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ABSTRACT

In this study, ensemble predictions were constructed using two realistic ENSO prediction models and
stochastic optimals. By applying a recently developed theoretical framework, the authors have explored
several important issues relating to ENSO predictability including reliability measures of ENSO dynamical
predictions and the dominant precursors that control reliability. It was found that prediction utility (R),
defined by relative entropy, is a useful measure for the reliability of ENSO dynamical predictions, such that
the larger the value of R, the more reliable the prediction. The prediction utility R consists of two com-
ponents, a dispersion component (DC) associated with the ensemble spread and a signal component (SC)
determined by the predictive mean signals. Results show that the prediction utility R is dominated by SC.

Using a linear stochastic dynamical system, SC was examined further and found to be intrinsically related
to the leading eigenmode amplitude of the initial conditions. This finding was validated by actual model
prediction results and is also consistent with other recent work. The relationship between R and SC has
particular practical significance for ENSO predictability studies, since it provides an inexpensive and robust
method for exploring forecast uncertainties without the need for costly ensemble runs.

1. Introduction

Generally, there are two kinds of climate predictabil-
ity studies associated with different sources of predic-
tion errors. The first addresses how uncertainties in an
initial state of the climate system affect the prediction
of a later state, whereas the second addresses how the
growth of the parameterization errors, including the
uncertainties of boundary conditions, evolves in a dy-
namical system. ENSO prediction is an initial value
problem, and the future evolution of the system de-
pends critically on the initial state from which it started,
so initial-condition errors have a large impact on model
skill and the growth of forecast errors. The first kind of
predictability has attracted a lot of attention (e.g.,
Moore and Kleeman 1998; Kleeman and Moore 1999;
Chen et al. 1997; Xue et al. 1997). This is particularly
interesting from a practical point of view since certain
types of ocean states are known to be more predictable
than others.

Predicting the first kind of forecast uncertainty is
equivalent to solving the Liouville equation for the
probability density function (pdf) of the climate state
(Epstein 1969; Palmer 1999). However, it is impractical
to solve such an equation due to the huge dimension-
ality of the climate system (e.g., 106 variables for a typi-
cal climate model) and because the initial pdf is gener-
ally unknown. A practical solution is to approximately
approach the pdf using a finite number of ensembles by
a specific technique (Kleeman and Majda 2005). Espe-
cially, for a Gaussian or approximate Gaussian process,
ensemble prediction could generate a good approxima-
tion for the pdf.

An important issue in the study of predictability is to
seek a measure of forecast uncertainty. Typically, there
are two kinds of measures widely used in the study of
ENSO predictability. One is ensemble spread, and
Moore and Kleeman (1998) have shown that, when
spread is small, skill is invariably good whereas, when it
is large, skill is much more variable. A similar relation-
ship has also been noted in ensemble numerical
weather prediction (Buizza and Palmer 1998) and in
other ENSO models (e.g., Xue et al. 1997). On the
other hand, Kirtman and Shukla (1998) have shown
that ensemble spread is not a good indicator of skill,
and both Buizza and Palmer (1998) and Moore and
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Kleeman (1998) note that such relationships can be
norm dependent. An alternate criterion that has been
used for determining forecast skill is the leading eigen-
mode amplitude (signal size) of the forecast initial con-
ditions (Kleeman and Moore 1999, hereafter KM99).
KM99 showed that periods in which the long period,
slowly decaying normal modes of the dynamical system
are present with large amplitude should be intrinsically
more predictable because such modes are able to resist
dissipation by the more chaotic or stochastic compo-
nents of the system.

Using information theory, Kleeman (2002) recently
proposed a general framework to explain why the two
reliability measures discussed above are central to pre-
dictability studies. With simple conceptual models, he
found that the prediction utility, defined by the relative
entropy of the prediction and climatological pdfs, is a
good measure of the reliability of predictions. When
the pdfs are Gaussian, the utility consists of two com-
ponents, one is the dispersion component associated
with the ensemble spread and the other is the signal
component related to the leading eigenmode ampli-
tudes present in the initial conditions.

In this paper, we will use realistic ENSO models to
further explore and examine the notion of the utility
and to attempt to answer two central questions: 1)
What are appropriate measures of the reliability of
ENSO dynamical predictions and 2) what are the dom-
inant precursors that control variations in reliability?
This paper is structured as follows: Section 2 briefly
describes the models and initialization scheme used.
Section 3 introduces the ideas central to prediction util-
ity and proposes a practical algorithm for its computa-
tion. Section 4 describes the strategy and methodology
used in the ensemble experiments, while a reduced
space in which the utility is evaluated is discussed in
section 5. Utility analyses for two coupled models are
presented in sections 6 and 7. A summary and discus-
sion are given in section 8.

2. The coupled models and initialization scheme

a. The coupled models

Two hybrid coupled models (HCMs), an ocean gen-
eral circulation model (OGCM) coupled to a statistical
atmosphere (hereafter HCM1) and the same ocean
model coupled to a dynamical atmospheric model of
intermediate complexity (hereafter HCM2), were used
for this study. The different atmospheric components in
the two HCMs allow us to examine a theoretical frame-
work to measure reliability of ENSO predictions in
more general terms and to confirm the robustness of
results across model formulations.

The ocean model used is based on the Océan Par-
allélisé (OPA) version 8.1 (Madec et al. 1998), a primi-
tive equation OGCM. The model uses an Arakawa C
grid and was configured for the tropical Pacific Ocean

between 30°N–30°S, 120°E–75°W. The horizontal reso-
lution in the zonal direction is 1°, while the resolution in
the meridional direction is 0.5° within 5° of the equator,
smoothly increasing to 2.0° at 30°N and 30°S. There
were 25 vertical levels with 17 concentrated in the top
250 m of the ocean. The time step of integration was
1.5 h and all boundaries were closed, with no slip con-
ditions. A turbulent closure hypothesis was used to pa-
rameterize subgrid-scale physical processes where
small-scale horizontal and vertical transports are evalu-
ated in terms of diffusion coefficients and derivatives of
the large-scale flow as described by Blanke and Dele-
cluse (1993). The detailed formulation and configura-
tion of the ocean model and its performance in simu-
lating the tropical Pacific can be found in Vialard et al.
(2002).

