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ABSTRACT

El Niño–Southern Oscillation (ENSO) retrospective ensemble-based probabilistic predictions were per-

formed for the period of 1856–2003 using the Lamont-Doherty Earth Observatory, version 5 (LDEO5),

model. To obtain more reliable and skillful ENSO probabilistic predictions, first, four ensemble construction

strategies were investigated: (i) the optimal initial perturbation with singular vector of sea surface temper-

ature anomaly (SSTA), (ii) the realistic high-frequency anomalous winds, (iii) the stochastic optimal pattern

of anomalous winds, and (iv) a combination of the first and the third strategy. Second, verifications were

conducted to examine the reliability and resolution of the probabilistic forecasts provided by the four

methods. Results suggest that reliability of ENSO probabilistic forecast is more sensitive to the choice of

ensemble construction strategy than the resolution, and a reliable and skillful ENSO probabilistic prediction

system may not necessarily have the best deterministic prediction skills. Among these ensemble construction

methods, the fourth strategy produces the most reliable and skillful ENSO probabilistic prediction, benefiting

from the joint contributions of the stochastic optimal winds and the singular vector of SSTA. In particular, the

stochastic optimal winds play an important role in improving the ENSO probabilistic predictability for the

LDEO5 model.

1. Introduction

The loss of ENSO predictability in a numerical model

generally depends on uncertainties due to (i) errors in

the initial conditions, (ii) model errors, and (iii) unex-

pected external stochastic noise (e.g., Moore and Kleeman

1998). These uncertainties develop during the forecast

period as lead time increases, eventually rendering the

forecast no better than climatology. As a response to the

limitations imposed by these uncertainties, a more use-

ful forecast strategy is to perform ensemble predictions

and evaluate the uncertainties of the forecast system

using probabilistic methods (Chen and Cane 2008).

Compared with a single forecast starting from the best

initial conditions, an ensemble forecast has many advan-

tages. First, ensemble averaging acts as a nonlinear filter;

it removes less predictable parts and keeps more pre-

dictable features among the ensemble members (e.g.,

Leith 1974). A properly designed ensemble has higher

skill than that of individual ensemble members in a sta-

tistical sense (Toth and Kalnay 1997). Second, ensemble

prediction provides a practical tool for estimating the

possible uncertainties in a forecast system. Ensemble

forecasts can provide additional information, such as

the probability distribution function (PDF) of forecast,

ensemble-based potential skill measures (i.e., ensemble

mean, ensemble spread, and ensemble ratio), and prob-

abilistic skill measures, which are useful in decision
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making. It is shown that probability forecasts have greater

potential economic value than corresponding single de-

terministic forecasts with uncertain accuracy (e.g., Palmer

2000).

To perform an ensemble-based ENSO probabilistic

forecast, the crucial issue is to design a reliable and high-

resolution ensemble prediction strategy that should in-

clude the major uncertainties of a forecast system. Many

strategies have been used in the ensemble construction

of weather forecasts and seasonal climate predictions.

For example, some strategies are dynamically constrained

methods such as the breeding vector (BV; Toth and

Kalnay 1993), the ensemble transform (ET; an improved

version of the BV; Bishop and Toth 1999; Wei et al.

2008), and the singular vector (SV; e.g., Lorenz 1965;

Palmer 1993), which are used to optimally perturb the

initial conditions for constructing ensemble forecasts.

Other methods are also used to obtain the ‘‘best’’ ini-

tial conditions in ensemble constructions: the ensemble

Kalman filter (EnKF; Evensen 1994, 2003), the ensem-

ble transform Kalman filter (ETKF; Bishop et al. 2001;

Wang and Bishop 2003), and the perturbed observation

(PO; Houtekamer and Derome 1995). Using the three-

parameter Lorenz (1963) model, Anderson (1997) found

that random perturbations produce more skillful en-

sembles than BV and SV. Houtekamer and Derome

(1995) found little difference in the quality of the en-

semble mean forecasts between the BV, SV, and PO

methods using a quasigeostrophic model. Hamill et al.

(2000) compared BV, SV, and PO in a quasigeostrophic

channel model. They found that the PO method is

better than the BV and SV method. Descamps and

Talagrand (2007) compared four strategies in the Lorenz

(1963) model and a three-level atmospheric model and

concluded that the relative performance, from best to

worst, of these strategies was in the order EnKF .

