WM_ Wu ha
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wious that then all a; have
sermutations in which both
‘mutations in which neither
w is that there are as many
Pi+1 < Di+2 (set A) as there
1 Pi < Pi+1 > Pite (set B).
Leave the entries on the left
. Then rearrange the entries
d then taking complements
nology of Exercise 32, if the
turn it into 231, and if it
number of total inversions
new permutation is still in
nap is bijective, since taking
stion.

ms 1122, 1212, 1221, 2112,

“+Qu+n.n.

;ations 12222, 21222, 22122,

+q°+q%

permmutations 11122, 11212,
y 21121, 21211, and 22111.

‘r2gt + P+ 1.

iset K. Then reverse p, and
Then the new permutation
. consisting of k copies of 2
nutation counted by ﬁ =wL.
our claim.

ms that end in a 2, and the

ms that end in a 1.

" 4.8. Solutions to Exercises
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It is easy to prove that p(m, n, q) satisfies the same recursive relation
as —:ﬂ.r.._ . Indeed, if the Ferrers shape of a partition fits into an mxn
rectangle, then there are two possibilities: Either the partition has
at most m — 1 parts, and then its Ferrers shape fits even into an
(m = 1) x n rectangle, or the partition has m parts, and then, after
removing the first column of its Ferrers shape, its remaining shape
fits into an m x (n—1) rectangle. These two cases correspond to the
two summands in the recursive relation satisfied by the Gaussian
coefficients.

wmuém prove the statement by induction on n, the initial case of n =1

33.

being trivial. We will say that there is one permutation of length 0
that avoids 132.

Now assume that we know the statement for all nonnegative integers
less than n. Suppose we have a 132-avoiding n-permutation in which
the entry n is in the ith position. Then it is clear that any entry
to the left of n must be larger than any entry to the right of n,
otherwise the two entries violating this condition and the entry n,
would form a 132-pattern. Moreover, by our induction hypothesis,
there are C;_, possibilities for the substring of entries to the left of
n, and C,_; possibilities for that to the right of n. Summing over
all allowed i, we get the following recursion:

n=1

Cn=)_ Ci-1Cn—i,

i=0

and we know from (3.22) that this is the recursion of the Catalan
numbers.

(4.16)

If the n-permutation p contains the pattern g, then the reverse of
p will contain the reverse of g. This implies S,(132} = 5,(231).
Similarly, if p contains the pattern ¢, then the complement of p will
contain the complement of . Therefore, S,(132) = S,(213). Finally,
Sn(213) = 5,(312) by taking reverses. So all four patterns 132, 213,
231, 312 are avoided by C,, permutations of length n.

This is not even the end of the story, since we also have 5,(123) =
S7(321) = C,,. The latter is somewhat harder to prove (Supplemen-
tary Exercise 39).

Let p;, p;, and py form a 312-pattern in p. If there are several 312-
patterns in p, choose the one for which 7 — 7 is minimal. In that
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(ix) Show that if we choose an integer less than 16 and ancther 99
integers from the numbers 1,2,3,...,200, then among these 100
integers there are two different ones whose quotient is an integer.

{x) Can the number 16 in the statement of (ix) be replaced by 17?7

*(xi) Suppose that n different numbers are chosen from the set
{1,2,...,2n — 1} such that every chosen number is not divisi-
ble by any other one of the chosen numbers. Show that none of
these numbers can be less than 2*, where the integer k is uniquely
determined by the condition 3% < 2n < 3¥+!,

*(xii) A generalization of 4.13.(i). Given the collection of n real numbers
T1,T2,...yLn, form the N = (’2') sums x;-+2; (1 £i < j < n),and
denote them by ¥1,¥2,...,y~ (in any order). Show that if n # 2%,
k € N, then the original numbers z,,x,,...,z, are uniquely de-
termined by the collection of numbers ¥y, ys, .. ., #n. Furthermore,
show that this conclusion is not valid for any number n = 2.

5 Iterations

By the term iteration we usually understand in mathematics the result
of some repetition of the same mathematical operation, algorithm, rule,
ete. In Section 3.9 of this chapter we have already solved several probletns
concerning iterations of certain operations on arrays. Before turning to
further problems on numerical configurations, we present a description of
such problems in a general setting. This will enable us in the following
sections to formulate in general some possible approaches to their solutions.

The letter X will denote the set of all configurations to be considered in
a given iterative problem. This may be, for instance, the set of all 4 x 4
integer arrays, or the set of all real sequences of a given length. The given
“rule” for the individual elements = € X that we will iterate in the problem
then introduces a certain relation ! on X, that is, a (nonempty) subset of
the Cartesian product X x X {2 € X x X). In all problems the relation £}
can be described as follows: We have a rule that, given an element ¢ € X,
allows us to form all elements of the set

A yeX: (zyeq)

(if the set Q(z) has only one element for all x € X, then the relation (2 is a
mapping : X — X). If the set X does not have too many elements, then
it is convenient to visualize the relation ( by way of a directed graph (see
Example 5.1.(i}).

A finite or infinite sequence x,,%2,... of elements of the set X will
be called iterative (with the relation €1} if for any two neighboring terms
o, Ti41 we have Ty € Q(x:). We now state the three most frequent
questions that occur in the study of iterative sequences.

{0
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(a) The atiainabdity problem. Given two sets A C X and B C X, decide
whether there is an iterative sequence z),z3,...,Z, such that x; € A and
Tn € B. Of special importance is the case where one or both of the sets
A, B have only one element. We say that the element b is attainable from
the element a if there is an iterative sequence a = 1y, o, ..., Z, = b;
if at the same time ¢ is also attainable from b, then we call a,b a pair of
mutually attainable elements.

(b) The finiteness problem. Decide whether there are infinite iterative
sequences; if the answer is negative, establish or estimate an upper bound
for the maximal length of these sequences. (In this formulation we have to
exclude from  all pairs of the form (z, x); otherwise, we would have to
talk about the stebilization problem of infinite iterative sequences.)

(c) The periodicity problem. Decide whether there exist periodical
iterative sequences; possibly describe all of them or find their periods.

5.1 Introductory Ezamples

We begin by illustrating the problems surrounding iterative sequences,
which we just sketched, with a few examples.

(i) On a table there are 6 pebbles, divided into several piles. From each
pile we take one pebble and form a new pile with them. We keep repeating
this operation. Decide how many piles there will be on the table after 30
steps (the initial distribution of the pebbles is not known).

12,1,1,1,1] (2,2,1,1]—[4,1,1]

[1,1,1,1, 1]—+{6]—[5, 1}—=[4, 2}+—[3, 1,1, 1]e—2, 2, 2}o—[3, 3]

[3,2,1]

Figure 11

SoLuTiOoN. We deseribe each distribution of the pebbles into piles by a
collection of numbers, each giving the number of pebbles in a pile. Since
the order clearly does not matter, each distribution is described by one of
the collections [6], [5,1], [4,2), [3,3], [4,1,1), [3,2,1], [2,2:2), [3,1,1,1], [2,2,1,1],
[2,1,1,1,1], [1,1,1,1,1,1]. The course of the operations can then be visualized
by the directed graph of Figure 11, in which the arrows represent the change
of the composition of the piles in one step. We easily see from the graph
that after at most 6 steps we obtain the distribution [3,2,1}, which will not
change any further (and thus after 30 steps there will be three piles on the
table). (]

We note that the final sections, 5.11 and 5.12, will be devoted to a
generalization of Problem (i) to the case of an arbitrary number of pebbles.
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(if) From a quadruple of positive numbers (e,b,c,d}) we form a new
quadruple {ab,be,ed, da), and keep repeating this operation. Show that
in the resulting iterative sequence of quadruples the original quadruple
{a,b,c,d) does not occur again, with the exception of the case where
a=b=c=d=1.

SoLuTioN. Suppose that after several steps we obtain the original
quadruple, and we set 3 = abed. Since (ab)(bc)(cd)(da) = 52, we can easily
deduce by induction that after k steps we obtain a quadruple of numbers
whose product is 52" Therefore, it follows from our assumption that % =3
for some k > 1, and thus s = 1. Let us now see what in the case abed = 1
the fourth quadruple looks like:

(a,b,c,d) =+ (ab, be, ed, da) -+ (ab’c, bc*d, cd®a, da?b) —
= (ab’c’d, be*d®a, cd®a®, da*bc) = (b2c?, Pd?, d?a?, a%b?) .

Thus the fourth quadruple comes from the second quadruple by squaring
the elements and then changing their orders; in a similar way the sixth
quadruple comes from the fourth, the eighth from the sixth, etc. Therefore,
the largest number in the 2kth quadruple is equal to t2*~", where ¢ is the
largest one of the numbers ab, be, cd, da. Since by assumption the iterative
sequence is periodic, the sequence of numbers ¢,¢3,¢4,#8,... can have only
finitely many different terms; this is possible only when ¢ = 1. On the other
hand, we have

1 =a?b*c*d? = (ab)(bc)(cd){da) < t-t-t-t=¢3.

From this it follows that ab = bc = ¢d = da = 1. The second quadruple
is then (1,1, 1,1); therefore, all following quadruples have the same form,

and finally the original one does as well. (]
(iii) From the n-tuple of numbers z,,x3,..., T, consisting of +1 and -1
we form the new n-tuple (z,z2,T223,...,2,71), and keep repeating this

operation. Show that if n = 2* for some integer k > 1, then after a certain
number of steps we obtain the n-tuple (1,1,...,1).

SoLuTioN. We prove the assertion, which is clear for k = 1, by induction
on k. We assume that it is true for some k > 1 and consider an arbitrary
sequence (Ty,T2,...,Zn) of the numbers 1 of length n = 2¥+!_ Since
x? =1 for all i, the second iteration

2 2 2
(z12323, 293334, .. ., Tn_1T2T1, Tuzizy)

can be written as the n-tuple (2,3, 22%4,...,Ta-121, ToT2), which arises
as a regular interlacing of the terms of the two 2*-tuples

(2123, T3xs, T5T7, .. ., Tn—121) and  (ZaT4,T4Tp,...,TnT2).  (20)
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The same rule can also be used for obtaining the fourth iteration from the
second, the sixth from the fourth, etc. Therefore, after 27 steps (7 > 2) we
obtain from the original n-tuple one in which the terms of the (j — I)th
iterations of both sequences in (29) are regularly interlaced. But by the
induction hypothesis these iterations consist only of ones for sufficiently
large j. This completes the proof by induction. a

(iv) In a triple of positive integers we replace one of them by the sum of
the remaining two, decreased by 1, where this transformation is considered
as an jterative step only when the original triple becomes in fact a different
one. Show that in any finite iterative sequence

[ﬂ(lrbﬂvcﬂl -+ [alr b[,Cl] i 4 [an'bn;cn] (30)

one can determine from the final iteration [a,, by, cy] all preceding ones with
the exception of the original triple {ag, by, cg]. (The order of the numbers
in a triple is irrelevant.)

