
1 Nonlinear modes of decadal and interannual variability of the

2 subsurface thermal structure in the Pacific Ocean

3 Youmin Tang
4 Courant Institute of Mathematical Sciences, New York University, New York, New York, USA

5 William W. Hsieh
6 Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada

7 Received 27 November 2001; revised 19 November 2002; accepted 17 December 2002; published XX Month 2003.

8 [1] The nonlinear principal component analysis, a neural network technique, is applied
9 to the observed upper ocean heat content anomalies (HCA) in the Pacific basin from
10 1961 to 2000. By applying the analysis to high-passed and low-passed data, nonlinear
11 interannual and decadal modes are extracted separately. The first nonlinear interannual
12 mode is mainly characterized by the El Niño-Southern Oscillation (ENSO) structure in the
13 tropical Pacific, with considerable asymmetry between warm El Niño and cool La Niña
14 episodes; for example, during strong El Niño, the negative HCA in the western tropical
15 Pacific is much stronger than the corresponding positive HCA during strong La Niña. The
16 first nonlinear decadal mode goes through several notable phases. Two of the phases are
17 related to decadal changes in the La Niña and El Niño characteristics, revealing that the
18 decadal changes for La Niña episodes are much weaker than the changes for El Niño
19 episodes. Other phases of the decadal mode show a possible anomaly link from the middle
20 latitudes to the western tropical Pacific via the subtropical gyre. The decadal changes in the
21 HCA around 1980 and around 1990 were compared and contrasted. INDEX TERMS: 3339
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29 1. Introduction

30 [2] Among the low-frequency variability of the thermal
31 fields in the Pacific Ocean, interannual variability and
32 decadal variability are the two most interesting [e.g., Wal-
33 lace et al., 1998; Trenberth and Hurrell, 1994]. While these
34 two well-defined variabilities reside in the whole Pacific
35 basin within at least the upper 400-m ocean, they also show
36 strong regional features. The interannual variability, domi-
37 nated by the El Niño-Southern Oscillation (ENSO) phe-
38 nomenon, is centered in the equatorial Pacific, whereas the
39 decadal variability is most strongly manifested in the mid-
40 latitude North Pacific, as characterized by an elliptical
41 anomaly located in the subtropic gyre [Zhang et al.,
42 1999]. Understanding and interpreting the interannual and
43 decadal variabilities have long been of interest [e.g., Klee-
44 man et al., 1996, 1999], not only for their major impacts on
45 the regional and global climates and ecologies, but also for
46 assessing possibly forced climate variability, such as anthro-
47 pogenic global warming [Latif et al., 1997].

48[3] An important aspect of studying the low-frequency
49variability in the Pacific Ocean is to characterize the major
50spatial and temporal characteristics in a low-dimensional
51space. Until very recently, this has been implemented by
52principal component analysis (PCA, also called EOF anal-
53ysis), and by related techniques, for example, singular
54spectrum analysis (SSA, also called extended EOF analy-
55sis), and principal oscillation pattern (POP) analysis, with
56either observed data [Zhang et al., 1999] or modeled data
57[Miller et al., 1998]. The interannual and decadal modes are
58described by the first few leading eigenvectors, giving the
59spatial patterns, and by the corresponding time series. To
60focus on a specific timescale, the data are usually filtered
61prior to applying PCA. For instance, for detecting decadal
62variability, we used a filter which removes signals with
63periods under 5 years, while for studying interannual
64variability, we filtered out periods above 5 years. The
65leading interannual and decadal PCA modes (Figures 1a
66and 1b) characterize the spatial anomaly patterns at different
67frequency oscillations (Figure 2a and 2b).
68[4] In this paper, a nonlinear algorithm to extract low-
69dimensional structure from multivariate data sets, i.e.,
70nonlinear principal component analysis (NLPCA), is
71applied to the oceanic heat content anomalies in the upper
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72 400 m (HCA) over the Pacific basin to detect nonlinear
73 modes of decadal-scale and interannual variability. There is
74 no a priori reason to believe that the thermal structures in
75 Pacific Ocean are linear. As the data contain nonlinear
76 lower-dimensional structure, the PCA will miss the non-
77 linearity. Compared with the sea surface temperature, the
78 upper ocean heat content is better for describing and
79 understanding interannual and decadal variability [Zhang
80 et al., 1999], as it reflects the thermocline displacement and
81 contains the ocean’s ‘‘memory.’’ NLPCA was developed
82 originally by Kramer [1991] in the chemical engineering
83 literature, was applied to the Lorenz three-component
84 chaos system by Monahan [2000], and to several meteoro-
85 logical and oceanographic data sets [Monahan, 2001;
86 Monahan et al., 2001; Hsieh, 2001; Hamilton and Hsieh,
87 2002].
88 [5] This paper is structured as follows: Section 2 briefly
89 describes the methodology and the data. Section 3 presents
90 the nonlinear interannual mode, section 4 presents the
91 nonlinear decadal mode, section 5 presents the decadal
92 changes in the 1980s and the 1990s, and Section 6 is the
93 summary and conclusion.