ETKF . BV . SV.

Generally two kinds of strategies are used to produce

optimal perturbations for ensemble-based ENSO pre-

dictability studies: (i) perturbation of the initial condi-

tions and (ii) perturbations in the stochastic atmospheric

noise through the whole forecast period. In addition,

perturbation can be applied on model parameters for

considering errors existing in physical/dynamical param-

eterizations, or a superensemble is constructed using

multiple models (e.g., Kirtman and Min 2009). The first

strategy was often used by SV analysis (e.g., Lorenz

1965; Chen et al. 1997; Xue et al. 1997a,b; Battisti 1988;

Fan et al. 2000; Cai et al. 2003; Tang et al. 2006; Cheng

et al. 2010a,b), whereas the second strategy was per-

formed in the framework of the stochastic optimal the-

ory (e.g., Kleeman and Moore 1997; Moore and Kleeman

1998, 1999; Tang et al. 2005). Significant progress has

been made in using these optimal perturbations to study

ENSO predictability as cited above. However, these

previous studies mainly focused on the optimal error

growth of ENSO deterministic predictions. The impact

of perturbation construction on the ensemble probabi-

listic predictions has not been well addressed, especially

using long-term retrospective ensemble predictions over

periods as long as 100 yr. In this study, we will explore

this issue using SV-based perturbation methods. So far,

the SV method itself has not been well examined in the

framework of ENSO ensemble probabilistic prediction.

One reason is that the SV analysis needs a tangent linear

model (TLM), which is often technically difficult. An-

other reason is the lack of a long-term forcing data for

initializing predictions, so that previous retrospective

predictions were limited to a short period of 20–40 yr,

with a rather limited number of ENSO cycles. This may

preclude statistically robust conclusions. Chen et al. (2004)

used Kaplan SSTA reanalysis data and the Zebiak and

Cane (ZC) model [i.e., the Lamont-Doherty Earth Ob-

servatory version 5 (LDEO5)] to perform a 148-yr

hindcast experiment for the period of 1856–2003. They

successfully predicted all of the prominent El Niño

events during this period at lead times of up to 2 yr, with

the SST being the only data used for model initialization.

Tang et al. (2008a) further analyzed the interdecadal

variation in ENSO prediction skill from 1881 to 2000

using multiple models. These retrospective ENSO pre-

dictions not only allow us to achieve a robust and stable

study of statistical predictability of ENSO but also dem-

onstrate that the long-term SSTA data are of good

quality. Recently, a fully physically based TLM was con-

structed for the LDEO5 model, and singular vector ana-

lyses were performed for the 148-yr period from 1856 to

2003 in Cheng et al. (2010a). The long-term SVs ob-

tained in Cheng et al. (2010a) makes it possible to con-

struct ensemble predictions with the LDEO5 model, so

that the shape of the forecast PDF that describes the

prediction uncertainty can be estimated, and the prob-

abilistic nature of ENSO predictability can be explored.

Another issue is the role of stochastic atmospheric

noise in ensemble ENSO predictions. It has been well

recognized that stochastic atmospheric forcing associ-

ated with synoptic-to-intraseasonal variability is critical

in forming, developing, and maintaining ENSO cycles

(e.g., Penland and Sardeshmukh 1995; Kleeman and

Moore 1997; Eckert and Latif 1997; Blanke et al. 1997;

Kirtman and Schopf 1998; Moore and Kleeman 1999;

Thompson and Battisti 2000; Fluegel et al. 2004; Moore

et al. 2006; Philip and van Oldenborgh 2009; Eisenman

et al. 2005; Gebbie et al. 2007; Tziperman and Yu 2007;

Zavala-Garay et al. 2005; Perez et al. 2005; Zhang and

Busalacchi 2008). These previous studies addressed the
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role of stochastic forcing in ENSO formation and de-

velopment, namely, answering a central question on the

ENSO mechanism, ‘‘Is ENSO a nonlinear system or a

linear system driven by stochastic forcing?’’ For exam-

ple, Zhang and Busalacchi (2008) suggested that tropical

instability wave-induced wind feedback to the ocean can

have a rectified effect on large-scale mean ocean state and

interannual variability. The realistic stochastic forcing

that was found to have important impact on ENSO

mainly included synoptic-scale atmospheric processes and

high-frequency variability such as westerly wind bursts

and the Madden–Julian oscillation (MJO). There have

been already some works to discuss the loss of ENSO

predictability (deterministic skill) due to these stochastic

forcing. However, the importance and significance of sto-

chastic forcing on ENSO predictability have not been well

addressed in the sense of probabilistic prediction skill.