SoLuTiOoN. We note that in contrast to the previous three examples the
rule under consideration does not determine a mapping, since, for example,

([1,2,3]) = {4,2,3], [1,3,3], [1,2,2]}.

Because the triple [1,2,2] is at the same time the first iteration of all
triples of the form (1,2, n], we don't even have the assertion that each triple
is determined by its first iteration. Nevertheless, we will show that in any
iterative sequence (30) and for every index k > 1 the triple [ax, by, ¢&), where
e < by < ci, is necessarily preceded by a triple of the form [ag, bg, by —
2+ 1]. Indeed, from the rule [ax—1,bx—1,cx—1] —* [ax, bk, ck] it follows that
one of the equalities

g =b+er—1, bp=arter—-1, exr=ar+b—-1

must hold. We show that only the third one can hold: Since ax < b < ¢y,
the first (respectively second) equality is possibleonly if ar = by = =1
(respectively a; = 1 and by = ¢;), which in both cases is a contradiction
to k > 1. This means that we have [ax_1, be—1,ck—1] = [ax, bk, 2] for some
r € N. To determine the number z, we repeat the previous consideration:
Since & > 1, one of the equalities

ag=by+z-1, by=ar+xr—-1, z=0r+b—1 (31)

is true, where the third one means that x = ¢y, and thus fag—_y, be—1, 1] =
[@k, bk, €], which is a contradiction. From ax < by < b + z — 1 it follows
that the first equality in (31} is possible only when ax = bx; in any case we
therefore have the middle equality, from which we obtain £ = by —ag + 1.
This completes the proof. G
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5.2 [Ezercises

(i) Suppose that k even and k+1 odd numbers are written on the cir-
cumference of a circle in some order. Between any two neighboring
numbers we write their sum, then remove the original numbers,
and repeat the process with the new 2k + 1 numbers. Show that
after any number of steps at least one of the 2k + 1 numbers will
be odd.

(ii) Continue to study the operation described in (i), when in the start-
ing position there are 25 numbers on the circumference of the circle:
12-times the number 41 and 13-times --1. Show that after 100 steps
one of the 25 numbers will be less than —10%,

(iif) Return to the situation of 5.1.(iii), with a general n. Show that for
n=2%.¢ where k > 0 and £ > 3 is odd, after a finite number of
steps you obtain the n-tuple (1,1,...,1) if and only if the elements
of the original n-tuple (z,zs,...,z,) satisfy z; = Tipox for all
i=12,...,n—2%

5.3 The Method of Invariants_

We now describe an important concept that is often useful in the solution
of iterative problems. An inveriant of a given relation ) on X with values
in K is any mapping /: X — K that is nonconstant (that is, I{(z) #
I(y) for some distinct elements z,y € X) and that has the property that
I(z} = I{y) for any pair (z,y) € Q. In our problems K will always be some
set of numbers. Since the value of the invariant does not change on the
elements of an arbitrary iterative sequence, we conclude that the element
¥ is not attainable from the element z if there exists an invariant I such
that f(z) # I(y). We will illustrate this nonattainability rule by way of
four examples.

(i) On the circumference of a circle there are 2 ones and 48 zeros in the order
1,0,1,0,...,0. It is allowed to change any pair of neighboring numbers I,y
by the pair z+1,y-+1 (in this order). Show that by repeating this operation
we cannot end up with all 50 numbers being identical.

SoLuUTION. We denote the numbers on the circumference of the circle by
Iy, %2, ..., T, counting in a certain direction. Since we have the identity
(z+1) = (y+ 1) = z — y, an invariant of the operation in question is an
expression that for every pair of neighboring terms z;, z;,, depends only
on the difference z; — z;4,. It is not difficult to guess that the expression

I=z —z3+T3—xg+ -+ Zgg — T

is of this kind (in checking this, you should not forget that Tsq, z; are also a
pair of neighboring terms). For the original sequence we have I = 1—-0+1 =

e ST e
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2, while any sequence of 50 identical numbers gives I = 0. This completes
the proof of nonattainability. m]

{ii) Suppose that an n x n array consists of the signs + and —. It is
allowable to change all the signs that lie on the fields of the same row,
or the same column, or on the felds of a “slanted row” parallel to one
of the two diagonals (such a “row” is also formed by each of the corner
fields of the array)}. For each of the three arrays in Figure 12, where n =4,
5, respectively 6, decide whether upon repeating the operations described
above one can transform them into arrays consisting of n? copies of the +

sign.

- — + + + + + +
+ + - + N + + + + + +
SR I DA I [ S
+ + + + + o+ - s + + + + + +
+ + + + n H + + + + + -
A * + F 4+ + 4+

Figure 12

SoLUTION. We change the signs in the arrays to the numbers +1 and -1
and denote them in the obvious way by aj, 1,j € {1,2,...,n}. Then the
product of some factors a;; is an invariant of the transformation if and only
if any row, column, or slanted row contains an even number of the factors
in question. Try to find such a product for n = 4; you will notice that it is
unique and has the form

I = ajpa13a21024031835042043.

Since for the first array in Figure 12 we have I = -1, it cannot be trans-
formed into an array with the value J = 1. For the other two arrays it is
not necessary to look for further invariants; it suffices to consider the same
invariant constructed for their 4 x 4 subarrays placed at their lower right
corners. Since in both cases we have again I = —1, it is not possible to
transform these two to the desired arrays without minus signs. o

(iii) In the set X, of all sequences ¢ = (a),ay,...,a,) consisting of the
numbers 0,1, the following transformation is allowed: In each sequence
(ay,-...,a,) we may interchange any two neighboring triples of elements
(@i, @i41,@i42) and (@i43, 8iva,8is5), where I < § < n—>5, that is, transform
it to the sequence

o= (all co 1 @im1y B3y Qigedy Qo459 B4y Bip1, B2, 054 d, - - - :aﬂ)'

Show that from the set X,, one can choose at least p sequences that are
pairwise nonattainable by the transformation described, where the number
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p is given by
(k+1)° ifn =3k,
p=C(k+2)(k+1)? ifn=3k+1,
(k+22%k+1) ifn=3k+2

SoLuTioN. For each a = (ay,as,...,8,) € X, we set

Si@y=a;+a4+er+---,
Safa) =az+as+ag+---,
Ss{a)=az+ag+ag+---.

The sums Sy, Sz, 53 are clearly invariants, since any allowable interchange
of triples causes only the switching of two neighboring summands in each of
the sums S;. In the case n = 3k for any one of p = (k+1)? triples of numbers
chosen from {0,1,...,%} we can easily find a sequence a € X, such that
Si{a) = a; (i = 1,2,3), so these p sequences are pairwise nonattainable.
Similarly, the appropriate number p of sequences can also be found in the
cases n = 3k + 1 and n = 3k + 2, where the first, respectively both, of the
oumbers o, @z can also take on the value & + 1. o

(iv) Suppose that the number —1 is written on the corner A; of the reg-
ular 12-gon A;A;... Ays, and the other corners have the number +1. It
is allowed to simultaneously change the signs of the numbers at six arbi-
trary neighboring corners. Show that no repetition of this rule can make
the corner A; to be —1 and the remaining corners +1. Also prove the same
assertion for the case where not six but four signs of the numbers at any
four neighboring corners can be changed.

SoLuTION. Let ax be the number written on the corner A; (1 < k < 12).
In the case of changing the signs of the numbers on six neighboring corners
the sign of each of the products ajay, azag, asag, ..., agajz will change,
Therefore, I = (azas}(aaag) is an invariant that in the starting position
has the value I = 1. Hence no number of operations can lead to a; = —1
and a3 = a3 = ag = 1, since this would mean that J = —1. In the case of
changing the signs on four neighboring corners, the signs of all of the prod-
ucts a)asayg, €¢2as210, 8367411, 3483813 will change, and’the desired assertion
follows from considering the invariant I = (a1asa9)(azaray;). o

5.4 Ezercises

(i) Suppose that in a 4 x 4 array consisting of the signs + and —
it is allowed to change all the signs in any row or in any columa.
Determine whether the arrays in Figure 13 are mutually attainable.

g g

—_—
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+ |+ 1
+ 1+
|
I+

4+
+4+ 1+
+
|+

I+ 1+
I+ 1+

Figure 13

(ii) Does the assertion from 5.3.(iv) hold if the allowable operation con-
sists of changing signs of the numbers in any triple of neighboring
corners?

(iii) Answer the question from (ii) for changing sigos in the corners that
form an isosceles but not a right triangle.

(iv) Let M be an arbitrary finite subset of R x R. If (x,y) € M is any
pair such that (z + 1,y) ¢ M &nd (z,y + 1) ¢ M, then we may
exchange the pair (z,y) in the set M with the two pairs (z 4 1,y)
and (z,y + 1). By repeating these operations, can an initial set
M = {{1,1}} be changed into a set M’ that is such that z+y > 4
whenever (z,y) € M'?

*(v) A generalization of 5.3.(iv). Suppose that the numbers a;,as,.. .,
@n, where ax € {—1,1}, 1 £ k < n, are written next to each
other on the corners of a regular n-gon. For a fixed integer p
(1 < p < n) it is allowed to simultaneously change the signs of
the numbers a; in any p neighboring corners. To the n-tuple of
numbers (e;,az,...,8,) we associate the d-tuple (s, s2,...,34),
where d is the greatest common divisor of the integers n and p,
and where s¢ = ax@r4dCii2d°  Bkin—d (1 < k < d). Show that
two n-tuples {(a;,as,...,a,) and (a},a),...,a}) are mutually at-
tainable through repeated use of the operation described above if
and only if either sy = s}, (1 Sk <d}or o = -3, (1 <k <d)
and the integer & is odd. (The numbers s} are formed from the aj,
in the same way as the numbers s, are formed from the a.)

5.5 Invariants in Residue Classes

For solving problems concerning operations on integer configurations it is
often useful to find invariants with values in the set {0,1,2,...,m — 1} of
residue classes with an appropriately chosen modulus m. We illustrate this
with the following five examples.

(i) Suppose that a 10 x 10 array consists of integers, and we are allowed
to choose any 3 x 3 or 4 x 4 subarray and increase every number in it by
1. Is it always possible to appropriately repeat this operation such that we
obtain a new array all of whose numbers are divisible by 37

Sorution. I ry,r9,...,7r1p are the row sums of the array, then none of
the allowed operations with a 3 x 3 subarray changes the remainder that the
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sums r; leave upon division by 3; an operation with a 4 x4 subarray changes
exactly four of the sums r;, which are inereased by 4. Among four sums
changed in this way there is exactly one of the sums ry, rg, and therefore
exactly three of the other sums. Hence as an invariant we can take the
remainder upon division by 3 of the sum

I=r+rg+rs+rs+re+rr+ro+rg.