94 2. Method and Data

95 2.1. NLCPA

96 [6] If the data are in the form x(t) = [x1,. . ., xl], where
97 each variable xi, (i = 1,. . .,l), is a time series containing n
98 observations, the PCA method looks for u, a linear combi-
99 nation of the xi, and an associated vector a, with

u tð Þ ¼ a � x tð Þ; ð1Þ

100 so that

hkx tð Þ � au tð Þk2i is minimized; ð2Þ

103 where h...i denotes a sample or time mean. Here u, called
104 the first principal component (PC), is a time series, while a,
105 the first eigenvector of the data covariance matrix (also
106 called an empirical orthogonal function, EOF), often
107 describes a spatial pattern.
108 [7] The fundamental difference between NLPCA and
109 PCA is that NLPCA allows a nonlinear mapping from x

110to u whereas PCA only allows a linear mapping. To perform
111NLPCA, a nonlinear mapping is made; that is,

u tð Þ ¼ f x tð Þ;wð Þ; ð3Þ

113where f denotes the nonlinear mapping function from the
114data space to the u (the nonlinear PC) space, and w denotes
115the parameters determining the f structure inherent to the
116data set. Denoting g as the inverse mapping function from u
117to the data space, we have

x0 tð Þ ¼ g u; ~wð Þ; ð4Þ

119where g is the f-adjoint operator. For linear PCA, g is simply
120the transpose of f. Here x0(t) is the approximation to data set
121x(t), when the 1-D PC space is used to describe the data set.

Figure 1. EOF1 of the HCA data for (a) the high-passed data (i.e., with the 61-month running mean
subtracted from the original data) and (b) the low-passed data (i.e., the 61-month running mean). The
value in percentage is the explained variance by each mode. Contour interval is 0.2�C, with dashed
contours for negative anomalies.

Figure 2. First mode PC associated with the EOF spatial
patterns in Figure 1. For better legibility, the PCs for
different data sets have been shifted vertically by 0.25. The
tick marks along the abscissa indicate the start of the year.
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122 As in linear PCA, the cost function defined by the error
123 between x(t) and x

0(t) is used to determine the parameters w
124 and ~w; that is,

hkx tð Þ � x0 tð Þk2i is minimized: ð5Þ

127 [8] An important issue in NLPCA is how to derive the
128 nonlinear operators f and g from the inherent structure of the