The statistical atmospheric model is a linear model
identical to that of Barnett et al. (1993) and Tang et al.
(2004), which predicts the contemporaneous surface
wind stress anomalies from sea surface temperature
anomalies (SSTA). The seasonal variations of the re-
sponses of wind stress to SST were also included so that
for each month there is essentially a different atmo-
spheric model. The model was trained using National
Centers for Environmental Prediction (NCEP) atmo-
spheric reanalysis wind products and Reynolds–Smith
SST observations (Smith et al. 1996) from 1951 to 1980.
Therefore, the ensemble experiments performed for
the period 1981–98 in the next sections are completely
independent of the construction of the atmospheric
model. This strategy eliminates any artificial skill when
evaluating the hindcast skills.

The dynamical atmospheric model consists of a Gill-
type steady- state model, which has been used for rou-
tine ENSO prediction and for the study of climate pre-
dictability, developed by Kleeman (1991, referred to as
the Kleeman model hereafter). The model computes
global anomalies relative to the observed seasonal cycle
of surface wind and mean atmospheric wind at 850 mb.
When the Kleeman model was coupled to the OGCM,
the OGCM provides SST anomalies to the atmospheric
model. The atmosphere is heated by Newtonian cool-
ing/relaxation to the SST anomaly and by latent heating
due to deep penetrative convection via a simple moist
static energy-dependent convection scheme. In both
coupled models, the OGCM was forced by the sum of
the associated wind anomalies computed by the atmo-
spheric model and the observed monthly mean clima-
tological winds.

b. The initialization scheme

A very important task in ENSO prediction is to de-
termine the oceanic initial conditions. It has been found
that initialization with subsurface in situ temperature
observations can significantly improve ENSO predic-
tion skill (e.g., Ji et al. 2000; Segschneider et al. 2001;
Tang and Hsieh 2003). However, due to relatively spa-
tially sparse and temporally sporadic subsurface in situ
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observations, a great deal of effort is required to pro-
cess and assimilate the data in models. For simplicity,
we use the NCEP ocean analysis dataset to initialize
our prediction models. Compared with the sparse and
sporadic real observations, existing analysis products
are easier and more convenient to use since they are
regular gridded datasets. The possibility of initializing
ENSO prediction models by assimilating NCEP subsur-
face temperature analyses via a 3DVAR algorithm has
been explored in details by Tang et al. (2003, 2004). The
results show that the NCEP analysis product can effec-
tively improve the prediction of Niño-3 (5°N–5°S, 150°–
90°W) SSTA at all lead times up to 12 months (in par-
ticular for lead times over 4 to 6 months). The oceanic
analysis from the assimilation with existing NCEP
analysis products can be as good as those generated by
directly assimilating subsurface in situ temperature ob-
servations.

Using an assimilation scheme identical to that of
Tang et al. (2003), we obtained oceanic analyses for the
period 1981–98. Figure 1 shows the hindcast skills for
HCM1 and HCM2 initialized with the oceanic analyses
for period from 1981 to 1998. As can be seen, both
HCM1 and HCM2 have a reasonable prediction skill
for Niño-3 SSTA, especially for prediction lead times
within 6 months, the time scale of interest in this study.
This allows us to apply both models for further study on
ENSO predictability.

3. Prediction utility and ensemble prediction

a. Relative entropy and prediction utility

In a dynamical system there is a certain amount of a
priori information available before an ensemble (or sta-
tistical) prediction is made. This consists of historical
information about the system such as climatological
mean, standard deviation, and so on. A prediction fur-
ther augments this prior information, and the addi-
tional information provided by the prediction consti-
tutes what we should refer to as the utility of the pre-
diction. Information theory (Cover and Thomas 1991)
allows us to precisely quantify this additional informa-
tion using a function known as relative entropy that,
crudely speaking, measures the distance between the
prediction pdf and the climatological pdf. If a discrete
set of states is being predicted, the relative entropy, R,
is given by

R � �
i

pi ln
pi

qi
, �1�

where qi is the climatological distribution and pi is that
for the prediction.

In the case where the pdfs are Gaussian, which is
approximately the case in many practical cases (includ-
ing ENSO prediction), the relative entropy may be cal-

FIG. 1. (a) Prediction skill based on anomaly correlation and (b) rmse of Niño-3 SSTA for
HCM1 and HCM2, and persistence. The prediction skill is evaluated for the single realization
without the noise forcing.
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culated exactly in terms of the predictive and climato-
logical variances and the difference between their
means. The resulting analytical expression for the rela-
tive entropy (or utility as we have interpreted it) is
given by (Kleeman 2002):

R �
1
2 �ln�det��q

2�

det��p
2�
� � tr��p

2��q
2��1�

� ��p � �q�T��q
2��1��p � �q� � n�. �2�

Here, the �q and �p are the climatological and predic-
tive covariance matrices while �q and �p are the clima-
tological and predictive mean vectors of the system; n is
the number of degrees of freedom. From (2), we can
deduce that R is composed of two components: (i) a
reduction in climatological uncertainty by the predic-
tion [the first two terms on the rhs of (2)] and (ii) a
difference in the predictive and climatological means
[the last two terms on the rhs of (2)]. These components
can be interpreted respectrively as the dispersion and
signal components of the utility of a prediction (Klee-
man 2002). A larger R indicates that more useful infor-
mation is being supplied by the prediction, which could
be interpreted as making it more reliable.

b. The stochastic optimal perturbations and
ensemble prediction

To compute the utility R it is necessary to estimate
the first and second momentums of the climatology and
prediction pdfs. The estimates of the mean vector (�q)
and variance matrix (�q) of climatology are straightfor-
ward using a relatively long run of the coupled model.
To estimate �p and �p for a specific lead time, we can
use ensemble prediction, which allows us to increase
the prediction samples for the specific lead time when
only a limited observation set is available. There are at
present two typical methods used to perturb the initial
conditions for constructing ensemble forecasts, breed-
ing vectors and singular vectors (Toth and Kalnay 1993;
Molteni and Palmer 1993). A recent comparison be-
tween the two methods has revealed that bred-vector
ensembles provide an average error distribution more
similar to a Monte Carlo distribution, while the singu-
lar-vector ensemble provides a more reliable estimate
of the upper bound on error growth (Trevisan et al.
2001). Studies of ENSO predictability have so far
mainly considered singular vectors.