If we choose an initial array such that, for example, 1y = 1 and r; = 0
(1 < i < 10), then it is not possible to repeat the allowable operations in
such a way that the sum 7 is an integer multiple of 3, which means that
not every number in the final array can be a multiple of 3.

We note that in solving this problem it was impossible to use the ap-
proach of 3.9.(iv), since the number of subarrays that can be changed
is

(10-3+1P+ (10 -4+ 1) = 64 4 49 = 113 > 10°. D

(ii) In the four-element set M = {(0,0),(1,1),(~3,0),(2,-1)} it is al-
lowed to replace any pair {a,b) by the pair (a + 2¢,b + 2d), if (c,d) also
belongs to M. Decide whether it is possible to obtain the four-element set
M' = {(-1,2),(2,-1),(4,0),(1,1)} through an appropriate sequence of
such operations.

SoLuTioN. We note that 3 | (z —y) for each pair (z,y) in the original set
M. This property is an invariant, since the number

(a+2)—(b+2d)=(a—-b) +2{c—d)

is a multiple of 3 if both numbers 2 —b and ¢—d are. Therefore, no sequence
of operations will lead to the new pair (4,0). o

(iii) Suppose that several ones, twos, and threes are written on a black-
board. It is allowed to erase any two different digits and adjoin the
remaining third digit (thus the number of digits on the blackboard is de-
creased by 1). Show that if after a number of such operations one single
digit remains on the board, then this digit is determined by the original
situation, that is, it does not depend on the particular sequence of the
allowable operations.

SOLUTION. The situation in which there are exactly p ones, g twos, and
r threes written on the blackboard will be denoted by the triple (p,q,7).
An allowable operation is then the change of (p,q,7) to one of the triples
(p~1,9-1,r+1),(p-1,q+1,r-1), {(p+1,g— 1,r — 1). We note that
in each of these operations the parities of all three numbers p, ¢, r change.
Therefore, the parity of each of the sums

s1=p+q, s2=p+r, and s3=q+r

is invariant. Let us write down the values s; for the states where one digit
remains on the blackboard:
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(p,g.7) | 81 | 32 | a3
(1.0,0) 1 1 D
L) |1 ]o]1
oo Jo]1]1

Any two of these three states differ in the parity of two of the numbers s;,
and can therefore not be the result of the same starting position. o

(iv} Along the circumference of a circular park there are n linden trees,
on each of which there is one lark. From time to time two of the larks fly
simultaneously to a neighboring tree, but in opposite directions. Decide
whether it is possible that at some time all the larks end up in one tree.

SOLUTION. We number the trees consecutively, in one direction, by
1,2,...,n. If nis odd, n = 2k 4 1, then the desired situation can oc-
cur, for instance, when successively the pairs from trees 2 and 2k+1, 3 and
2k, 4and 2k -1, ..., k+1 and &k + 2 all fly to linden tree 1.

We use the method of invariants to show that for even n such a situation
can never occur. Suppose that at some moment exactly p; larks sit on tree
J (1 < j < n). Then we consider the sum

S=1.pl+2.p2.|....+n.pn.

When a lark flies to the neighboring tree in the direction of the numbering,
then the value of § either increases by 1 or decreases by n — 1; upon flying
in the opposite direction, the value of § either decreases by 1 or increases
by n — 1. Therefore, when a pair of larks fly to their new trees in an
allowable fashion, then the change of S is equal to 0, i, or —n. Therefore,
the remainder of the number § upon division by » is an invariant. In the
starting position the value

S=1.-142-14---4n-1=n.231

is not divisible by n (the number *}! is not an integer, since n is even); on
the other hand, in the position where all larks sit on linden tree j we have
8§ = n . j. This completes the proof. m]

(v) In the sequence 1,0,1,0,1,0,3,5,0,.. ., each term (beginning with the
seventh) is equal to the last digit of the sum of the preceding six terms.
Show that in this infinite sequence the numbers 0,1,0,1,0,1 will never
occur in this order.

SoLuTioN.  Consider the mapping that associates to the sextuple (x;, z2,
.+, zg) the sextuple (z3,x3,...,T¢,77), where 7 is the final digit of the
sum I + &z -+ -+ + . An invariant of this mapping is the final digit of
the expression

I(I],.‘Eg,...,.’l.‘ﬁ) = 21 + 4x3 + 613 + 8z, + 10z5 + 12z4,
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since the difference

Hza,za,...,27) — I(z1,22,. .., Tg} = 1027 + 2(z7 ~ {31 + 22 + - -- + Z§))

is, by definition of the digit 2, divisible by 10. It remains to add that
{1,0,1,0,1,0) =18 and J(0,1,0,1,0,1) = 24;

the first sextuple is the starting one, and the second is the one whose
nonattainability we wanted to show. a

5.6 Ezercises

{i) On a magic tree there are 25 lemons and 30 oranges. The gardener
picks two fruits every day, but the following night one new fruit
grows on the tree: An orange (respectively a lemon) if the fruits
picked during the day were the same (respectively different). What
fruit is the last one to grow on the tree?

(i1} Peter tears a sheet of paper into 10 pieces, then he tears some of
the pieces into 10 smaller pieces, etc. Is it possible to get exactly
1991 pieces in this way?

(iii) In the decimal representation of the number 2!%! we remove the
first digit (on the left} and add it to the remaining number. We
keep repeating this operation until we obtain a ten-digit number
A. Show that at least two of the digits of A are the same.

(iv) A generalization of 5.5.(iv). We consider the more general initial
situation where p;,ps, ..., pn larks, in this order, sit in the linden
trees, where py +pa+-+-+pn = N > 1. Show that if the same rules
as before apply to the pairs of larks, then the state (p1,p2,...,pn)
can be changed to (p},ph, ..., p}) if and only if p}+p5+- - +p, = N
and p; + 2pa + -+ + npy = pi + 205 + -+ - + np), (mod n).

(v) We return to Example 5.5.(iii), using the notation from its solution.
Show that if we can carry out at least one operation on the original
position (p,g,7), then upon repetition we can always get exactly
one of the four positions (1,0,0), (0,1,0), (0,0,1), {(2,0,0).

*(vi) Suppose that the numbers 1,2,...,n are written on a black-
board, each number exactly once. We may choose any two of these
numbers e, b, erase them, and write the number |a—b| on the black-
board. If we repeat this operation {n — 1) times, a single number
will remain on the blackboard. What can its value be?

*(vii) Given k,m > 1, on the set MX of all k-tuples (z),z2,...,T&)
of numbers chosen from {0,1,...,m — 1} we consider the trans-
formation (z,za,...,zx) — (T2,73, ..., Tk, Tg4+1), Where Tpq =
Ty + T2 + --- + z (mod m). Show that an invariant of the form

Iz, %0, Tk) =1y +caza +--- + g (mod m)
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with constants ¢y, ez,...,cx € {0,1,...,m — 1} exists if and only
if the numbers k& — 1 and m are not relatively prime. {Recall that
every invarjant is & nonconstant mapping, and therefore ¢; # 0 for
some i € {1,2,...,k}.)

5.7 The Method of V@_t_z'_o__ni

For studying iterative sequences of a relation (2 on X we will see that in
addition to invariants (see 5.3} a more general mapping J: X —+ K will be
useful, where the values upon iterating the elements of X change monoton-
ically. Thus we call the mapping J: X —+ K a nonincreasing (respectively
decreasing) valuation of the relation § if for any pair (z,5) € Q, z # p,
we have J(z) > J(y) (respectively J(x) > J(y)). Similarly, we define a
nondecreasing, respectively increasing, valuation; in all cases K is one of
the sets of numbers R, Ny, Z with the ususl ordering.

If we notice, for instance, that a certain relation has a nonincreasing
valuation .J, then for any iterative sequence I,,3,... we have

J(x) 2 Hz2) > ---

which often makes it possible to solve the periodicity problem (the condi-
tion J(z1)} = J{z2} usually leads to a description of all possible elements
71). If furthermore J is a decreasing valuation with values in Ng, then in
each infinite iterative sequence z;,3,... there exists an index n such that
J(zn) = J(Tayi) = ---, that i8, £, = Tp4g = ---, since each nonempty
gubset of Ny contains its smallest element; this would solve the finiteness
problem, respectively the stabilization problem (see the introduction to
Section 3).

The problems solved here with the method of monotonic valuations will
be divided between the two subsections 5.7 and 5.9.

(i) From the quadruple of real numbers (a,b,e,d) we form the new
quadruple

(a—bb—c,c—d,d—a),
and keep repesating this transformation. Show that, as long as the original
quadruple does not satisfy a = b = ¢ = d, after a certain number of steps
we obtain a quadruple that contains at least one number larger than 108.
SoLuTioN. We consider the nonnegative valuation

J(a,bc,d) =a® + b2+ +d®

and denote by (ay, bn, ¢, dn) the quadruple that is obtained from the orig-
inal quadruple after n steps. It is easy to see that a, + b, +¢,, +dn = 0 for
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alt n > 1, so for each such n we can write

J(@nt1)bns1: a1, dnsr)
= (an - bn)2 + (bn - c'r'l)2 + (cn - dn)2 + (dn - an)2
= 2J(ﬂmbm Cry dn) - z(anbn + bycn + cpdy, +dnan)
= 2J(@n, by cn, dn) — 2(an + cn)(ba + dn)
= 2J(an, bn, cn,dn) + 2(an + Cn)z = 2J(an, bn, cq, dp).

This gives the estimate J{an, bn, cn,dy) = 2"~ J(a1,b1,¢1,d)) foralln > 1.
Therefore, unless J(a,b;,¢),d;1) = 0 (which occurs only whena=b=c =
d), it means that J{an,bn,cn,dn) = a2 + b2 + 2 + 42 > 36 102 for
sufficiently large n; but then at least one of the numbers |a,|, [bal, leal, |dnl
must be greater than 3 - 10°. However, since a, + b, + ¢, + d, = 0, we
would obtain from the assumption max{an,b,,cn,dn} < 10° the bound
min{a,,bn,Cn,dn} > —3- 10%, and thus max{ja,|, [bal, al, |da|} < 3 - 105,
which is a contradiction.

It is worth remarking that the defining transformation is a linear operator
R* — R, s0 the problem could also be solved in a standard way by finding
the eigenvalues and eigenvectors of the corresponding 4 x 4 matrix. (]

(ii) Let a sequence of integers y,x3,...,T, be given. If i, j are arbitrary
indices such that z; — z; = 1, then we may replace the terms ;, z; by the
numbers r; + 1, £; — 1 (in this order). Show that only a finite number of
repetitions of this transformation is possible.

