FINAL EXAM

NAME AND STUDENT NUMBER:

1. Write down all your work.
2. Calculators are allowed, but NOT NEEDED.
3. The exam is 3 hours.
4. This booklet contains 15 pages.
5. Maximum Possible Score $=70$ (14 questions, 5 marks each)

6 . Good luck and do your very best!

1. Sketch the region bounded by the curves $y=e^{x}, y=e^{-x}$ and $y=e^{2}$, and find the area of the region.
2. Find the volume of the solid obtained by rotating about the x -axis the region bounded by the curves $y=x$ and $y=x^{2}$.
3. A cylindrical hole of radius 6 cm has been drilled straight through the center of a sphere of radius 10 cm . Use the method of cylindrical shells to find the volume of the remaining solid.
4. Evaluate the integral

$$
\int_{0}^{1} x \tan ^{-1} x d x
$$

5. Evaluate the integral

$$
\int \cos ^{4} x \sin ^{3} x d x
$$

6. Evaluate the integral

$$
\int \frac{1}{x^{2} \sqrt{1-x^{2}}} d x
$$

7. Evaluate the integral

$$
\int \ln ^{2} x d x
$$

8. Find the length of the curve defined as $x=3 t-t^{3}, y=3 t^{2}, 0 \leq t \leq 3$.
9. What is the connection between polar and Cartesian coordinates? Show that $r=6 \cos \theta+8 \sin \theta$ is the equation of a circle and find its center and radius.
10. Find

$$
\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+1}-n\right) \sqrt{3 n^{2}+n} .
$$

11. Find the values for which

$$
\sum_{n=0}^{\infty}(2 x)^{n}
$$

converges. Find the sum of the series for those values.
12. Test for convergence

$$
\sum_{n=1}^{\infty} \frac{2 n+1}{3 n^{2}-1} .
$$

13. Test for convergence

$$
\sum_{n=1}^{\infty} \frac{(n+1) 2^{n}}{n 3^{n+1}} .
$$

14. Test for convergence

$$
\sum_{n=3}^{\infty} \frac{1}{n^{2}-4}
$$