While singular vectors can measure the fast error
growth associate with uncertainties in the initial condi-
tions, these fail to consider the influence of stochastic
processes on predictions. Such stochastic processes are
not described by our hybrid coupled models in which a
steady-state atmosphere is used. However the impact of
stochastic processes such as the Madden–Julian oscilla-
tion and westerly wind bursts on ENSO may be signifi-

cant (Zavala-Garay et al. 2003). Stochastic processes
therefore cannot be ignored when forecasting the real
coupled system.

Farrell et al. (1993) and Kleeman and Moore (1997)
introduced the idea of stochastic optimals (SOs) to rep-
resent the effect of stochastic processes on prediction
errors. For white noise in time, the stochastic optimals
are defined by the eigenvectors of the operator S

S � �
0

T

A*�t, 0� UA�t, 0� dt. �3�

Here T is the forecast interval of interest and is as-
sumed to be 12 months in this study, A(t, 0) is the
forward tangent propagator of the linearized dynamical
model that advances the state vector of the system from
time 0 to time t, A*(t, 0) is the adjoint of A(t, 0), and the
matrix U defines the norm of interest. In this study, we
use a seminorm defined as the square of the Niño-3
SSTAs.

In the present study, the SOs are taken to represent
uncertainties associated with stochastic events in the
coupled ocean–atmosphere system that can be ampli-
fied by the dynamical model during the forecast inter-
val T, which in turn leads to forecast error growth. A
detailed description of the stochastic optimals used in
the present study can be found in Moore et al. (2005,
manuscript submitted to J. Climate, hereafter M05).

It is worth noting that the traditional singular vectors
are defined by the eigenvectors of the operator A*(t,
0)UA(t, 0). The methodology described in Kleeman
and Moore (1997) and M05 thus enables us to compute
the SOs for all times up to T at the same computational
cost as the singular vectors.

After computing the SOs, a series of new model
states, denoted X, were obtained by perturbing the
model with a stochastic forcing composed of the leading
SOs, that is,

dXi

dt
� N�Xi� � �QTi�t�. �4�

Here Xi(t) are the model state vectors at time t ; N is the
coupled model nonlinear operator, Q is the matrix of
the leading SOs with unit variance; Ti(t) is a random red
noise with the unit variance, and � is a dimensional
factor. Since the variances of Q and T are set to unity,
� actually represents the variance of stochastic forcing,
i denotes a different random red noise as i changes from
1, 2, . . . to M, where M represents ensemble size.

There are several important issues in the construc-
tion of the stochastic forcing fi � �QTi(t). One is the
choice of the forcing fields that will be perturbed and
the second is the variance assigned to fi. For the former,
we consider heat flux and wind stress, as both dominate
the coupling behaviors of coupled models and play a
crucial role in controlling forecast error growth (Moore
and Kleeman 1998, 1999). For the second issue, there
are several ways to extract the stochastic components
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from observations as discussed in Kleeman and Moore
(1997). Here, the variance of fi is estimated from high-
pass filtered estimates of heat flux and wind stress from
NCEP–National Center for Atmospheric Research
(NCAR) reanalysis. This is because the noise is rela-
tively much stronger in high-frequency components
than in low-frequency components although it could
occur on all time and space scales. In fact, we find that
the noise variance of fi is only little sensitive to our
predictability results that will be presented in following
discussion (see section 7).

Figure 2 shows the variance of f defined in this way
for wind stress and heat flux in 1997. As shown in the
figure, their variances vary spatially with large ampli-
tudes in subtropical region and small amplitudes in the
region along the equator, indicative of strong stochastic
forcing in the subtropics associated with synoptic vari-
ability. Over the equatorial Pacific Ocean, the stochas-
tic forcing is relatively small since large amplitude in-
terannual variability dominates in this region.

Since our interest here is ENSO, we only focus on the
equatorial region. As shown in Fig. 2, the variance of fi

in this region is relatively small. Based on Fig. 2, we
choose the variance of fi to be 0.02 N2 m�4 for wind
stress and 30 W m�2 for heat flux. These estimates are
also consistent with those of Zavala-Garay et al. (2003).
It should be noted that the variance in Fig. 2 changes
little in time.

Another issue relative to (4) is the number of SOs
that should be used. Two factors will be explored here
for determining the truncation, that is, the variance ex-
plained by each SO and the sensitivity of experiments
to the number of SOs. For HCM1, the first two SO
modes account for over 90% of the variability that
would result in the coupled model (M05). In addition,
M05 show that the first SO of each model is present in
estimates of fi based on NCEP reanalysis data with a
significant amplitude. Sensitivity experiments indicated
that after the first two SOs, additional SOs have a
rather small influence on forecast error growth. Thus,
the first five SOs were used to obtain fi for HCM1.
However for HCM2, the first ten SOs are required for
the same purpose.

The procedure for ensemble generation for the pe-
riod 1981 to 1998 can be summarized as follows:

(i) NCEP subsurface analysis temperatures were as-
similated in the OGCM using a 3DVar algorithm
to generate initial conditions for each ensemble
member.

(ii) Hindcasts of 12 months duration were performed
using HCM1 and HCM2, and the forecast trajec-
tories were saved for each start date (i.e., 1 Janu-
ary, 1 April, 1 July, and 1 October of each year).

(iii) The SOs of each hindcast trajectory in (ii) were
computed using the tangent linear and adjoint op-
erator of HCM1 and HCM2 according to (3).

(iv) Each ensemble member was generated by rerun-

ning the hindcasts with a stochastic forcing term
added to the wind stress and heat flux forcing with
a different red-noise time series Ti(t) in (4). In this
study, the ensemble size M was chosen to be 31.

4. Reduced space

Using the ensemble hindcasts, it is straightforward to
calculate the prediction utility R for each start date
using (2). However, the large state dimension of each
coupled model somewhat complicates this calculation
because of the computational cost of computing the
covariance matrix �2

q in (2) and its determinant. There-
fore, for practical reasons, a reduced state space will be
used that represents the ENSO characteristics of each
model.