SoLuTioN. The integer valuation J = z3+z3+- - -+z2 increases by 4 with
each transformation, since (z;+1)?+(z; —1)?~ (27 + 23) = 2(zi~z;)+2 =
4. If we set m = min{z;,zs,...,z.} and M = max{z,,zs,...,z,}, it
suffices to show that for any attainable n-tuple (y,...,y) we have the
bounds m —3n < y; < M + 3n for each i = 1,2,... ,n. (These bounds
imply that the valuation J is bounded on any iterative sequence.) Our ap-
proach is based on the following observation. For each k € Z we have that if
{z14- -z l{k—1,k, k+1} £ 0, then also {y1, ..., yu}N{k=1,k, k+1} £ 0
for every n-tuple (y,...,ya) that is attainable from (z,,...,z,). There-
fore, if we suppose that the n-tuple (g1,...,yn), which is attainable from
(z1,...,%q), satisfles y; > M + 3n for some i {1,2,...,n}, then every
integer a, M < a < y;, has to be an element of some n-tuple occur-
ring in the iteration. Hence the set {yi,...,y,} must have a nonempty
intersection with each of the (r 4 1) disjoint sets {M — 1, M, M + 1},
{M+2,M+3,M+4}, ..., {M +3n—1,M +3n, M +3n + 1}, which is
a contradiction. Similarly, one also excludes the case y; < m — 3n for some
i€ {1,2,...,n}. This completes the proof. m]

(iii) Suppose that n real numbers, n > 4, are written on the circumference
of a circle. If four adjacent numbers a, b, ¢, d satisfy (a — d)(b— ¢) < 0, then
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we may interchange the places of the neighboring numbers b, c. Show that
only a finite number of such transformations can be carried out.

SoLuTioN. We first remark that even though there are only finitely many
atrangements of n numbers along the circumference of a circle, it is not so
clear why a sequence of the transformations described cannot be infinite
{e.g., periodic). We note that we have

(a — d)(b - ¢) = (ab+ cd) — (ac + bd),

where within the first parentheses on the right we have the products of
the pairs situated at both ends of the quadruple (e, &, ¢, d), and within the
second pair of parentheses we have the same producis for the quadruple
(@, ¢, b,d), which is obtained from the original quadruple by switching the
places of the numbers b,c; furthermore, this center pair is the same in
both quadruples (up to order). It is therefore convenient to denote the
numbers, consecutively in one direction, by x;,2,,...,%, and to consider
the valuation

J =22 4+ 2023+ -+ T 1T + TaT1,

which is increasing for the allowable operations. Since for a given n-tuple
there can be only finitely many values of J, after a certain number of
steps J will attain a maximal value, and further transformations are not
possible. O

{iv) Given a triple a, b, ¢ of integers, we form a new triple
la—8], |b—c], {e—al,

and keep repeating this transformation. Show that after a certain number
of steps we reach a triple containing the number 0. Does this assertion also
hold in the case where the initial numbers g, b, ¢ are real?

SoLuTiON. We assume that there is an initial triple of numbers a,b,c € Z,
from which after any number of steps we always obtain triples of nonzero
(and thus positive) integers. We may clearly assume that the integers a, b, ¢
are also positive (otherwise, we delete the first triple). Let us set

J =max{a,b,c} and J' =max{la-"b|,|b—cl|c-al}.
For any positive numbers z, y we have
|z - y| = max{z, y} — min{z,y} < max{z,y},

80 we immediately obtain J' < J, that is, J' < J — 1, since the values of J
lie in Ng. Hence after n steps we obtain from the triple |a, b, ¢] the triple of
positive numbers [a,,, by, c,] for which

0 < max{an,bn,cn} < max{a,b,c} —n
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holds, but this is a contradiction for n > max{a,b,¢}. This proves the
assertion in the case of integers a, b, c.

In the case of real numbers a,b,c we base the construction of a coun-
terexample on the following consideration. If there exists a triple of positive
numbers (a,b,¢| that is transformed into the triple [pa,pb,pc] for some
p > 0, then after an arbitrary number n of transformations this triple
turns into the triple of positive numbers [p"a, p™b, p™c|. Hence we look for
numbers 0 < a < b < ¢ such that

b—a c¢-b c¢—a

a b e
The reader should verify that these equalities hold if and only if b = (p+1)a,
¢ = (p + 1)%a, where p satisfies the equation p? + p — 1 = 0. This equation
has the positive root p = '—';J/—g-; if we choose @ = 1, then we obtain a
triple of the form {1, 15, 3—‘9@] . Now verify by direct computation of the

iterations that this triple has the desired property: No number of steps will
give a triple that contains a 0. a

=p>0

5.8 Ezercises

(i) Suppose that n positive integers are written on the circumference
of a circle. Between all pairs of neighboring integers we write their
greatest common divisor, then we delete the original numbers and
repeat the process with the new n-tuple of integers. Show that
after a certain number of steps we obtain an n-tuple of identical

integers.
{(ii) Suppose that 100 numbers are written on a blackboard: 10 zeros,
10 ones, ..., 10 nines. We may choose any two of these numbers

and replace both of them with their arithmetic mean (for example,
the pair [3,6] may be changed to [£, 2]). Determine the smallest
positive number that can appear on the blackboard after a sequence
of such operations.

(iii) A sequence z,,z3,...,%, is formed with nonzero real numbers. We
are allowed to choose any two of its terms z;, z; (i # §) and replace
them by z; + 3, z; — 3, in this order. Show that by iterating this
transformation we can never obtain either the original sequence or
a sequence that differs from the original one only by the order of
its terms.

{iv) From a quadruple of real numbers (a, b, ¢, d) we form the quadruple
(a+b,b+¢c,c+d,d+a}, and keep repeating this process. Show that
if at two different times we obtain the same quadruple of numbers
(possibly in a different order), then the initial quadruple was of the
form (a, —a, a, —a) for an appropriate a € R.
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(v} A generalization of (iv). From an n-tuple of real numbers a;, as, ...,
an, we form the n-tuple (a1 + a,a2 + a3,...,2, + a1). Does a
conclusion similar to that in (iv) hold for every even n > 47

*{vi) A generalization of 5.7.(i). For a fixed n > 6 we consider iterations
of n-tuples from R" under the transformation

(Il$:t21"'|xﬂ} =3 {Il — T2, T2 —T3,...,Tn _Il}'

We assume that the initial n-tuple of real numbers does not satisfy
I) = T3 = -+ = 2,. Do we always reach, after a certain number of
steps, an n-tuple containing at least one number exceeding 1057

{vii) Find all triples of real numbers that have the property that after
a certain number of the transformations described in 5.7.(iv) the
initial triple is obtained again.

*(viii) For a fixed m > 3 we consider the mapping

(a1,a2,...,am) = (Jag — a1],]as -a'-'la-“alam —am-1|,|a: — aml)

defined on the set R™. Show that an initial m-tuple can be chosen
in such a way that in the sequence of its iterations no m-tuple
contains the number 0.

*(ix) Suppose that in the initial m-tuple from (viii) all the numbers
ay,as,. .., 0., are integers. Show that if m is a power of 2, then the
iterative sequence contains an m-tuple consisting only of zeros.

{x) Embedded into a horizontal straight line there is a finite number
of arrows (as, for example, in Figure 14}, some of which point
to the left, and the remaining ones to the right. We choose any
two neighboring arrows that point to each other (in Figure 14, for
example, the fourth and the fifth from the left) and change the
directions of both. Show that this transformation can be repeated
only several times, and that the final state (where further changes
are no longer possible) is determined by the initial situation; that is,
it does not depend on the order in which the changes were carried
out. Furthermore, explain why the total number of changes also
does not depend on the order of carrying them out.

Figure 14

*(xi) Suppose that n piles with a;,ay,...,a, pebbles lic on a table, We
may choose any two piles and from one of them move as many
pebbles to the other as there were already in this second pile (thus
the number of its pebbles is doubled). Find a necessary and suffi-
cient condition on the numbers a,,ay, . .., a, that makes it possible
to get all pebbles onto one pile after a finite number of steps,
(Hint: Consider the change of the greatest common divisor d of all
numbers ai,az,...,a5.)
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*(xii) Suppose that an arrangement a;,e;,...,a, of the numbers
1,2,...,nissuch that a; # k forsome k € {1,2,...,n}. We choose
any such k and move the number a; to the axth position in the
arrangement a;,as,...,a,. 10 be more exact: If a; = ¢, then the
new arrangement in the case ¢ < k has the form

B),82y. 0y Bc14C, By Beglyes ey Q1,041 BEg2y 05y Bny (32)
while in the case ¢ > k it has the form

@1,022;.. Q1,85 41, Bk42y -+ -y By €3 Qe 1, e g2y - -+ Bne (33)

Show that after a finite sequence of such changes we obtain the
arrangement 1,2,...,n (when no further changes are possible), no
matter how the numbers a; to be moved are chosen.

5.9 The Method of Valuations — Contlinuation

We now consider three further, and somewhat more difficult, problems
that can successfully be solved with the method of monotonic valuations,
as introduced in 5.7.

(i) Suppose that a sequence of 2n + 1 integers has the following property:
If we remove any of its terms, then the remaining terms can be divided
into two n-element sets such that the sums of the numbers in both of them
are the same. Show that every such sequence is formed of 2n + 1 identical
numbers.

SoLuTioN. Each term of the sequence under consideration differs from
the sum of all 2n -+ 1 terms by an even number. This means that the
whole sequence consists either exclusively of even or exclusively of odd
numbers. Thus we have either a sequence of the form 2ay,2ay, ..., 24241,
or a sequence of the form 2a; — 1,2a2 — 1,...,2az,43 — 1; in both cases
we may instead consider the sequence of integers a;,aq,...,agn+1- This
“reduction” preserves the original property of the sequence, since for any
two n-element sets of indices I, J C {1,2,...,2n+1} we have the identities

2= 2,y > (Qa-1)=) (2-1),

) jed i€l Jjed

if and only if

ZG.‘ = z aj.

i€l JEF
Since the inequalities |x| < |2x| and |z| < |2z — 1| hold for all = € Z,
the above reduction does not increase the sum S of absolute values of all
2n + 1 terms of the sequence. Furthermore, the value § is & nonnegative
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integer, and therefore we obtain after a certain number of steps a sequence
of integers by, b, .. ., byn1, such that the sum S = [by|+ |ba| +- - + |bon41)
does not change upon further reductions. Then for all i € {1,2,...,2n+1}
we have either |b;| = |2b;| (that is, b; = 0) or |b;| = |2b; ~ 1| (that is,
b; = 1). However, the numbers by, ba,. .., ban4 have the same parity, as we
have already seen, and therefore we have either b, =0 (1 <i<2n+1) or
bi=1(1<i<2n+1). Now it is easy to verify by induction that all the
preceding (2n -+ 1)-tuples also consist of identical numbers. D

(ii) From an arbitrary n-tuple of integers a,,ag,...,6, we form a new
n-tuple

QETEL S sgi sty 2 o2
and keep repeating this transformation. Find all possible initial n-tuples if

you know that all n-tuples that occur successively are formed exclusively
of integers.