129data set. This has been implemented by neural networks
130(NN) [Kramer, 1991], since NN can simulate any nonlinear
131continuous functions [Cybenko, 1989]. Figure 3a shows the
132architecture of the NLPCA, which is capable of extracting a
1331-D open curve approximation to the data. However, this
134algorithm cannot be used to extract closed curve solutions, as
135the bottleneck neuron u is not an angular variable. Kirby and
136Miranda [1996] introduced a circular node or neuron, and
137showed that the NLPCA with a circular node (henceforth
138abbreviated as NLPCA.cir) at the bottleneck is capable of
139extracting closed curve solutions. The algorithm of the
140NLPCA.cir is identical to the architecture of the NLPCA of
141Kramer, except at the bottleneck layer, where instead of a
142single neuron u, there are now two neurons p and q, con-
143strained to lie on a unit circle in the p-q plane (Figure 3b), so
144there is only 1 angular degree of freedom (q) to present the
145nonlinear PC (NLPC). In this paper, both NLPCA and
146NLPCA.cir algorithms are used. When we discuss the
147decadal mode, we use NLPCA.cir, since the analyzed data,
148obtained by smoothing the original data set with a low-pass
149filter, are well characterized by closed curve solutions.
150[9] In contrast to PCA, as the mapping function g from the
151PC space to the data space is nonlinear, there is not a single
152spatial pattern associated with an NLPCAmode. The approx-
153imation x0(t), however, corresponds to a sequence of different
154patterns that can be visualized cinematographically. For
155linear PCA, the approximation au (equation (2)) produces a
156standing wave pattern as the PC varies, whereas with NLPCA
157the spatial pattern generally changes as the NLPC varies. We
158will use the x0(t) corresponding to a few u (q) values to
159explore the changing spatial structures of the NLPCAmodes.
160[10] An important aspect of the NLPCA is the size of the
161network, i.e., the number of hidden neurons m in the
162encoding (and also in the decoding layer) for representing
163the nonlinear functions f and g. A larger m increases the
164nonlinear modeling capability of the network, but could also
165lead to overfitted solutions (i.e., wiggly solutions which fit
166to the noise in the data). Based on a general principle of
167parsimony, the m values were varied from 2 to 4 and the
168weight penalty parameters [Hsieh, 2001] were varied from
1690.01 to 0.05 for smoothing. For a given m, an ensemble of
17030 NNs with random initial weights and bias parameters
171was run. Also, 20% of the data was randomly selected as
172test data and withheld from the training of the NNs. Runs
173where the mean square error (MSE) was larger for the test
174data set than for the training data set were rejected to avoid
175overfitted solutions. The NN with the smallest MSE was
176selected as the solution for the given m. The solutions from
177different m were further compared with respect to their MSE
178to get the optimal NN structure.

1792.2. Data

180[11] The data used are the monthly 400-m depth-averaged
181heat content anomalies (HCA) during 1961–2000, from the
182data set of subsurface temperature and heat content pro-
183vided by the Joint Environmental Data Analysis Center at
184the Scripps Institution of Oceanography. This data set
185consists of all available XBT, CTD, MBT and hydrographic
186observations, optimally interpolated by White [1995] to a
187three-dimensional grid of 2� latitude by 5� longitude, and 11
188standard depth levels between the surface and 400 m. This
189data set has recently been successfully assimilated into a

Figure 3. (a) A schematic diagram of the NN model for
calculating nonlinear PCA (NLPCA). There are three
‘‘hidden’’ layers of variables or ‘‘neurons’’ (denoted by
circles) sandwiched between the input layer x on the left and
the output layer x0 on the right. Next to the input layer is the
encoding layer, followed by the ‘‘bottleneck’’ layer (with
one neuron u), which is then followed by the decoding
layer. A nonlinear function maps from the higher dimension
input space to the lower dimension bottleneck space,
followed by an inverse transform mapping from the
bottleneck space back to the original space represented by
the outputs, which are to be as close to the inputs as possible
by minimizing the cost function J = hkx�x0k2i. Data
compression is achieved by the bottleneck, with the
bottleneck neuron giving u, the nonlinear principal
component (NLPC). (b) A schematic diagram of the NN
model for calculating the NLPCAwith a circular node at the
bottleneck (NLPCA.cir). Instead of having one bottleneck
neuron u, there are now two neurons p and q constrained to
lie on a unit circle in the p-q plane, so there is only one free
angular variable q, the NLPC. This network is suited for
extracting a closed curve solution.
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190 hybrid coupled model for ENSO prediction [Tang and
191 Hsieh, 2003], and used in the study of decadal oscillations
192 [e.g., Miller et al., 1997, 1998; Schneider et al., 1999].
193 [12] To study the decadal mode, the data were first
194 smoothed by a 61-month running mean (referred to as the
195 low-passed data hereinafter). The residual field between the
196 original data and the low-passed data (referred to as the high-
197 passed data) will be used to extract the interannual mode. To
198 reduce the large number of spatial variables, the HCA data
199 were preprocessed by retaining only the first six EOF modes,
200 which account for 41% and 93% of the variance for the high-
201 passed data and low-passed data, respectively.
202

203 3. Interannual Mode

204 [13] The six leading PCs from the high-passed HCA are
205 input to the NLPCA network to extract the NLPCA mode 1
206 (NLPCA1). Figure 4 shows the projection of the NLPCA1
207 solution in the PC1-PC2-PC3 space. The NLPCA1 accounts
208 for 26% of the total variance versus 22% by the PCA mode
209 1. The trajectory of the NLPCA1 describes a curve in the
210 PC space, indicating nonlinearity as compared to the PCA
211 (straight line). The NLPC, u, time series is shown in Figure
212 5a, well characterized by irregular oscillations at 2- to
213 5-year timescale, while Figure 5b is the frequency distribu-
214 tion curve (FDC) for u. We next examine the spatial
215 anomaly patterns associated with some specific u values,