Thus, it is not very clear so far how the stochastic atmo-

spheric noise impacts ENSO probabilistic predictions.

An important task associated with ensemble con-

struction is to evaluate an ensemble-based probabilistic

prediction system by probabilistic verification methods,

from which the performance of the prediction system

and the ensemble construction method can be quanti-

tatively evaluated. Probabilistic verification is known as

an important complement to deterministic verification,

which provides a useful and quantitative way to measure

uncertainty (Palmer 2000; Kirtman 2003). In contrast

with the traditional prediction skill measures such as

anomaly correlation R skill and root-mean-square error

(RMSE) skill, the verification of an ensemble-based

probabilistic forecast system focuses on measuring two

properties, reliability and resolution, which are the two

most important characteristics of a probabilistic forecast

system (Toth et al. 2003). An introduction of these prop-

erties and the probabilistic verification methods will be

described in section 4.

This study will introduce both initial condition uncer-

tainty and additive stochastic atmospheric noise into the

LDEO5 model and examine their impacts on ENSO

probabilistic prediction. It is unrealistic to evaluate all

ensemble construction methods available for ENSO

probabilistic prediction, so we focus on evaluating four

methods, chosen based on previous studies as referred

to previously: (i) initial condition perturbation using the

singular vector of SSTA (SV1_sst), (ii) realistic stochastic

winds as a continuous external forcing during the fore-

cast period (UV_realstoc), (iii) stochastic optimal winds

(SO1_wind) as a continuous external forcing during the

forecast period, (iv) a combination of the first method

SV1_sst and the third method SO1_wind (SO1_wind1

SV1_sst). Several probabilistic verification methods

are used to evaluate the reliability and resolution of

ensemble-based probabilistic ENSO predictions, includ-

ing the reliability diagram (RD) and the Brier skill score,

the ranked probability score (RPS), and the ranked

probability skill score (RPSS). Emphasis is placed on

assessing which ensemble construction method provides

more reliable and skillful probabilistic ENSO predictions.

This paper is structured as follows: section 2 briefly

introduces the LDEO5 model and the metrics of en-

semble prediction skill. Section 3 discusses the four en-

semble construction methods used in this study. Section 4

gives the introduction of probabilistic forecast verifica-

tion methods. Section 5 presents the ensemble prediction

results followed by the conclusions and discussion in

section 6.

2. Model and ensemble forecast

a. The LDEO5 model

The model used in this study is the ZC model (Zebiak

and Cane 1987), which has been widely applied for

ENSO simulation and prediction. LDEO5 is the latest

version of the ZC model (Chen et al. 2004). The atmo-

sphere dynamics follows Gill (1980) using steady-state,

linear shallow-water equations. The circulation is forced

by a heating anomaly that depends on the SST anomaly

and moisture convergence. The ocean dynamics uses the

reduced-gravity model, and ocean currents were gen-

erated by spinning up the model with monthly wind. The

thermodynamics describe the SST anomaly and heat

flux change. The model time step is 10 days. The spatial

region is focused on the tropical Pacific Ocean (28.758S–

28.758N, 1248E–808W). The grid for ocean dynamics is

28 longitude 3 0.58 latitude, and the grid for SST physics

and the atmospheric model is 5.6258 longitude 3 28

latitude.

The SSTA dataset used in this study is a reconstructed

analysis data by Kaplan et al. (1998) with the period from

January 1856 to December 2003. It is the only an oceanic

dataset available for initializing long-term retrospective

ENSO prediction over 100 yr. With the initialization of

the SSTA dataset, the LDEO5 model successfully pre-

dicted all of the prominent El Niño events during at lead

times of up to 2 yr and achieved a good hindcast skill

(e.g., Chen et al. 2004; Tang et al. 2008a). Note that in the

coupled initialization procedure of the LDEO forecast

system, assimilated SST data are not simply putting a

constraint on the ocean model with SST observations;

they translate to surface wind field and subsurface ocean

memory.