Obtaining a suitable reduced space from the original
model space is an interesting question in its own right
(Kleeman et al. 2003; M05) The basic procedure is to
project the original space onto a set of specific spatial
patterns that represent the most significant character-
istics of interest in the original space. The simplest
method is a regional average (e.g., Niño-3 index) to
reduce the original space to one 1D index. Another
method widely used is EOF analysis by which the origi-
nal space can be reduced to a few leading principal
components. In this study, we will use principal oscilla-
tion patterns (POPs; Hasselmann 1988) to obtain a re-
duced space for (2). In contrast to EOFs, which de-
scribe the stationary patterns that account for differing
fractions of the variance, POPs describe the oscillatory
behavior of the field since they actually represent
eigenmodes of a filtered linear stochastic process (Xu
and von Storch 1990). As such, the POPs better char-
acterize the behaviors of ENSO and its physics than do
traditional EOFs.

As the propagator matrix (L) of a linear system (e.g.,
the tangent linear operator of the original model) used
to derive POPs is usually asymmetric, the POPs do not
form a set of orthogonal patterns, so the POPs coeffi-
cients characterizing the reduced space are not given as
the dot product of the patterns with the original field.
This complicates the calculation of obtaining the re-
duced space. One effective method is to calculate ad-
joint POPs (APOPs), which are the eigenmodes of the
adjoint matrix of L. By definition, the APOPs and con-
ventional POPs form a biorthogonal set so that the re-
duced space can be obtained by the dot product of the
APOPs with the original field.

The POPs and APOPs were obtained as described by
Penland and Sardeshmukh (1995). We choose heat con-
tent anomalies (HCA)1 to explore the prediction utility
of the dynamical models because it is the primary

1 Heat content is defined here as the integral of the temperature
over the upper 250 m, calculated from HC � (�ihiTi/�ihi) where
hi and Ti are the thickness and temperature of level i, respectively.
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source of memory for the coupled system and is impor-
tant for ENSO dynamics. Fluctuations in HCA are both
systematic and significant in the evolution of ENSO
(Tang and Hsieh 2003) and are thus an effective pre-
cursor of ENSO prediction. In addition, the HCAs are

also coincident anomalous features of the sea surface
height and thermocline.

Figure 3 shows the real and imaginary components of
the dominant POP and APOP (mode 1) of HCA, com-
puted from the OGCM forced with observed wind

FIG. 2. Noise variance of heat flux and zonal wind stress for 1997, derived from NCEP
reanalysis wind after the low-frequency signals with periods of 7 days and longer have been
removed.
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stress from 1961 to 1998. The dominant POPs and
APOPs identify the mode having a period of 28 months
and the decay time scale of 20 months relative to the
period. As shown in Fig. 3, the characteristics of the
POPs are very similar to those found in KM99: 1) Fig.
3a has a dipole zonal structure involving a western Pa-
cific Rossby wave-like response of one sign and an east-
ern Pacific Kelvin wave-like response of the opposite
sign; 2) Fig. 3b has a large amplitude signal of the one
sign located mainly in the equatorial central/eastern Pa-
cific. These patterns agree with the idea of a heat con-
tent buildup prior to El Niño as postulated by Wyrtki
(1975) and Jin (1997). Based on the traditional inter-
pretation of POPs (Tang 2002), Figs. 3a,b are consistent
with the delayed-action oscillator mechanism of Battisti
(1988). They are also very similar to in structure the
first two EOFs, which explain 80% of the heat content
variability of the observations (not shown). Thus the
reduced state space is effective in capturing a large
amount of pointwise variance of the system.

Figures 3c,d show the spatial patterns of the APOP,
which are used to obtain the reduced space. Compared
to the POPs, the real component of the APOP resembles
the imaginary part of POP mode, whereas the imagi-
nary part of APOP is similar to the real part of the POP.

5. Prediction utility of the coupled models

a. The relation of prediction utility to prediction
skill

Since (2) was derived based on a Gaussian assump-
tion, we first examine the validity of this assumption
prior to calculating the prediction utility. Figure 4 is an
estimate of the pdf for Niño-3 HCA index predicted by
HCM1 at lead times of 6 and 9 months. The pdf was
obtained using ensemble predictions of 100 members
with a randomly chosen initial condition. The first five
SOs are used to perturb wind stress and heat flux forc-
ings as described in section 3b. Figure 4 clearly indi-
cates that the Gaussian assumption roughly holds for
both cases. An examination of other variables such as
SST and HCM2, produced similar results (not shown).
However, as the lead time increases to 9 months, the
Gaussian assumption no longer effectively holds and
the pdfs become somewhat bimodal.

Displayed in Fig. 5 are the variations of prediction
utility R for HCM1 and HCM2 during the period from
1981 to 1998 as a function of lead time and initial time.
It is apparent that large prediction utility mainly resides
in a few predictions such as those of the 1982–83 and
1997–98 ENSO events. For many other predictions, R is

FIG. 3. Real and imaginary components of the first POP and APOP mode for HCA. Contour values are scaled
by a factor of 10.
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small and exhibits significantly less variations with lead
time. Since R measures the amount of extra informa-
tion that resides in each prediction, a large value of R
suggests a more informative and accurate prediction,
whereas a small value of R often accompanies poor
predictions. Figure 6 shows several predictions from
HCM1, with both large and small values of R. It is
obvious from Figs. 5 and 6 that the predictions with a
large R are much better than those with a small R,
compared with observations. The same is true for
HCM2 (not shown).

To further explore the relation between prediction
utility and prediction skill, we examine the contribution
of each prediction to correlation skill r, traditionally
defined as

r�t� �
1
N �

i

T i
p�t�Ti

o�t�, �5�

where T denotes the normalized Niño-3 SSTA index
with zero mean, p is for prediction, and o for observa-

FIG. 5. Heat content (HC) prediction utility for HCM1 and HCM2 in POP reduced space.

FIG. 4. (a) Niño-3 HCA index predicted by HCM1, as a function
of prediction ensemble and (b) its pdf at a lead time of 6 months;
(c), (d) As in (a) and (b) but for a lead time of 9 months.
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tion; t denotes the lead time of the prediction and N is
the number of samples used to calculate r.