(a;-i-az ap +ag 1 +a, a,.+a|)
L

SowuTioN. If ay = as =--- = ay,, then clearly, after each transformation
we obtain the same n-tuple of identical integers. However, let us not jump
to the premature conclusion that these are all the desired n-tuples. For
instance, in the case where n is even, (¢, d, ¢, d, ..., ¢, d) also has the desired
property, where ¢ and d are any pair of integers with the same parity. Let
now (ay,ay,...,a,) be any n-tuple of integers with the desired property,
and let

M = max{ay,as,...,8,} and m=min{a,ay,...,a,}.

Since M (respectively m) is & nonincreasing (respectively nondecreasing)
integer valuation of the given transformation and since M > m, this means
that the values A and m on our infinite iterative sequence do not change
from a certain place on (say, starting with the iteration (by,bg,...,b,)).
But we have an equality

mx{bwbz ba + b3 by + by

2 7 2 Vo

if and only if in the sequence by, by, .. ., by, by the number M’ occurs in some
two neighboring places. If we repeat the same argument for the following
iterations, we obtain by induction on k > 1 the following assertion: In the
infinite periodic sequence

blabﬂr'-'lbﬂvbl|b2|"'|bn!'-'

the number M’ occurs in some k + 1 neighboring places. This is possible
forall £ > 1only if by = by = --- = b,,. If the n-tuple (by,bs,...,b,) is not
the initial one, then the preceding iteration {c,ca,... yCn) must satisfy

} = mm‘{blnbla'“vbﬂ} (= M’)

ct+ez e+ thtC1

2 2 2 '
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that is, ¢; =c3 =c5 = +-+ and ¢p = ¢4 = ---. From this it follows in the
case where n is odd that ¢) = ¢p = --- = ¢, (and thus clearly the initial
n-tuple consists of n identical numbers). For even n we then have

(c1,¢2,---,en) = (o, d,e,d,...,cd),

where ¢ and d are integers of the same parity. Finally, we prove that in the
case ¢ # d the n-tuple (¢, ¢2, - . ., £, ) is the initial one; that is, there do not

exist integers ey, €z, - . ., &, simultaneously satisfying the identities
el+82_83+(!4_”. e,._1+e,,_
R 2
and

T2 2 T2 T
Indeed, these identities imply
nc=e tea+ez+es+- - +eqa +eq=nd,
and thus ¢ = d, which is a contradiction. u]

(iii) Suppose that the integers T),T2,...,Tn are successively written on
the corners of a regular n-gon, where

S=z+T2+---FxTq >0.

if for some k € {1,2,...,n} we have xx < 0, we may carry out the following
transformation: The numbers x4, zj, Tx4+; are changed to zg-1 + 2,
—Tiy Thwl + Tk, i this order; here we set zg = z, and T4 = 3. We
may repeat this transformation with the new n-tuple, etc. Show that in
the cases n = 3 and 1 = 5 only a finite number of transformations can be
carried out, that is, after a certain number of steps we obtain an n-tuple of
nonnegative integers. (The case of general n and real values z;,x3,...,%Zn
is discussed in Section 5.10.)

SoLuTioN. First we note that
{Th-1 + k) + (@) + {Trog1 +Tk) = Tpy + T + Trya,

so the sum § is an invariant of the transformation in question. In the case
n = 3 it is not difficult to come up with the apprepriate valuation

J(zy, 22, 23) = 27 + 23 +23; (34)

in view of symmetry it suffices to consider a change of J for k = 2. Let
therefore 29 < 0; the transformation gives
J(x1 + T2, —22, T3 + T2) = (T1 + 221 + (—22)* + (z3 + 32)°
= (21 + 73 + 23) + 2z2(z1 + T2 + Ta)
= J(I].Ig,za) + 2:1723 < J(:c.,::g, 33).
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Hence J is a decreasing valuation; since by (34) the value of J is a non-
negative integer, this completes the proof of the finiteness assertion in the
case n = 3.

For n = § the situation is more complicated; we can convince ourselves
that a direct analogue with (34) would not work. Guessing an appropriate
valuation J(xy,z3,...,25) would require considerable imagination; how-
ever, if we assume that J will be a quadratic form, it is possible to use the
method of undetermined coefficients, namely, to search for a J of the form

J{zy, 20,23, 24,25) = p (:cf +:r§ +m§ - J:i +z:§)
+ g(z1T2 + Tazg + TaT4 + 245 + zsT1) (35)
+ r{z1 T3 + Toxq + TaTs + 2471 + TsT2)
with unknown constants p,q,r. The coefficients in (35) are chosen such
that J is an invariant with respect to those permutations of the quintuple
Z1,%3,...,Ts that do not change the situation of the problem; furthermore,
this reduces the study of the change to J again to the case k = 2. A routine
calculation now gives
J(.‘E]_ + T2, —T2,T3 + T, Id’-IB) - J(xlv-r?rzalxth 15)
= 2p (2122 + 23 + 2223) + ¢ (—22172 — 225 — 27273 + 2224 + Tazs)
+ 1 (2122 + 23 + 2ox3 — TaTs — ToTs)
= 23[(2p - 29 + r){(z1 + 22 + 23) + (¢ — r){z4 + z5)].
It is clearly convenient to require that 2p — 2¢+r =qg—r = ¢ > 0; the
term in brackets will then be equal to
czr+xz+zat+zy+35)=65>0,
which together with the condition z; < 0 shows that J is a decreasing
valuation. The assumptions on the numbers p, g, r can be rewritten as
r+3c

and g=r+¢,

where the numbers r and c are still arbitrary. By substituting into (35) and
rearranging, we get

r+ec
J(z1,T2,T3,24,25) = T(zl + T3 + T3 + 74 + 25)°
c
+3 [(z1 — 23)* + (22 — 2a)* + (22 —~ 75)% + (T4 — 71)2 + (5 — 22)7] .
From this we see that the value J is a nonnegative integer if both numbers

are even, ¢ > 0, and r > —c. The easiest valuation is obtained for ¢ = 2
and r = —2:

J=(z; - :l::;)2 +(x2 — 1’4)2 + (z3 — :1:5)2 +{z4— .’1’:;)2 + (:!:5 - Ig)z.

This completes the proof for the case n = 5. a
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5.10 FEzercises

(i) We now weaken the property of the sequence in 5.9.(i); namely, we
no longer require the two sets with equal sums of elements to have
the same number of elements. Does the conclusion still hold that
all such sequences consist of identical numbers?

The following exercises continue the study of the transformation from
5.9.(iii) under the initial condition § > 0.

(ii) Find a decreasing valuation with values in Ng in the case n = 4.

*(iii) Show that if we disallow the transformation of the triple zx—1,Zx,
Ty for a fixed k, for instance k& = 1, then only a finite number
of transformations can be carried out, even if the initial numbers
T3,T2,...,2Ln are real (and not necessarily integers).

*(iv) Find a decreasing valuation with values in Ng in the case n 2 6.

*(v) With the help of (iii) and the valuation from the solution to
(iv), prove the assertion concerning finiteness of the number of
transformations in the general case n > 6, ,72,...,Zn €R.

(vi) From the initial numbers z;,%2,...,&n € R set up a formula for
some constant K with the following properties: The absolute value
of each of the n numbers that occur in the corners of the n-gon
after an arbitrary number of transformations does not exceed the
number K.

5.11 Problems on Piles of Pebbles

To finish this section, we return to a problem that we used in 5.1 to intro-
duce the general idea of iterations. We will now consider the general initial
situation where n pebbles, divided into several piles, lie on a table. Let us
recall the individual transformations: From every pile we take one pebble
each, and form a new pile with these pebbles.

It is important to note that in view of the finite number of all possible
distributions of n pebbles into piles, after a certain number of steps the
situation will necessarily become periodic. However, it is not clear how
long the period will be, or whether any initial state will eventually lead to
the same “universal” state. We will now proceed t6 solve these problems.

Let the positive integers @) > az > +-- > a,, denote the numbers of
pebbles in the individual piles, so clearly, 1 < m < nand a;+as+: - +8m =
n. We note that the number m of piles in general changes in the course of
the transformations. Nevertheless, we consider the valuation

J= i (af + cxar), (36)
k=1
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where ¢, cz,... are constants that we will choose in a moment. After car-
rying out one transformation, the distribution (ai,es,...,a,,) changes to
(mya1-1,a2—-1,..., ay —1), and if we substitute the new numbers into
J in exactly this order, we obtain the new value

m
F=mP+em+ 2 [(ﬂk - 1)2 + cppr(ag — 1)] .
k=1

We note that if ax = 1 for some k € {1,2,...,m]}, then the corresponding
pile disappears; but this clearly has no influence on the calculation of the
value of J'. We choose the numbers c; in such a way that the equality
J = J holds identically in the variables a;,as, ..., 2m. We can rewrite this
a8

m m
Z(ck +2=—apular=mt4tm-— Z(Ck+[ -a), 3n
k=1 k=1

where the left-hand side does not depend on a;,a3,...,an if cx+2—cryy =
0, that is, if cg = ¢ + 2(k — 1) for all k£ > 1. But then the right-hand side
of (37) is equal to zero, as the reader should verify, which then guarantees
that J = J'. If, for instance, we choose ¢, = 2, then we obtain ¢, = 2k for
all k, and the definition (36) takes the form

J=Y"(a} +2kay). (38)
k=1

We have agreed that for the computation of J the numbers of pebbles are
substituted into J in their nonincreasing order. However, the implication

20228y = m2a-12---2ap—-1

does not hold in general. If we have to change the arrangement of m,a; — 1,
.. y0m—1 into the nonincreasing one, then the value of J decreases because
of the choice of the coefficients cx. Therefore, J is not an invariant, but only
a nonincreasing valuation. However, each value of J is a positive integer,
and therefore only a finite number of changes is possible. Hence after a
certain number of transformations the numbers a),a,...,an, of pebbles
in the piles must all satisfy the inequalities m > ax —1 (1 € k < m). We
have thus proved the following assertion:
After a certain number of transformations the number of pebbles in any
pile is always at most one more than the number of piles at a given moment.
As an illustration we show in Figure 15 an infinite jterative sequence in
the case n = 8 with initial numbers of pebbles [5,1,1, 1]. If we compare
Figure 15 with Figure 11, we see that in the case n = 8 the situation is
different from n = 6: There is no “final” state that remains unchanged by
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further transformations and is reached after & certain number of steps from
any initial situation.
(5,1,1, 1}—[4,4]—[3,3,2]—I[3,2,2, ]

[4,3,1]—[4,2,1,1]
Figure 15

In closing, we show that such & final state exists not only for n = 6, but
also for every n of the form n = ﬂ-d.‘—,ﬂ)-, where d € N, and that this state
has the form [1,2,...,d]. (An analysis of the situations for the remaining
velues of n is described in Section 5.12.)