216namely those marked in Figure 5b. The neural network
217maps from u to the output PCs (x0), which when individu-
218ally multiplied to the associated EOF spatial pattern, and
219summed over the six modes, yield the spatial anomaly
220pattern of the NLPCA1 for the given u. As shown in Figure
2216, the spatial structures of this nonlinear interannual mode
222are mainly characterized by ENSO features in the tropical
223Pacific, i.e., a seesaw oscillation along the equator. The
224most probable spatial pattern, corresponding to C in Figure
2255b, describes a neutral state, i.e., negligible anomalies in the
226tropical Pacific (not shown). Patterns A and B depict
227extreme and typical La Niña episodes, respectively, while
228D and E represent typical and extreme El Niño, respectively
229(Figure 6). In the middle latitude, the interannual variability

Figure 4. The first NLPCA mode for the high-pass filtered HCA plotted as (overlapping) squares in the
PC1-PC2-PC3 3-D space. The linear (PCA) mode is shown as a dashed line. The NLPCA mode and the
PCA mode are also projected onto the PC1-PC2 plane, the PC1-PC3 plane, and the PC2-PC3 plane, where
the projected NLPCA is indicated by (overlapping) circles, the PCA is indicated by thin solid lines, and
the projected data points are indicated by dots. One end of the NLPCA curve with maximum PC1 value is
associated with the minimum value of the NLPC u and an extreme La Niña situation, while the opposite
end of the curve corresponds to maximum u and extreme El Niño. The plotted PCs have been scaled up
by a factor of 10.

Figure 5. (a) NLPC1, u, and (b) the frequency distribution
curve (FDC) for the NLPC1. The data have been high-
passed prior to the NLPCA.

X - 4 TANG AND HSIEH: NONLINEAR MODES IN SUBSURFACE PACIFIC OCEAN



230 is weak, particularly during the cool episodes of ENSO, in
231 contrast to the interannual variability in the sea surface
232 temperature (SST), where there are significant anomalies in
233 the midlatitudes [Giese and Carton, 1999].
234 [14] Asymmetries between El Niño and La Niña spatial
235 anomaly patterns, which are absent in the linear mode, are
236 readily manifested in NLPCA1 (Figure 6). One notices much
237 stronger anomalies occurring in the western tropical Pacific
238 during extreme El Niño (pattern E) than during extreme La
239 Niña (pattern A), even though in the eastern tropical Pacific,
240 the anomalies are of similar magnitude. Furthermore, north
241 of 30�N, the anomalies are considerably stronger during El
242 Niño than during La Niña (from comparing the amount of
243 shaded area in pattern D with that in B, and between E and
244 A). A useful way to characterize the asymmetry between El
245 Niño and La Niña is by the spatial correlation coefficient.
246 Between pattern A and E, the correlation is�0.75, departing
247 considerably from the correlation of �1 for the linear PCA
248 mode. Another interesting nonlinear behavior is seen
249 between typical El Niño (pattern D) and extreme El Niño
250 (pattern E); as one proceeds from D to E, the cool anomalies
251 in the western equatorial Pacific intensifies as expected, but
252 the warm anomalies in the eastern equatorial Pacific weak-
253 ens; that is, E is obtained from D by adding cool HCA in
254 both the western and eastern equatorial Pacific.
255 [15] We can compare our NLPCA results with the con-
256 ventional composite method. Composites of HCA for 5
257 typical La Niña years (1971/1972, 1975/1976, 1984/1985,
258 1988/1989, 1995/1996) and 5 typical El Niño years (1972/
259 1973, 1982/1983, 1986/1987, 1991/1992, 1997/1998) are
260 shown in Figure 7, where the warm episodes have stronger
261 heat content anomalies in the equatorial Pacific, especially