The contribution of each prediction to r(t), denoted
as C, can be measured by

Ci�t� �
N�1Ti

p�t�Ti
o�t�

r�t�
� 100%. �6�

Figure 7 shows variations of C with lead time and initial
time for HCM1 and HCM2. A striking feature shown in
Fig. 7 is that there is a large variation of C with initial
conditions. While some initial conditions lead to good
predictions that account for significant contributions to
r, most initial conditions correspond with a very small
C. On the other hand, the variation of C with lead time
is small, which seems reminiscent of the fact that the
initial conditions play a critical role in ENSO prediction
skill for all lead times.

Comparing Fig. 7 with Fig. 5 reveals that a large C
generally corresponds to a large R. This is particularly
true for HCM1, and for several typical ENSO events.
For example, the utility R is far larger in the predictions
initialized in 1983 and 1997–98 than at other times. Cor-
respondingly, the accumulated contributions C to r(t)
from these predictions exceeds 30%. The relationship
between R and C is further demonstrated in Figs. 8 and
9, which compare R and C for both models at two typi-

cal leading times (3 and 6 months). For HCM1, the
correlation coefficient between R and C is 0.80 and 0.68
respectivelyat lead times of 3 and 6 months. The cor-
relation between R and C is smaller in HCM2 than in
HCM1. As shown in Fig. 9, R at 6-month lead time is
significantly smaller than that at a 3-month lead time; in
particular R is smaller in 1997–98 than in 1983. These
are very different compared to HCM1 shown in Fig. 8,
and seem unrealistic. It is not very clear why HCM2
displays these features that are absent in HCM1. One
probable reason is that the POP reduced space used
might be more suitable for HCM1. However, when the
precise eigenmodes that were derived from HCM2’s
tangent-linear adjoint model are used, R still displays
similar features (not shown). Nevertheless, the correla-
tion coefficients still reach 0.71 and 0.53 at 3- and
6-month lead time for HCM2, which far exceed statis-
tical significance. On the other hand, C in Figs. 9a,b also
displays some features similar to Figs. 9c,d. For ex-
ample, C at 6-month lead time is also slightly smaller in
1997–98 than in 1983. In this sense, the variations of R
and C show rough consistency.

As demonstrated in Figs. 5 and 7, the large R and C
values are mainly associated with predictions of large
amplitude ENSO events. For most predictions, R and C
are relatively small. This implies that the prediction

FIG. 6. HCM1 predicted and observed Niño-3 SSTA for several prediction cases. The value of R is for a lead
time of 3 months. The prediction skill is evaluated for the single realization without the noise forcing.
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skills displayed in Fig. 1 may be mainly due to a few
predictions. To explore this further, we recalculated the
prediction skills for HCM1 and HCM2 after the 13 pre-
dictions with large R were removed. This is shown in
Fig. 10. As can be seen, the prediction skill decreases
dramatically and is even worse than persistence when
the large R predictions are excluded. The vertical bar in
Fig. 10 is an estimate of the correlation error bar after
randomly removing any 13 predictions and was ob-
tained by a bootstrap method (Tang et al. 2003). Obvi-
ously, the difference in the correlation skill shown in
Fig. 10 significantly exceeds the correlation error due to
the uncertainty of the finite sample size. This clearly
indicates the critical importance of these predictions to
model prediction skill.

b. The relations between prediction utility and the
signal and dispersion components

In the previous subsection, we explored the relation
between the prediction utility and model prediction

skill. Our results show that prediction utility R is a good
indicator for prediction reliability. When R is large, the
prediction is typically good, whereas when R is small,
the prediction is often relatively poor. In this subsec-
tion, we will examine what determines variations in R.

The first two terms on the rhs of (2) are determined
by the climatological variance and predictive variance.
Since variance of climatology is time invariant, these
terms represent a measurement of the dispersion or
spread of the ensemble. The third term on the rhs of (2)
is governed by the amplitude of the predicted mean
field (L-2 norm), measuring the contribution of the pre-
dicted signal size to R. Kleeman (2002) refers to the
first two terms minus n as the dispersion component
(DC) and the third term as the signal component (SC).
Therefore, we have R � DC � SC.

Figures 11 and 12 show the variation of SC and DC as
a function of lead time and initial time for the period
from 1981 to 1998 for HCM1 and HCM2. Both figures
reveal that SC is significantly larger than DC, and that
SC decreases with lead times. It is straightforward to

FIG. 7. Contribution of each prediction to correlation skill for (a) HCM1 and (b) HCM2.
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FIG. 8. Prediction utility R and the contribution of each prediction to correlation skill C for HCM1 at
lead times of 3 and 6 months.

FIG. 9. As in Fig. 8 but for HCM2.
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understand the variation of SC with lead time since the
system dissipates initial signals and reduces oscillation
amplitudes at long lead times, leading to a small differ-
ence between the ensemble mean and the climatology.
It is physically equivalent to the fact that the useful
information contained in initial states will be gradually
dissipated by stochastic processes with increasing lead
time. In the next section, we will clearly show that SC is
governed by the prediction initial state.

Unlike SC, the differences of DC among different
initial conditions are of little significant for short lead
time of 1 to 2 months. This is especially obvious for
HCM2 as shown in Fig. 12: DC decreases with lead
times of 1–2 months. This is because (i) the ensemble
spread �p is usually relatively small initially so that the
first item of DC dominates its variations [see Eq. (2)]
and (ii) the �p increases during the period. After the
initial period, in most cases, the first term and the sec-
ond term balance each other so DC stabilizes with lead
time. For lead times of 4 to 6 months, the second term
of DC outweighs the first item for some cases due to
large ensemble spread �p, resulting in an increase of
DC. Figure 13 shows the variation of DC and its two
components for HCM1 for a typical case, arbitrarily
chosen in October 1986.

Comparing Fig. 5 with Figs. 11 and 12 reveals that R
is dominated by SC and that the DC contribution
is small. Figures 14 and 15 show the relation of SC
and DC to R at the lead time of 3 and 6 months for
both models, respectively. As can be seen, R and SC
vary linearly with a slope of unity. The correlation
coefficients between R and SC are all over 0.95. In
contrast to the good relation between SC and R, how-
ever, the relation between DC and R is much less sig-
nificant.

Overall, the prediction utility R is mainly determined
by the signal component SC. When the predictive mean
signals are large, R is also large, suggesting that such
predictions are reliable.