So,let n =142+ 4 d. We choose an arbitrary initial situation and
let mqg, my, ma, ... denote the numbers of piles that successively appear on
the table; we then write the numbers of pebbles in the piles, always in &
nonincreasing order:

ao(1) = ap(2) = -- - 2 ag(my),
a1(1) 2 a1(2) = --- 2 az(my),

az(1) = ax(2) 2 --- > az(my), (39)

According to the preceding result we may ignore the first few iterations
and therefore assume that we have

ai+1(1) =m; 2 a;(1) - 1, ajni(k} =a;(k -1} -1, (40)

where 2 < k < m;y and j € No. Here the number m; is determined for
each j > 1 by the relation

m; =1 +max{k € {1,2,...,m_,-_;} 3 aj_;(k) > 1}.

Since for a fixed n there is only a finite number of distributions of n pebbles,
in the system (39) there is only a finite number of different chains that
are repeated from & certain row on. We may therefore assume that this
repetition begins with the first row and that the number my is the largest of
the numbers mg, my, ma, .. .. By {40) we have ay(1) = mp, 22(2) = mg -1,

a3(3) = mo — 2, ..., @m,(mg) = 1, which implies Gmg+1(1) = mo. By
induction we easily obtain
apmo+1{1) =mo  (p € No). (41)
The right-hand part of the estimate
mg—1<4a;(1)<my (j€Ng) {42)

follows from (40) and from the fact that m; < my for all j € No. Let us
now prove the left-hand part of (42) by contradiction. If we assume that
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for some j > 1 we have a;{1) < mg - 1, then for every g € Ny we must also
have

ﬂ’q(mo—l]-t-j(l) <mp-1. (43)

Indeed, let (43} be false for some g € N; we take the smallest such g. Then
from aggm,-1345{1) = mp — 1 and (40) we get successively

aq(mg-—l)'i-j-l(mﬂ -1)2>1, aq(ma—1)+j—2(f"0 - 2) 2T
ey a(q—l)(mo—l)-l-](l) 2 mg — 11
and this is a contradiction to the choice of the number ¢. Hence (43) holds
for all 4 € Ng. However, the relations (41) and (43) with p =g = j — 1 lead

to a contradiction, since then prg + 1 = g(mg — 1) + j. This proves the
left-hand part of (42).

From the estimates (42) and the relations {40) we now easily derive for
each j € Ny,

mg—2<a;41(2) <mo—-1, mp—3<a;42(3) <mg—2, etc,

and since the sequence of chains in (39) repeats from the beginning, this
implies

mo—k<ajk)<mg—k+1 (1<k<mj;, jeNy).  (44)
If we add these inequalities for j =0 and k = 1,2,...,mq, we get
{0 =10 < ao(a) + ao(2) + -+ aofrmo) < O EL)
{The left inequality is strict, since ag(mg) > 0.) In view of the fact that
ao(1) + ag(2) +--- +ag(mp) =n = d(L;H,

we obtain from this mg = d and ag(k) =d — k+ 1 (1 < k £ d). The proof
is now complete.

5.12 Frercises
{Continuation of the problem on piles of pebbles from 5.11.)
(i) For each n > 1 find all “final” distributions of pebbles that do not
change under the transformation.
*(ii) Show that in the case -(d—_;lé <n< ﬂ%l {(d € N) after a certain
number of transformations the iteration becomes periodic with a
period p > 1 that is a divisor of d such that the number ;’-, divides

the difference n — 1"—'211-'!. Describe those distributions that repeat
periodically.
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*(iii) In the situation of (ii), find the number of distributions of the
pebbles that are periodically repeated in the iterations with a given
period p.

3
Combinatorial Geometry

The development of geometry, as inspired by the deep results of Bernhard
Riemann in the second half of the nineteenth century, has meant that sci-
entific work in this field moved quite far from the “naive” or elementary
geometry practiced by the Greek mathematicians of around the beginning
of our era, and their numerous successors in later times. Classically, the
main focus of geometry has been on the proofs or constructions connected
with properties of basic geometrical objects (points, straight lines, circles,
triangles, balf-planes, tetrahedra, etc.), that is, problems that can be vi-
sualized. On the other hand, 8 paradoxical characteristic of contemporary
scientific works in “pure” geometry is the fact that the majority of them
are completely devoid of pictures; or the fact that “geometrical intuition”
is more often required by specialists in mathematical analysis or algebra
than by mathematicians who consider themselves geometers. The apparent
diesatisfaction of a number of mathematicians with this situation has led
to new directions of research in geometry; this is mainly in response to
modern problems in optimization. As examples of such geometrical opti-
mization problems one can consider the problem of filling a plane or a space
{or some of their parts) with some system of geometrical objects, or cover-
ing parts of a plane or a space with the smallest possible number of copies
of a geometrical object. These and several other reasons have led, especially
in the past half century, to the rapid development of several nontraditional
branches of geometry {or areas closely related to geometry), among them
combinatorinal geometry.

It is rather difficult to define the contents of combinatorial geometry
precisely, since this discipline is closely connected with a number of re-
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(iv) Show that for the valuation

n=1

J(#1,x2,...,Tn) = Zpk(fﬂlzuk + Z2T24k + o0 + TnZner)  (65)
k=0
(where x5 = z; for j = 1,2,...,n — 1) with constants p, = p,_; you

have J(z) + T3, ~Z2,Z3 + T2,%4,...,Tn) — J(T1,Z2,...,Tp) = 229[(po ~
2p+pa)(zr +Z2+ T} + (3 —2p2 )z + (Pa— 23 + po)as + - +
(Pr-1—2pn—2+Pn-3)zn] = 222¢- S, ffc=m—-2p+po=pa—2m2+p =
©r+ = Pyl — 2Pp—3 + Pn-3. (In view of symmetry it is not necessary to
consider other transformations.) The last identities hold il and only if the
sequence py — Po, P2 — Prs-« -, Pn~1 — Pn—2 i8 arithmetic with difference c,
that is, pr —pe—1 = p1 —po+ (k= 1)c (1 £ k& < n — 1), from which by
summing you obtain px = py — k(pg — p1) + ﬂ”z——uc (0<k<n-1). By
substituting into p; = p,_; you will obtain py — p; = 851 - ¢, and thus

)
m=po- 28 o<kgn-1). (56)
Verify that p; defined by (56) possesses all the desired properties. If you
choose any po € R and c € R*, then by substituting p, from (56) into (55)
you obtain a decreasing valuation J. Next you must consider whether J is a

nonnegative function for some pair py, c. If you set, for instance, pg = -“f.fﬂ'

and ¢ = 2, then pp = (""5+) 4 (kil) for all k € {1,2,...,n -1}, and
J=814+ 824+ 85,, with 53 = Ei:l{zi+mi+1 e +I§.|.J'_1)2 >0 for
1<j<n

(v) Assume that there is an infinite iterative sequence. From the prop-
erties described in (iv} it follows that the corresponding infinite sequence
of valuations of the n-tuples of our iterative sequence is decreasing and
bounded, 8o convergent to a number L. Therefore, you can choose an itera-
tive term with a valuation Jy satisfying L < Jy < L+ % and leave out all
the previous terms. So, without loss of generality, you can assume that these
inequalities are satisfied already by the initial n-tuple (z;,...,2,). Then
the infinite sequence consisting of the negative central terms zy, z}, Fannne
of all transformed triples satisfies

5

(o) + (k) + (o) 4= gl =D < 2. (s

The largest of the numbers z4,..., 1, in the initial n-tuple is at least %;
let, for instance, T; > % From (57) it then follows that in the place of
z; after an arbitrary number of steps there will be a nonnegative number.
Hence the index = 1 is disallowed in the sense of (iii), which means a
finite number of transformations, which is a contradiction.

(vi) A suitable constant K is, for instance, of the form

K= max max |zx+zx L ARERE . /! I
1<k<n osisn—xl S kil

3y g g e S e b ] i b e
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Show that the expression on the right is a nonincreasing valuation; to do
this, use inequalities of the type T < &) + 2z + 24+ -+ + 2, < Ty + T2+
sz, (if 23 < 0).

5.12 (i} A final distribution exists only when n = 1+ 2 + --- +d for
some d € N, and it is of the form [d,d — 1,...,1). Proof: Comparing the
distribution [a;,az,...,am] with [m,a; — 1,83 = 1,...,am, — 1] under the
assumption a; = a3 > --- > ap, you obtain e,, = 1. If m > 1, then
8p -y — 1 =ag,, that is, a1 = 2, ete.

(ii) It suffices to modify the conclusion of Section 5.11 after the inequal-
ities (44), from which in the case 1"—:21)5 <n< ﬂ‘%’- it follows by adding
that mg = d and e;(k} = d — k + £;(k), with £;(k) € {0,1}, 1 < k < d,
3 € Np, where a;(d) = 0 when m; < d, that is, when m; = d— 1. Show that
(e0(1),€0(2), . .. ,e0(d)) can be any d-tuple (¢,,¢3,...,£4) of the numbers 0
and 1 satisfying €1 +ea4---+&4 :n---id—‘glﬁ,and that for each j > 1 you
have (¢j41(1),6541(2),- .., 6541(d)) = (e5(d),e5(1),€5(2),...,5(d — 1)),
that is, £5(k) = €544 (1 < k < d, j € Nyp), if you set eq4; = g5 for all
J 2 1. This implies a description of all periodic p-tuples of the iterations
aj(ky =d-k+en (1 £k <d j€ Ny) and the assertion about
its length p being equal to the (smallest) period of the infinite sequence
E1yEQyre s EdyELyEDya v yEdy ., BINCE AL — id—'zlm copies of 1 in the d-tuple
(€1:€2,...,&q4) are distributed into 4: copies of the p-tuple (),¢€2,...,&,).