262in the western equatorial Pacific, than the cool episodes, in
263agreement with our NLPCA results. Of course, the averag-
264ing process in the composite method does not allow a
265distinction between typical and extreme El Niño conditions
266as in the NLPCA results. Also with the composite approach,
267one has to somewhat subjectively decide which ENSO
268episodes to include in the composite.
269[16] One reviewer cautioned that the data had unrealisti-
270cally small amplitudes in the southwestern tropical Pacific
271before the early 1980s [Lysne and Deser, 2002], compared
272to other data sources, and could affect our NLPCA calcu-
273lations. Fortunately, the extreme u values were attained after
274the earlier defective period, as seen in Figure 5a. We also
275recomputed the NLPCA excluding the earlier defective
276period, and the new extreme patterns A and E (not shown)
277are not very different from those in Figure 6.
278[17] Figure 8 is the Hovmöller diagrams showing the time
279evolution of the HCA along the equator from the NLPCA1,
280the linear PCA mode 1 and the leading six linear PCA
281modes. As in Figure 8a, the NLPCA1 rather well reflects
282observed features such as the eastward propagation of HCA,
283the oscillatory periods of 2–5 years, and the asymmetry of
284anomalies between El Niño and La Niña episodes. These
285features are absent or not obvious in the PCA mode 1
286(Figure 8b), indicating that the NLPCA1 approximates the
287data set better than the PCA mode 1.

2884. Decadal Mode

289[18] The first nonlinear decadal mode for the low-passed
290HCA data extracted from the NLPCA.cir network (Figure
2913b) [Hsieh, 2001] is shown in the PC space (Figure 9). This

Figure 6. Spatial anomaly patterns associated with the NLPC at A, B, D and E in Figure 5b. The
contour interval is 0.4�C, and areas with absolute values over 0.2�C are shaded.
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292 mode explains 72% of the HCA variance, versus only 38%
293 by the first PCA mode. The NLPC q in Figure 10a shows
294 that the decadal variations are characterized by two jumps
295 in q. The first jump, occurring in the early 1980s as detected

296also by linear PCA [Zhang et al., 1999], is closely asso-
297ciated with the large-scale climate regime shift in the
298Pacific Ocean around 1976. While the value at the time-
299point t in the low-passed data is actually averaged from the

Figure 7. Composite of the HCA for several La Niña and El Niño years (see text), averaged over the
extreme month of each episode. The contour interval is 0.4�C, and areas with absolute values over 0.2�C
are shaded.

Figure 8. Time-longitude plot of the reconstructed heat content anomalies along the equator. The
reconstructed HCA is from (a) the first NLPCA mode, (b) the first PCA mode, and (c) the first six PCA
modes. The contour interval is 0.6�C, and areas with absolute values over 0.2�C are shaded.
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300 original data over 61 months, thereby precluding fine
301 temporal resolution, it nevertheless seems that the HCA
302 (which involves subsurface temperature changes to 400 m
303 depth) lags the sea surface condition changes around 1976,
304 suggesting that it may take a few years for the surface
305 regime shift to penetrate into the subsurface waters. The
306 second jump in the early 1990s (Figure 10a) is mainly
307 caused by q jumping from �p to p, rather than by a
308 physical regime shift like the first one. However, a clear
309 contrast between the 1980s and the 1990s has been found in
310 many observations such as sea level pressure, SST, low-
311 level zonal wind, and subsurface ocean heat content anoma-
312 lies in the Pacific [Kleeman et al., 1996; Latif et al., 1997;
313 Ji et al., 1996].

314[19] Decadal dependence of ENSO predictability has
315been found in many ENSO forecast models. While all
316models tended to have very good forecast skills in the
3171980s, they suffered low skills in the 1990s, even with an
318improved initialization strategy [Chen et al., 1997]. It has
319been suggested that the decadal dependence of predictabil-
320ity may be due to the decadal changes in the mean state
321leading to the decadal variability of ENSO [e.g., Wang,
3221995; Zhang et al., 1997]. Several possible mechanisms for
323changing the mean state have been suggested by some
324recent work, including the remote response in the tropical
325atmosphere to the midlatitude decadal oscillations, anthro-
326pogenic global warming, and the interaction between trop-
327ical and extratropical oceans by subduction processes
328[Kleeman and Power, 1999].
329[20] The frequency distribution of the decadal mode
330(Figure 10b) presents a completely different shape than that
331of the interannual mode shown in Figure 5b. The FDC of
332the interannual mode is roughly Gaussian, whereas that of
333the decadal mode shows several spikes distributed over the
334full range of phase angles. As we lack sufficient samples to
335compute the FDC of the decadal mode, the relative short
336data record leads to the spiky frequency distribution. As
337such, the spatial patterns associated with these spikes may
338not be particularly meaningful. Instead, we examine the
339spatial patterns associated with four phases of the decadal
340mode, namely those corresponding to maximum p, max-
341imum q, minimum p, and minimum q (Figure 3b), with their
342locations in the PC space shown in Figure 9.
343[21] The spatial anomalies of the NLPCA1 mode corre-
344sponding to these four phases are shown in Figure 11, where
345Figures 11b and 11d are roughly the negative version of each
346other. Their basic pattern, similar to the linear PCA mode 1
347(Figure 1b), is characterized by an anomaly in the midlati-
348tudes about 40�N and one of the same sign in the western
349tropical Pacific, and by a weak anomaly of the opposite sign
350in the eastern Pacific. The anomaly in the midlatitudes
351appears to connect to the anomaly in the western tropical
352Pacific by a clockwise circulation. Hence this ‘‘subtropical
353gyre’’ pattern depicts a possible link of the decadal oscil-
354lation from the middle latitudes to the tropical Pacific. Such a
355pathway of decadal signals from midlatitudes to the tropics
356has also been proposed by other researchers through data