It should be noted that the good relation between SC
and C is little sensitive to the choice of the variance of
noise. As discussed in section 3b, the variance of noise
is based on the high-pass filtered estimates, which
might overestimate the amplitude of noise occurring at
low frequency components. In order to examine the
sensitivity of the noise amplitude to the results, we car-
ried out a new set of ensemble predictions for a ran-
domly chosen period (1981–85). In the new ensemble
predictions, everything is kept the same as in the origi-
nal ones presented in this paper but the variance of

FIG. 10. Correlation skills for (a) HCM1 and (b) HCM2. The predictions are initialized from
Jan 1981 to Oct 1998, three months apart. The solid line is the skill calculated using all
prediction samples; the dashed line is the skill after removing the prediction cases Oct 1982,
Jan 1983, Apr 1983, Jul 1988, Oct 1988, Jan 1989, Apr 1989, Jan 1997, Apr 1997, Jul 1997, Oct
1997, Jan 1998, and Apr 1998; dotted line is persistence skill. The vertical bar represents the
error bar after randomly removing any 13 predictions.
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stochastic forcing in Eq. (4) is doubled. The sensitivity
experiments are shown in Fig. 16, indicating that the
results presented above have very little sensitivity to
the choice of the noise variance.

In the next section, we will find that SC is directly
related to the eigenmode amplitudes present in the ini-
tial conditions. Using reasonable assumptions, KM99
proved that in theory the prediction correlation skills
r(t) can be measured by the predictive mean signals.
This is consistent with the above result that DC has a
small contribution to R. In KM99, the eigenmodes were
represented by the leading POP modes. They argued
that the periods during which slowly decaying eigen-
modes are present with large amplitude should be in-
trinsically more predictable because such modes are
able to resist dissipation by the more chaotic compo-
nents of the system.

6. A simplified framework to measure prediction
uncertainty

By applying relative entropy theory to two HCMs,
we have shown that the prediction utility defined by (2)
can effectively measure the reliability of ENSO predic-
tions. However, evaluating (2) requires large ensembles
of predictions, which greatly limits its application to
more complex models, such as fully coupled GCMs. It
is therefore in our best interest to explore more simple
methods for estimating prediction utility. In this sec-
tion, we will apply linear theory for this purpose.

FIG. 13. The variation of DC and its two components with lead
time for a typical case. The first term is ln[det(� 2

q)/det(� 2
p)] and

the second term istr[(� 2
p)(� �2

q )].

FIG. 14. The relation of SC and DC to R for HCM1 at several different lead times.
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Many studies suggest that ENSO can be described as
a linear, damped, stochastically forced system (e.g.,
KM99; Kleeman and Moore 1997; Moore and Kleeman
1999; Xue et al. 1994, 1997; Penland and Sardeshmukh
1995). Following these works, ENSO can be modeled
by the following discrete, linear, stochastic equation,

Xk � �k�1Xk�1 � wk�1, �7�

where Xk�1 is the system state vector at the time k � 1,
Xk is its value at the time k, �k�1 is the state transition
matrix for the system at the time k, wk–1 is a white noise,
that is, E	wk
 � 0, E	wt1

wt2

 � �(t1 � t2)Q (Q is a time

invariant matrix), and E	·
 denotes the expectation op-
erator.

The state transition matrix �k�1 is usually real and
asymmetric. Denoting the eigenvectors and eigenvalues
of �k�1 by Pk�1 and �k�1, we have P�1

k�1�k�1Pk�1 �
�k�1. Here �k�1 and Pk�1 may be complex and �k�1 is
a diagonal matrix.

Multiplying (7) by P�1
k�1 on both sides of Eq. (7)

yields

Pk�1
�1 Xk � �Pk�1

�1 �k�1Pk�1�Pk�1
�1 Xk�1 � Pk�1

�1 wk�1.

�8�

We will denote a new white noise w̃k�1 � P�1
k�1wk�1 and

assume it has zero mean and white covariance, namely

E	w̃t1
w̃t2
 � ��t1 � t2�Q̃.

Equation (8) can then be written

Pk�1
�1 PkZk � �k�1Zk�1 � w̃k�1, �9�

where Zk�1 � P�1
k�1Xk�1. For a large-scale and slowly

varying climate system, such as ENSO, the difference
between the transition matrix � at two adjacent times k
� 1 and k (and in particular the difference in the few
leading eigenmodes of � at k � 1 and k) Pk�1 and Pk,
will be small and is assumed to be negligible. Equation
(9) is thus simplified:

Zk � �k�1Zk�1 � w̃k�1. �10�

Equation (10) describes the trajectory of the dynamical
system (7) on its leading eigenmode space (Z � P�1X).
From (10), an element zj

k of vector Zk will satisfy

zk
j � �k�1

j zk�1
j � w̃k�1

j . �11�

Comparing with the reduced space discussed in section
5 and the classical POP analysis (von Storch and Zwiers
1999), one finds that (10), in fact, is a projection of the
original dynamical system (7) on POP space, and (11)
describes the variation of POP amplitude coefficients.

Therefore, we can evaluate the prediction utility for
(10) using Eq. (2). The predictive mean vector �p and
covariance vector �p can be written as (see appendix)

�k
p � �k�1�k�1

p �12�

�p�k� � �k�1�p�k � 1��k�1
T � Q̃. �13�

We denote by �p(0) and �p(0) the values of �p and �p

at the initial time so that

�k
p � �

i�0

i�k

�i�
p�0� �14�

�p�k� � �
i�0

i�k

�i�p�0��i
T � �Q̃, �15�

where � � �i�k
i�0�i � �i�k

i�1�i � . . . � �i�k
i�k�1�i � I, and

I is an identity matrix.
With (14) and (15) the predicted mean and covari-

ance vector can be directly computed without the re-
quirement of ensemble runs if the eigenvalues of the
state transition matrix are known. Compared with
costly ensemble runs, the computation of the eigenval-
ues is relatively cheap, even for sophisticated GCMs.
The calculation of the prediction utility R based on (14)
and (15) will be discussed in detail in another paper.