(iii) Set m = n - Id;z')!. From the apalysis done in the sclution of (ii)
it follows that the repeating distributions are exactly the d-tuples [d - 1+
€1,d—2+4¢€3,...,1+€4_1,e4], where €,€9,...,6q4 € {0,1} and &) 4+ €2 +
+++£q = m. The period of the repetition is then equal to the smallest
k € N such that &; = gi4x (here, obviously, put £44; = &; for all j € N).
For the given m, d (1 < m < d), and any paositive integer p, let f(p) denote
the number of distributions with the period p, and g(p) the number of
distributions with an arbitrary period g, g | p. By (ii) you have f(p) = 0
whenever pf{d or d{pm. If p | d and d | pm, then for any divisor q | p we
also have d { gm, so0 g(p) = 0. On the other hand, if p | d and d | pm, then
g(p) is equal to the number of all ordered p-tuples of EZ ones and E(‘%ﬂl
zeros; that is, g(p) = (W‘: / o) It follows directly from the definition that

92} =Y _ fla).
ale

Then by the Mébius inversion formula (see Chapter 1, 6.13.(iv)), for p | d
and d | pm we obtain (where u(g) is the Mabius function)

@)=Y u@e(®) = Y a(B)g(@) = T p(g)( ; d).

alp qlp qlp
d|gm

qm/
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some n > 1. Then clearly a,b, ¢ € R}. Next show, as in 5.7.(iv), that the
numbers Ay = max{ay, b, cx} satisfy Ag > 4; > ... > A,. Hence from
Ag = A, it follows that Ay = A, which is possible only when 0 € {a,b,c}.
Similarly, from A, = A; it follows that 0 € {ay,b,¢;} (which holds also
when n = 1). Then two of the numbers a,b,c are identical. Therefore,
[a, &, €] is of the form [a,0, 0] or [, &, 0] for appropriate a > 0. Consider the
iterations of both forms.
{viii) An appropriate m-tuple (1,a,0?,...,a™"!), where ¢ > 1, has a
kth iteration of the form (8%, F%a, f%a?,...,A*a™ ') as long as
am-1 - a™-2 a™=l -1
1 a 7 am=2 T T agm1

=0>0

This occurs if and only if # = ¢ — 1 and & > 1 is a root of the equation
Fm(z) = 0, where Fip(z) = 2™"! ~3™2 — ... — z — 1. The equation
Fn(z) = 0 has a root in the interval (1,2} for every m > 3, since Fi,(1) < 0
and Fi(2) > 0.

(ix) Independently of the initial m-tuple, you obtain after a certain num-
ber of steps an m-tuple of even numbers (2b;,2bs,...,2b,); this follows
from the result of 5.1.(iii} if you consider the numbers 1 and —1 as sym-
bols for an even, respectively odd, number. Repeat the same argument
for the m-tuple (by,bs,...,b,), etc.; hence for every k € N you obtain
after a certain number of steps the m-tuple (2%¢;,2%¢,, ..., 2%¢y,), where
c; € Np, 1 £ i £ m. On the other hand, the numbers in all m-tuples are
bounded from above by twice the largest of the numbers |ay|, Jaz|,. .., |am|-
For sufficiently large k this means that ¢y =z =-+-=¢,, = 0.

{x) Call an arrow pointing to the left (respectively to the right) a left
{respectively right) arrow. The numbers L and R of left, respectively right,
arrows on the line are invariants; since a transformation can be carried out
if and only if some left arrow lies to the right of some right arrow, the
final state is uniquely determined: Going from left to right, there are first
L left and then R right arrows. Next, consider the valuation J defined by
the number of (unordered) psirs of arrows with opposite directions and
pointing to each other (they don’t have to be neighbors). An allowable
change of some pair of neighboring arrows is possible if and only if J > 0;
after each such transformation the value of J decreases by 1. This means
that the transformation can (independently of the particular sequence) be
repeated exactly Jy times, where Jy is the initial value of J.

(xi) The desired condition has the form

aytaz+---+a,=2".d, meN;. (54)

Indeed, the value of d either remains unchanged after a transformation or
is doubled; this implies the necessity of (54). Its sufficiency can be proven
by induction on the exponent m. If m = 0, then n = 1 and everything
is trivial. If (54) holds for some m > 1, then under the assumption that

Lot gy pele
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d =1 (this is no loss of generality, since the pebbles are shifted in integer
multiples of d) the number of odd integers among ay, a3, ...,a, is even,
say 2k, where k € N. Therefore, the piles with odd numbers of pebbles
can be “paired,” and in each one of these k pairs you can carry out a
transformation. After these k transformations you obtain n'(< n) piles
with numbers of pebbles by, by, ..., b, all of which are even. Therefore,
2™ =ay+ag+---+an = b +by+- by = 2™ .d' (m' € Np), where d' is
the greatest common divisor of the numbers by, by, .. ., by Since d' = 2¢ for
some i > 1, you have m’ € m — 1, and therefore you can use the induction
hypothesis.
(xii) Consider the two valuations

Jl(“l-azv---,ﬂn}= z 2‘“! Jﬂ(ﬂhﬂzv---nﬂn)= Z 27y,

i ey <i i oa2i

If the indices ¢,k are as in the statement and if |c — k| > 2, then the
inequalities 25+ + 2542 4 ... 4 9e-1 £ 9¢ (if k < ¢) or 2751 4272 4
-+- 4 2751 « 27¢ (if k > ¢) imply that after the transformation (32)
the value of J; does not decrease and the value of J; increases, while
after the transformation (33) the value of J; increases and that of J, does
not decrease, Moreover, these properties of Jy and J; are evident if Jc —
k| = 1. Therefore, J = J; + Ju is an increasing valuation. Since there is a
finite number of arrangements of the integers 1,2,...,n, the value of .J can
increase only a finite number of times.

5.10 (i) The conclusion is not true for any n > 1. Consider a sequence of
length 2n + 1 formed with n + 1 copies of 1 and n copies of —1.

(ii) Show that J = p(z? + 22 + 23+ 23) + ¢(T172 + T2za + Taza + 2421 ) +
r(z123 +2234) is a suitable valuation if 2p—2¢+r = 2¢—2r = ¢ > 0, that
is,if g =r+ £ and p = c+ §. By choosing r = -2 and ¢ = 4 you obtain
J=2(z} +x§+z§ +33) + (21 — z3)* + (22 — z)*.

(iii} Suppose that the index & = 1 is disallowed. Note below how the
numbers S; =z, +xp + -+« + 2; (1 € i € n) will change. When a trans-
formation with the triple of numbers zy_,,Z,Zk4y is carried out, then
the following holds: If 1 < & < n, then the transformation is allowable
only when Sp < Si_), and as a result, Sx—; and 5, are interchanged;
if & = n, then the transformation is allowable only when S, < S,_, in
which case the n-tuple {51,52,...,5,) is changed to (851 + x, Sa + Ta,
vevs Sn=2 + Tn, Sp + Tn, Sp—1 + o). Each transformation of a triple zx_,,
Tk, Tx41, where 1 < k € n, then decreases the number of inversions in the
n-tuple (5}, 5z,...,5,), that is, the number of pairs of indices (4, j) such
that 1 < i < j € n and §; > S;. This proves the assertion on the finite
number of possible transformations in the case where the index k = 1 is
disaliowed.
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5.6 (i) The last one to grow is a lemon; their number is odd every morning.

(ii) The number of pieces of paper always satisfies n =1 (mod 9), while
1991 = 2 (mod 9).

(i) The identity {c-10%¥ +z) — (c+ ) = ¢(10* — 1) shows that the
remainder upon division by 9 is an invariant of the transformation. Since
9 does not divide 2199}, the digit sum of the number 4 cannot be equal to
0+1+4+2+---+9=45.

(iv) The equation p} + p5 + -+« + pj, = NV is a preservation law for the
number of larks; the necessity of the congruence condition was shown in
5.5.(iv). To prove sufficiency, begin by explaining how from any initial po-
sition of N larks you can, through a sequence of allowable transformations,
achieve that at least N —1 larks sit in the tree with number n. The remain-
ing Nth lark in this situation sits in the jth tree (the possibility j = n is not
excluded), where the index j is uniquely determined by the initial situation
(1,72, .- Pn) by way of the congruence py +2pa+--+nps = j+H(N-1)n
{mod n). Finally, use the fact that if the state p’ is attainable from the state
p, then also p is attainable from p'.

(v) For the position (p,q,r) = (2,0,0), which was not tabulated in the
solution of 5.5.(jii}, all three sums s; are even; therefore, from the given ini-
tial situation at most one of the four positions mentioned can be achieved.
Now carry out the operations according to the following strategy: At each
step adjoin the digit with the least number of occurrences (if this digit is
not umique, then choose the smallest of them). Since the sum p+ g+ r
decreases by 1 after each step, you finally reach a position (p',q’, v’} where
no further operation is possible. Clearly, p’, ¢, v* are the numbers n,0,0 in
some order {n > 1). If n = 1, then everything is in order; in the case n = 2
the position (¢,q’,+’) follows one consisting of the numbers 1,1,n — 1,
which in view of your strategy means that n—1 < 1, that is, n = 2. This is
then the position (1,1, 1), which is followed by the final position (2,0,0).

(vi) Exactly those k, 0 < k < n, for which k =1+ 2+ .- 4+ n = 22t
(mod 2) holds can remain on the board. Indeed, on the one hand, the sum
of all numbers on the board does not change parity after an operation,
since @ 4+ & = ja — b| (mod 2) for any a,b € Z. On the other hand, for any
such k you can carry out the operations in the following order (distinguish
the cases (a) n even, k even; (b) n even, k odd; (c) n odd, k odd; (d) n
odd, k even; write down all pairs {(a, b} of consecutive erased numbers):
(a) (2,3), 4,5), ..., (k—2,k—1), (k+1,k+2), (k+3,k+4), ..., (n-1,n);
(b) (2,3), (4,5), ..., (k— 1, k), (k+2,k+3), (k+4,k+5),..., (n=1,n),
(k +1, 1)1
(C) (lv 2)! (3: 4)) Ry (k_2|k_1)! (k+ll k+2): (k+3: k+4)| GOOL (ﬂ— ll n);
{d) (1,2), (3,4), ..., (k—1,k), (k+2,k+3), (k+4,k+5),..., (n—1,n),
(k+1,1).

In all cases you then obtain on the board the number & and an even number
of the integer 1, and it is clear how one has to proceed further so that only
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the number & remains. (The assertion about the parity of the number of
ones follows from considering the invariant mentioned above.)