Figure 9. The first NLPCA.cir mode for low-passed HCA
data plotted as (overlapping) asterisks in the PC1-PC2-PC3

3-D space. The linear (PCA) mode is shown as a dashed
line, and the data points are shown as dots. The circle
denotes the point corresponding to min(q), the diamond
corresponds to max( p), the pentagram corresponds to
max(q), and the hexagram corresponds to min(p). The
plotted PCs have been scaled up by a factor of 10.

Figure 10. (a) NLPC1, q, and (b) NLPC1 FDC. The data have been smoothed by a 61-month running
mean prior to performing NLPCA.cir. Note that q is periodically bounded within (�p, p).
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357 analysis and modeling [e.g., Kleeman et al., 1999; Deser et
358 al., 1999].
359 [22] In contrast to Figures 11b and 11d, the other pair of
360 patterns in Figures 11a and 11c do not resemble each other
361 strongly. The pattern in Figure 11c is characterized by an El
362 Niño-like dipole structure along the equator, with positive
363 anomalies in the east and negative anomalies in the west,
364 suggesting that the pattern depicts the decadal variability of
365 the ENSO mode. Our interpretation is that when the pattern
366 in Figure 11c is on, warm phases of ENSO are reinforced,
367 while cold phases are weakened. The prevalence of warm
368 ENSO conditions in the period from 1991 to 1995 offers
369 one example for this type of interaction between interannual
370 and interdecadal variations. There are also notable midlati-
371 tude anomalies in this decadal phase (Figure 11c).
372 [23] The phase in Figure 11a reveals rather weak anoma-
373 lies, though in the tropics, the anomalies are La Niña-like.
374 The phase would enhance cool episodes and weaken warm
375 episodes. But the fact that the phase in Figure 11a is much
376 weaker than that in Figure 11c implies that the decadal
377 variability for La Niña episodes is much less dramatic than
378 for El Niño episodes.
379 [24] This finding is consistent with the study by A. Wu
380 and W. W. Hsieh (Nonlinear interdecadal changes of the El
381 Nino-Southern Oscillation, submitted to Climate Dynamics,
382 2002) using nonlinear canonical correlation analysis
383 (NLCCA) of wind stress and SST to examine the mid-
384 1970s climate regime shift. During 1981–1999, the location
385 of the equatorial easterly anomalies during cool phases of
386 ENSO was found to be unchanged from that observed in the
387 1961–1975 period, but during warm phases of ENSO, the
388 westerly anomalies were shifted eastward by up to 25�.

389From the position of the wind anomalies, the delayed
390oscillator theory would lengthen the duration of the warm
391episodes, but leave the cool episodes unchanged. Hence the
392NLCCA study also found much larger decadal changes in
393El Niño episodes than in La Niña episodes.
394[25] To further explore the spatial structure of the
395NLPCA1 in the time domain, we plot the Hovmöller
396diagrams for the reconstructed anomalies from the NLPCA1
397along 40�N and along 10�S, the regions of the strongest
398decadal variability (Figures 12 and 13). For comparison, the
399reconstructed anomalies from the linear PCA mode 1 are
400also given.
401[26] As shown in Figures 12a and 13a, decadal changes
402can be clearly seen in the NLPCA1. Along 40�N (Figures
40312a and 12c), the Pacific basin exhibited a positive anomaly
404during the middle 1960s to 1981 with a magnitude of
405+0.6�C–+1.0�C around 1973–1974 centered in the Kur-
406oshio-extension region. The whole Pacific basin shifted to a
407large negative anomaly by 1981, which persisted about 10
408years until 1990, when a new positive anomaly with a
409magnitude of +0.4�C–+0.6�C emerged (Figure 12c). This
410positive anomaly, which is not as wide as the earlier one in
411the 1960s to 1970s, has its center shifted 10–15� toward the
412east compared with the earlier one. Clearly the NLPCA1
413(Figure 12a) models the regime shifts in Figure 12c much
414better than the PCA1 (Figure 12b), which missed the regime
415shift of the 1990s completely.
416[27] Along 10�S (Figures 13a and 13c), from the mid-
4171960s to the late 1970s, a strong positive anomaly in the
418western Pacific coincided with a weak negative anomaly in
419the eastern Pacific. Around early 1981, almost the whole
420Pacific along 10�S shifted to a negative anomaly. This