In the remainder of this section, we will mainly ex-
plore the signal component SC, which contributes most
to the prediction utility R as shown in section 5. For this
purpose, we assume that the dynamical process (10) or
(11) is stationary, which is widely assumed in POP
theory (von Storch and Zwiers 1999). The condition of
stationarity of (10) is that det(�k�1)  1. As such, the
climatological mean �q � 0 and the climatological vari-
ance �q � Q̃ at k → � �. Also Q̃ is a constant square
matrix, in which case SC can be written as

SC�k� � ��k
p�T�q

�1�k
p � ���p�0��TQ̃�1��p�0�

� �p�0�T�TQ̃�1��p�0�, �16�

where � � �i�k
i�0�i, and is a square (diagonal) matrix

consisting of the eigenvalues of the state transition ma-
trix.

Equation (16) indicates that SC is inversely propor-
tional to the noise variance Q̃ and proportional to the
initial signal variance (ISV) projected onto eigenmode
space �p(0)T�p(0), modified by ���. When the initial
signal variance is large, the eigenmodes are able to re-
sist dissipation by the noise components of the system,
leading to a large SC and a good prediction. On the
other hand, if the signal variance is small, the noise
components will quickly dominate the dynamical sys-
tem and result in a low SC and a poor prediction. Thus
ISV plays a critical role in determining prediction per-
formance.

Compared with the earlier work of KM99, (16) is
very consistent with their Eq. (2.8), which was derived
using a completely different theoretical approach to
that used here. In KM99, the prediction correlation
function r(t) is used to examine the dominant factors
affecting its variations. It was found that r(t) depends
on the noise forcing and the eigenmode amplitudes
present in the initial conditions, that is, ISV. Such a
consistent result from two different theoretical frame-
works indicates that (i) the prediction utility R can
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FIG. 15. As in Fig. 14 but for HCM2.

FIG. 16. As in Fig. 14 but the variance of stochastic forcing is doubled.
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quantify the predictability of a skill measure such as r(t)
and (ii) the eigenmode amplitudes present in the initial
conditions are a dominant factor affecting the model
prediction skill.

Figure 17 shows the first eigenmode amplitude ISV
of HCM1 (or HCM2) present in the initial conditions.
This eigenmode was estimated by a POP analysis with
the initial fields of HCA and SSTA, as discussed in
previous sections. As can be seen, both the HCA and
SSTA ISV have a large amplitude on 1982–83, 1988–89,
and 1997–98, consistent with the timing of large R and
C. Figure 18 compares the variation of HCA and SSTA
ISV with that of SC at two lead times of prediction and
shows a good relationship between them. Figure 19
shows the correlation coefficient between HCA ISV
and SC for both HCM1 and HCM2. As can be seen, the
correlation coefficients decrease with the lead times for
both models, but exceed 0.6 for HCM1 and 0.55 for
HCM2 at all lead times and are statistically significant.

From the discussions above, we conclude that we do
not always have to perform expensive ensemble runs
for measuring the reliability of ENSO predictions. In-
stead, we might be able to explore the ISV of the initial
conditions to estimate the prediction reliability. This is
very inexpensive and practical. If ISV is found to be
large, the model prediction will most likely be reliable,
and vice versa. The relationship between ISV and
model predictability can further be demonstrated in
Figs. 20 and 21. Shown in Fig. 20 is the comparison of
model predictive skill, initialized with and without data
assimilation. In the latter case, the model initial condi-
tions are generated by spinning up the OGCM with
FSU wind stress. As can be seen, the prediction skills

are significantly better with data assimilation than with-
out data assimilation, especially for HCM2. Figure 21
presents the ISV from the initial fields without data
assimilation. Compared with Fig. 17, the ISV without
data assimilation is smaller than its counterpart with
data assimilation, which is consistent with the differ-
ence in the model prediction skills shown in Fig. 20,
indicating the key role of ISV in determining the model
predictability. This also suggests that an important con-
tribution of data assimilation might be to increase the
ISV of the initial fields.

It should be noted that ISV only approximately esti-
mates SC and represents the information that the pre-
diction utility possesses. A complete and accurate mea-
sure of the reliability of a dynamical prediction should
be directly obtained from (2). The ISV is only a good
and economic alternative to ensemble prediction to
evaluate model predictability. However, some propri-
eties and advantages that ensemble predictions possess
are absent in the ISV. For example, the best use of
ensembles is to make the probabilistic forecasts that
include the uncertainty estimate, which is not available
for the application of ISV.

7. Discussion and summary

A central task of ENSO predictability studies is to
measure the reliability of the prediction and determine
the dominant factors that affect the prediction accu-
racy. By applying a new theoretical framework intro-
duced by Kleeman (2002) we have explored this issue
using two realistic hybrid coupled models. It was found

FIG. 17. POP amplitude for HCA and SSTA of prediction initial oceanic conditions
generated by the data assimilation of subsurface temperature.
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that the prediction utility R, defined by relative en-
tropy, can measure well the reliability of the predictions
of these models. In general, when R is large, the corre-
sponding prediction was found to be reliable whereas,
when R is small, the prediction is found to be less reli-
able.

A direct strategy for estimating R is via (2) using
ensemble predictions. Several important issues should

be addressed prior to using (2). The first is how to
generate forecast ensembles. Obviously, the larger the
size of the ensemble, the better an estimate of the
evolving pdf is likely to be. In theory, each component
of the model state vector should be perturbed indepen-
dently. However, the number of state variables of a
realistic numerical model (106) far exceeds the maxi-
mum affordable ensemble size (10–50), which requires
that one must choose perturbations wisely. In this work,
we used stochastic optimals for this purpose. The sto-
chastic optimals represent the spatial patterns onto
which stochastic forcing must project in order to maxi-
mize error growth over a given time interval.

A second issue is the choice of a suitable variable and
reduced space to which (2) can be applied and evalu-
ated. The large model dimension limits the application
of (2). Any reduced state space should be one that
characterizes the model dynamics and at the same time
represents the most significant physical features present
in the original space. In this study, we choose subsur-
face heat content as the argument for the prediction
utility R, as it represents the most useful information in
ENSO prediction. It has been found that subsurface
heat content is a good precursor for ENSO evolution,
and that assimilation of heat content can significantly
improve model prediction skill (Tang and Hsieh 2003).
We also used the first POP mode to construct the re-
duce space since it describes very well ENSO oscilla-

FIG. 19. Correlation of HCA ISV with HCM1 and HCM2 SC as
a function of lead time.