(vii) All congruences are modulo m. If you substitute T4y = Z; + 27 +
»++ 4 I; into the congruence ayZ) + ag®g + -+ + AT = T2 + Aoy +
»+» + 0kTk+41, you obtain the condition {ax — ay )y + {ox + o1 — ag)zs +
-+ (@ + ar—) — ax)zi = 0, which holds for any xy,23, ..., if and only
f0=ar-ay=or+a1—aa =--- = oy +ap-1 — ax, which is equivalent
to the system o; = iay, (1 €1 € k—1), ap_; =0, and o = ;. Therefore,
a; # 0 and (k — 1)a; = 0 have to hold, which is possible if and only if the
integers k£ — 1 and m are not relatively prime.

5.8 (i) The sum of all n numbers is a nonincreasing valuation.

(1) The desired number is 271°. Note that the quotient &, where a is
the smallest positive number and n the number of zeros on the board, is a
nondecreasing valuation.

(iii) The valuation J = 73+ 23 +-- - +z2 is nondecreasing; after the first
transformation the value of J increases.

(iv) Denote the nth iteration by (an, #n, cn, dy) and assume cyclicity. The
numbers A, = a, + b, + ¢, + dy, satisfy A, = 2™ 4y; since there are two
identical numbers in the sequence Ag, A;,. .., we have Ay = a+b4-c-+d = 0.
The numbers B, = a2 +b2 +c2 + d? satisfy Bny = 2B, +2(an +cn)(bn +
dn) =2B, +2A%_| = 2B, foralln > 1, 50 B, = 2"~'B, (n > 2), which
implies By = 0. But this means that a; = &; = ¢; = d; = 0, which leads to
a=-b=c=-d.

(v) The assertion does not hold for any n = 3k: Show that the ini-
tial n-tuple {1,-1,0,1,-1,0,...,1,-1,0) is transformed to itself after 6
iterations.

We add without proof that for all n # 3k the following holds: If in
some sequence of jterations two elements (that is, two ordered n-tuples)
are identical, then the initial n-tuple is of the form (a, —a,q,—a,...,q, ~a)
or (0,0,...,0) according to whether n is even or odd.

(vi) For each » > 6 the answer is negative. A suitable counterex-
ample is easier to construct in the field of complex numbers. Consider
the n-tuple (1,¢,...,e"™"), where ¢ = cos3® + isin 2%, Since ¢ =
1, it is not difficult to verify that the kth iteration is of the form
(1 =€), (1 —e)*e,...,(1 —€)*e™?) for all k > 1. Each number in this
n-tuple has absolute value equal to

|1 -e)ei| =1 ~¢* = ((l — cos 21)® 4 gin? ?;")i = (26in X)¥,

which does not exceed 1 for any £ > 1 if n > 6. A suitable example in
real numbers is obtained by taking the real parts of the above complex

numbers: l,cos%;“i,cos "—,:—',...,i:t:t.-?.!L;lE .

(vii) Exactly the triples [a,a,0], where a > 0. Let [ax, bk, cx] be the kth
iteration of the triple [a,b, ¢, and suppose that [an,ba,c.] = [a,5,d] for
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that they satisfy the bounds a; > 2. Next assume that a; = 221 . b; < 2%,
Then by £3%, b, 25, k—ay > 3,301 . by < 3n+3.28-1=3 ¢ 3k « 2p,
and therefore L* = {3b),3%;,...,3%1*! . by } is a subset of L. Define I =
{i; b; € L*}. If oy = @, for all i € I, then a, | a;, which is a contradiction.
Hence necessarily 0 € o; < ay (¢ € I), and by the pigeonhole principle
among the a; + 1 numbers a; (i € I) some two are identical, a; = ay
(i,j € I, i # j), which means that either a; | a; (if & < b;}, or a; | a; (if
b; > b;), but this is a contradiction.

(xii) For the numbers xz,,...,T, and y,,..., ¥~ under consideration, set

n N
o = Z Ti Tig - " Tiyy Sk "‘—"Zx?l and i :'nyi
{(is iz, i)z i=1 i=1
1€i iz <ig<n}
where 1 < k < n. From the theory of polynomisls it is known that the
collection of numbers 1,,%a,...,T, is uniquely determined by the values
1,02, . ..,0q, Of the elementary symmetric polynomials. By Newton's the-
orem (see, e.g., [8], page 323), 8y —8k— 101 + 8202 —++ ++(=1)*"151041 =
(-1)*~Yka,, where 1 < k < n, and furthermore it follows that the numbers
04,02,...,0, are uniquely determined by the power sums s;,82,...,84.
Therefore, it suffices to show (by induction on k} that the number s; is
uniquely determined by the values of the sums &y,ta,...,8, 1 € kE < n.
Indeed, you have s, = £, and in the case 2* # 2n,

1 =k
8 = P 2t — Z (J) 8i8k—j | -

=1

This last formula fellows from the identity

n o n
2ty + 255, = z Z(.’rg + I_,—)k

i=1 je=1

by using the binomial theorem for the powers on the right. Finally, for the
values n = 2¥ you can recursively construct a counterexample of two dis-
joint n-element sets A, = {2y,...,z,} and By, = {1, ..., ¥n} for which the
sums x;+z;, respectively ; +y;, form two identical (3)-element collections:
Set Ay = {0,3}, By ={1,2}, A2, = AnU{c+B,), and By, = B,U(c+A4,),
where the number ¢ (depending on n) is chosen large enough so that the
sets with index 2n have 2n elements and are disjoint.

5.2 (i)} Assume to the contrary that after n steps all 2k + 1 numbers were
even, and take the smallest such n. Then in the preceding step all numbers
would be odd, and in the step before that any two neighboring numbers
would have different parities. This is not possible, since 2k + 1 is an odd
number.
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(ii) Since after each step the sum of all 25 numbers doubles, after 100
steps it will be equal to —2!%. It remains to verify that 2™ > 25.1028, or
27 > 5% You even have 27 > 537, since 27 = 128 > 125 = 5,

(iii} If k = 0, then n is odd; if then the n-tuple (1,1,...,1) is not the ini-
tial one, then its first occurrence comes after the n-tuple (—1, -1,...,-1);
this aiready is the initinl n-tuple, since (z)z2)(zaz3) - - - (Zn%1 )} = zf23 - .- 22
= 1 # (—1)". Then base the induction step from n = 2%¢ to n = 2+1¢ on
considering the two sequences (29), as in the solution of 5.1.(iii).

5.4 (i) If you change the signs of the numbers +1, then the product of the
numbers in any 2 x 2 subarray is an invariant. If you compare the 2 x 2
subarrays in the lower right corner, you find that the arrays in Figure 13
are mutually nonattainable.

(ii) The assertion is true. Use the invariant I = (2101076 0)(aaagaga;z).

(iii) The assertion is true. Use the invariant I = azazasagagasanas.

(iv) Show that the sum J(M) = 3 2-="¥*2 i3 an invariant, where the
summation is extended over all pairs {z,y) € M. For the initial set M you
have J(M) = 1. Explain why in any attainable set M’ there is at most one
pair (1, y} and at most one pair (x,1). If you therefore assume that M” has
the property required in the statement of the problem, then you obtain

! 1 1 —z—y+2
& - = Ty
(M) tgt §: 2 ,
(zp)eDNM’

where D = {(z,y) e NxN: 2> 2Ay>2Az+y = 5}. Then you easily
obtain the infinite series

2—1—U+: =

L]

(z)eD

which implies I(M’) <  + 2 =1, but this is a contradiction.

(v} Let p = gd. After one translormation the sign of exactly ¢ factors
in the product defining each of the numbers s, changes; that is, the value
of s; changes its sign exactly when ¢ is odd. Hence after any number of
steps you have either s}, = 8¢ (1 £ &k < d) or (only in the case of odd
g and an odd number of steps) s} = —s; (1 < k < d). Next show that
by an appropriate iteration {with an even number of steps, so that the
numbers s do not change) one can achieve changes in the signs of exactly
two of the numbers a;,a; (i # j) in the cases i — j = p, p | (i — 7) and
even d | (i — j). Therefore, if you have s}, = s, (1 < k < d), then you
can transform the n-tuple {(a,,43,...,8,) into the n-tuple (af,a%,...,a”)
such that s = s, (1 < k < d) and af} = &, {d < k < n). But then from
the identity aiak, -Gy, g = 8k = 8 = s} = afal, 4 - 04, g it 2ls0
follows that af = a} (1 < k < d). The case where s}, = —s8; (1 < k < d)
holds for odd ¢ can be reduced to the preceding case by one transformation
(in an arbitrary way).
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the desk and there are 15! ways to arrange all the girls each in a gap
between two neighboring boys.

We have x = xj + x3, where x2 = 14! x 15! and

x| + 2%z = 141 x 15! x 21,
Therefore x = 14! - 151215 = 1).

(Baltic Way 1999] Two squares on an 8 x 8 chessboard are called fouching
if they have at least one common Vertex. Determine if it is possible for a
king to begin in some square and visit all the squares exactly once in such a
way that all moves except the first are made into squares touching an even
number of squares already visited.

Solution: It is not possible for the king to visit all the squares. Assume
for a contradiction that there exists a path such that all moves except the
first are made into squares touching an even number of squares already
visited. Clearly, the first move is made into a square touching exactly one
square already visited, namely the starting square. Summing the number of
touching squares previously visited over all the moves, we therefore obtain
an odd number, On the other hand, every pair of touching squares is counted
exactly once in this sum, by the member of the pair that was visited second.
Thus, the sum is equal to the total number of touching pairs. But this number
is even, since the numbers of touching pairs oriented north-south and east-
west are equal, as are the numbers of touching pairs oriented northeast-
southwest and northwest-southeast. Thus we have a contradiction, and no

path exists.

[St. Petersburg 1988] A total of 119 residents live in a building with 120
apartments. We call an apartment overpopulated if there are atleast 15 people
living there. Every day the inhabitants of an overpopulated apartment have a
quarrel and each goes off to a different apartment in the building (so they can
avoid each other-). Is it true that this process will necessarily be completed
someday?

Solution: Let py, pz2, ..., p12o denote the 120 apartments, and let a; denote
the number of residents in apartment p;. We consider the quantity
ay(a—1)  axlaz=1) aizofaio — 1)
S= . i
2 + 2 ER 2

{Assume that all the residents in an apartment shake hand with each other
at the beginning of the day, then quantity § denotes the number of the hand-
shakes in that day.) If all @; < 15, then the process is completed and we are
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done. If not, without loss of generality, we assume that
the inhabitants in py go off to different apartments in the building. >m.£=.=n
that they go to apartments pi;, Pizs -+, Pig, - On the next day, the quantity

is changed by an amount of

aj +app+- - +ai, =

which is positive as

ai, +aiy + -+ a5, <119—a) <119 - 15 =104

and

ayla - 1) S 15 x 14

> 15 and that

2
Hence the quantity is decreasing during this process. On the other hand, §
starts as a certain finite number and § is nonnegative. Therefore this process
has to be completed someday.
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