Figure 11. Spatial patterns corresponding to the four phases labeled in Figure 9 for the NLPCA mode 1.
The contour interval is 0.1�C, and areas with absolute values over 0.1�C are shaded.
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421 negative anomaly persisted around 10 years in the eastern
422 Pacific until about 1990, when the eastern Pacific shifted to
423 a positive anomaly. In the western Pacific, the negative
424 anomaly persisted until the late 1990s.

425 5. The 1980s and 1990s Decadal-Scale Changes

426 [28] Over the last two decades, the upper ocean heat
427 content experienced two prominent changes, resulting in
428 generally warm conditions in the 1970s, cool conditions in
429 the 1980s and mixed conditions in the 1990s, as seen in last
430 section and in other works [e.g., Lysne and Deser, 2002].
431 The large-scale changes in the upper ocean thermal field
432 around 1980 and 1990 can be seen as phase transitions of
433 the decadal mode. Figures 14a and 14b show the differences
434 in the average HCA between the 1970s and 1980s, and
435 between the 1990s and 1980s, respectively. The spatial
436 pattern in Figure 14a strongly resembles one of the phases
437 of the decadal mode (Figure 11d), with a spatial correlation
438 of 0.96, while the pattern in Figure 14b moderately resem-
439 bles Figure 11c, with a correlation of 0.72.
440 [29] There are several hypotheses to explain the mecha-
441 nism of the decadal changes in the upper thermal field in the

442Pacific Ocean. The most popular one is the decadal changes
443in the wind stress curl affecting the gyre-scale patterns of
444the ocean circulation via the Sverdrup balance [Deser et al.,
4451999; Lysne and Deser, 2002]. The decadal signals in the
446wind stress curl are first forced into the surface ocean by
447Ekman pumping, and then transported to the thermocline by
448Rossby wave adjustment with the time of about 2–5 years
449[Deser et al., 1999].
450[30] The occurrence of the decadal changes in SST
451(Figure 15) could be almost simultaneous to the changes
452in the wind around 1976 and 1988. That the decadal change
453in the HCA occurred 2–5 years after the wind change is
454probably due to the adjustment time scale of the subsurface
455ocean to surface changes.
456[31] As the 1980s decadal changes in the HCA lagged the
457surface changes by a longer time compared to the 1990s
458decadal change in the HCA, this suggests that the adjust-
459ment timescale of the subsurface to surface changes is
460considerably longer in the 1980 change than in the 1990
461change. Possibly the physical processes involved in the two
462decadal changes were not completely the same. For exam-
463ple, for the 1990 decadal change, the main anomalies in the
464subsurface (Figure 14b) and the surface (Figure 15b)

Figure 12. Time-longitude plot of the reconstructed heat content anomalies along 40�N. The
reconstructed HCA is based on (a) the first NLPCA mode, (b) the first PCA mode, and (c) the first six
PCA modes (with 93% of the variance of the HCA). The contour interval is 0.2�C, and areas with
absolute values over 0.1�C are shaded.
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465 occurred roughly in the same or neighboring regions,
466 suggesting that the adjustment processes of the subsurface
467 involved considerable vertical mixing and advection. But
468 for the 1980 decadal change, the main anomalous change in
469 the western equatorial subsurface ocean (Figure 14a) is very

470different from changes in the surface (Figure 15a or 15c),
471suggesting that the subsurface adjustment involved consid-
472erable horizontal transmission of the surface signal. Adjust-
473ment in the horizontal direction could involve the Rossby
474wave adjustment timescale, resulting in the longer response

Figure 13. As for Figure 12, but along 10�S.