FIG. 18. The variations of HCA ISV, SSTA ISV, and SC at 3 and 6 months for predictions using
HCM1. Each variable is normalized by its own standard deviation.
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tory behavior and approximates the leading eigenmode
of the dynamical system. Sensitivity experiments re-
vealed that the prediction utility R of HCM1 and
HCM2 depend, to some extent, on the variable and the
reduced space used. To illustrate, Fig. 22 shows SSTA
prediction utility R for HCM1 estimated using a re-
duced state space that was constructed by the leading
six EOF modes. As can be seen, SSTA prediction utility
has a maximum value during 1989. This is different
from Fig. 5 discussed in section 6.

One interesting finding in this paper is that there is a
good relationship between the prediction utility R and
the initial signal variance (ISV) in eigenmode space. By
considering a linear stochastic dynamical system, we
identified the signal component that dominates R with
ISV. In general, it was found that when ISV is small
(large), then R is also small (large). The ensemble re-
sults from HCM1 and HCM2 confirmed the analytical
analysis. This finding has practical significance since it
suggests that the reliability of ENSO predictions can be
estimated very inexpensively using a simple method
without the need for expensive ensemble of forecasts.
The ideas presented here are also consistent with a
similar work reported in KM99 using a different theo-
retical approach.

It is of interest to further explore the underlying
physical interpretation of the relationship between ISV
and model predictability. Since ISV is the amplitude of

leading POP mode at initial time, a large ISV means a
strong spatial pattern similar to Figs. 3a,b present in the
initial field. As argued in the literature (e.g., Tang 2002;
KM99), Figs. 3a,b are consistent with the delayed-
action oscillator mechanism for ENSO. For a freely
evolving POP oscillation, the patterns appear in the
sequence POPimag → POPreal → �POPimag → �POPreal

→ POPimag. Thus the warm water present in the central
equatorial and eastern Pacific Ocean yields the warm
SST and heat content (HC) anomalies in this region
(Fig. 3b) prior to the peak phase of an ENSO warm
event (Fig. 3a). A strong zonal HC gradient at the cen-
tral equatorial Pacific weakens the upwelling there and
intensifies the warm Kelvin waves propagating east-
ward. The pattern in Fig. 3b can be regarded as a pre-
cursor patter that is observed during the onset phase of
El Niño, which is consistent with the “pile up” hypoth-
esis of Wyrtki (1975) and the recharge oscillator of Jin
(1997). In this sense, a large ISV in fact corresponds to
a strong delayed-action oscillator signal residing in the
initial fields, leading to a reliable prediction.

It has been recognized for decades that model initial
conditions exert a strong influence on model prediction
skill. However, this recognition has been general and
somewhat limited in a quantitative sense. These are still
numerous outstanding issues such as 1) what are the
dominant components present in initial conditions that
impact model skill and 2) how can we quantitatively

FIG. 20. Predictive correlation skill of HCM1 and HCM2, initialized with and without data
assimilation.
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measure the importance of initial conditions on predic-
tion skill. These questions are interesting but difficult to
answer. In this study, we explored these questions using
information theory, and have presented some impor-
tant findings and results relevant to ENSO prediction.

In this study, we confine our attentions to correlation
skill for the measure of model predictability. Besides
the correlation skill, the other skill often used is the
root-mean-square error (rmse). We also examined the
relation of the relative entropy to rmse. The results
show that their relationship is less significant than that

of the relative entropy to correlation skill. This is be-
cause a small rmse does not have to indicate a good
prediction. rmse variation greatly depends on the
anomalous magnitude of SSTA variations. One predic-
tion of anomalous event is usually associated with a
larger rmse than that of a normal event. For example,
the predictions shown in Figs. 6a,b have high correla-
tion skills but a large rmse, whereas the prediction in
Fig. 6d has a very poor correlation skill but a very small
rmse. That is why we mainly focus on the analysis of
correlation skill in this paper. Our results indicate that

FIG. 22. SST prediction utility for HCM1 in an EOF reduced state space using SSTA.

FIG. 21. POP amplitude of prediction initial conditions, generated without data assimilation,
for HCA and SSTA. Compared with Fig. 14, the POP amplitudes are considerably smaller in
this case.
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a good prediction of the anomalous event (El Niño or
La Niña) usually corresponds with large signal compo-
nents such as for 1982–82, 1997–98 events.

It has been found that the signal component has
much more important contribution to prediction utility
than the ensemble spread in this study. This seems a
striking counterexample to the widespread perception
than ensemble spread is the main determinant of po-
tential forecast skill for numerical weather prediction
models. This is most probably because the ENSO sys-
tem could be viewed as a stochastically forced damped
linear system which leads to the covariance of transient
distributions being independent of the initial conditions
for a particular prediction, namely that the signal com-
ponent of the prediction utility R shows any variation
with initial conditions. Kleeman (2002) has theoretical-
ly proved this conclusion by a simplified system analogy
to ENSO. He also showed that for other systems, for
example, a Lorenz system analogy to weather, the en-

semble spread could play a dominant role in prediction
utility. DelSole (2001) and Kleeman and Moore (1999)
also found that the subdominance of the ensemble
spread is probably due mainly to the optimally persis-
tent patterns or signal amplitude present in the initial
fields, which determines the model predictability for a
large-scale and slowly varying climate system like
ENSO.
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APPENDIX

Definition of �p

For dynamical system (10), �p(k) is defined as

�p�k� � E	�Zk � E	Zk
��Zk � E	Zk
�T
 � E	��k�1�Zk�1 � E	Zk�1
� � w̃k�1���k�1�Zk�1 � E	Zk�1
� � w̃k�1�T


� E	�k�1�Zk�1 � E	Zk�1
��Zk�1 � E	Zk�1
�
T�k�1

T � �k�1�Zk�1 � E	Zk�1
�w̃k�1
T

� w̃k�1�Zk�1 � E	Zk�1
�
T�k�1

T � w̃k�1w̃k�1
T 
 � �k�1E	�Zk�1 � E	Zk�1
��Zk�1 � E	Zk�1
�

T�k�1
T

� �k�1E	�Zk�1 � E	Zk�1
�w̃k�1
T 
 � E	w̃k�1�Zk�1 � E	Zk�1
�

T
�k�1
T � E	w̃k�1w̃k�1

T 


� �k�1�p�k � 1��k�1
T � Q̃.
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