Figure 14. Differences in mean upper ocean heat content by (a) subtracting the mean of the 1970s from
the mean of the 1980s and (b) subtracting the mean of the 1980s from the mean of 1990s. The contour
interval is 0.2�C. Shading denotes the regions where the two-tailed t-test for difference in means exceeds
the 95% confidence level.
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475 time of the subsurface to surface in the 1980 change than in
476 the 1990 change. In addition, a much slower process of
477 subduction along the subtropical oceanic gyre may also be
478 involved in the 1980s subsurface decadal change as sug-
479 gested by Figure 14a.

480 6. Summary and Conclusion

481 [32] We applied the nonlinear principal component anal-
482 ysis technique to the observed upper ocean heat content
483 anomalies in the Pacific basin from 1961 to 2000, and
484 extracted the leading interannual and decadal modes. For
485 the leading nonlinear interannual mode, the spatial anoma-
486 lies are strongest in the equatorial Pacific, with an ENSO
487 east-west seesaw pattern. As the nonlinear mode is not
488 limited to a standing wave spatial anomaly pattern, it reveals
489 considerable asymmetry between strong La Niña and strong
490 El Niño. During strong El Niño, the negative anomaly in the
491 equatorial western Pacific is much stronger than the positive
492 anomaly found in this region during strong La Niña. This
493 nonlinear interannual mode also manifests eastward phase
494 propagation along the equator (Figure 8), in contrast to the
495 standing wave found in the linear mode 1.
496 [33] Four phases of the nonlinear decadal mode were
497 examined. Two of them are roughly mirror images of each
498 other, both showing a subtropical gyre pattern with the large
499 anomaly in the midlatitudes circulating clockwise around
500 the subtropical gyre towards the western tropical Pacific, a

501possible link from the middle latitudes to the tropical Pacific
502in the decadal mode. Two other phases of the decadal mode
503are related to decadal changes in the La Niña and El Niño
504characteristics. Since the one associated with La Niña has
505much weaker anomalies than the one associated with El
506Niño, it follows that the decadal changes in the character-
507istics of La Niña episodes are much weaker than the
508changes for El Niño episodes.
509[34] Over the last 2 decades, the nonlinear decadal mode
510experienced two phase shifts in 1981 and 1990, respectively,
511leading to the remarkable decadal changes in the upper
512ocean heat content in the 1980s and 1990s. From the
513equatorial to midlatitude Pacific, positive HCA during the
514mid-1960s to the late 1970s reversed to negative HCA
515around 1981. The regime shift around 1990 was also well
516represented by the nonlinear decadal mode; the negative
517anomalies in the midlatitudes and in the equatorial region in
518the 1980s reversed to positive anomalies around 1990 in the
519central midlatitude region and in the eastern equatorial
520Pacific. Prior to the two decadal changes in HCA, wind
521stress (curl) also changed in 1976 and 1988. While the SST
522changes were almost simultaneous with the wind changes,
523the HCA changes were delayed 2–5 years, corresponding to
524the Rossby wave adjustment timescale of the subsurface
525waters to surface changes.
526[35] The HCA change around 1980 was quite different
527from the one around 1990 in that the former occurred after
528the wind change with a much longer time delay than the

Figure 15. Differences in mean SST by (a) subtracting the mean of 1967–1976 from the mean of
1977–1986, (b) subtracting the mean of 1979–1988 from the mean of 1989–1997, (c) subtracting the
1970s from the 1980s, and (d) subtracting the 1980s from the 1990s. The years of surface wind changes
were around 1976 and 1988, while the HCA changes were around 1980 and 1990; hence Figures 15c and
15d are provided to temporally match Figure 14. The contour interval is 0.2�C. Shading denotes the
regions where the two-tailed t-test for difference in means exceeds 95% confidence.
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529 latter. The former (Figure 14a) showed the anomaly link
530 from the midlatitudes to the western tropical Pacific via the
531 subtropical gyre, while the latter (Figure 14b) did not. The
532 former was also more different from the corresponding SST
533 anomalies (Figure 15a) than the latter was from SST (Figure
534 15b), suggesting that the signals involved more horizontal
535 transmission in the former than in the latter, where the
536 surface signals appeared to be transmitted more vertically to
537 the subsurface. The leading linear PCA mode was able to
538 detect the former change but not the latter, which was
539 clearly detected by the leading nonlinear PCA mode.
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