There are two model output statistics (MOS) schemes

to correct model bias in the LDEO5. One scheme is for

SST, and the other is applied to thermocline depth and

winds. Bias correction terms are given at each time step
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(Chen et al. 2000). With the two statistical bias correc-

tion schemes, the imbalance among those model vari-

ables (e.g., SST, thermocline depth, and winds) due to

SST assimilation or perturbation of initial SST in the

framework of ensemble can be expected to adjust quickly

during the prediction period.

b. Metrics for ensemble prediction deterministic skill

Several ensemble construction schemes are designed

in this study, focusing on different aspects of uncertain-

ties related to the predictability (i.e., the initial conditions

and stochastically external forcing). These ensemble ret-

rospective ENSO predictions were performed by per-

turbing SST or wind, or both, using a given method as

described in section 3. The model is initialized by only the

assimilation of SST every month for 1856–2003 from

Chen et al. (2004), thus a total of 148 yr 3 12 months yr21

(51776) forecast initial conditions were obtained. From

each initial time, an ensemble forecast was performed

with the ensemble size M of 100, and for a period of

24 months. Thus, there are a total of 1776 months 3 100

members 3 24 months lead-time (54 262 400) forecasts

for the ensemble experiment of a given ensemble con-

struction method.

In this study, we use the error of the ensemble mean

(RMSEEM) and ensemble spread to assess ensemble de-

terministic prediction skill, defined by

SPREAD(i, t) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1
�
M

m51
[Tp

i (m, t)� EM(i, t)]2

vuut
,

(1)

EM(i, t) 5
1

M
�

M5100

m51
T

p
i (m, t), (2)

where EM is the ensemble mean, a function of initial

time i and lead time t; M is the ensemble size (i.e., 100

here); and T is the index of Niño-3.4 SSTA, with the

superscripts p and o denoting predictions (forecasts) and

observations, respectively. Here N is the number of

initial conditions used (N 5 1776):

SPRD(t) 5
1

N
�
i5N

i51
SPREAD(i, t), (3)

where the SPRD in (3) is the averaged ensemble spread

over all the initial times, it is a function of lead time t only.

3. Strategies of ensemble construction

a. Perturbation of initial condition with SV of SSTA

In Cheng et al. (2010a), SV analysis was performed for

the period 1856–2003 using the LDEO5 model. The

leading singular vectors (SV1s), representing the opti-

mal growth pattern of initial perturbations/errors, were

obtained by perturbing the constructed TLM of the

LDEO5 model. It was found that the first singular vec-

tors of SSTA are dominated by a west–east dipole

spanning most of the equatorial Pacific, with one center

located in the east and the other in the central Pacific.

The SV1s are less sensitive to initial conditions (i.e., are

independent of seasons and decades). Thus, we will use

the 148-yr-averaged SV1 of SSTA (denoted by SV1_sst)

to perturb all initial conditions. As found in Cheng et al.

(2010a), the fastest perturbation growth rate occurs at

a 9–12-month lead in the LEDO5 model. Correspond-

ingly, the prediction RMSE skill varies slowly with lead

time after 12-month leads (Chen et al. 2004; Chen and

Cane 2008). This motivates us to choose the SV1_sst of

the 12-month lead in the following discussion. Note that

the ensemble construction by two or more SV patterns

does not show higher resolution or reliability than that

constructed from the SV1 alone (not shown); thus, only

the SV1-based ensemble is used, so that we perturbed

the initial model SST by the SV1_sst pattern. The con-

struction of initial perturbation Y can be expressed by

(4), where random numbers X were normalized, and a

is a constant value controlling the perturbation magni-

tude, set to 0.25 here according to Karspeck et al. (2006):

Y 5 SV1 sst 3 X 3 a. (4)

b. Realistic stochastic winds

In this study, we use two methods to generate the sto-

chastic wind perturbations: high-frequency (,90 days)

realistic winds and stochastic optimal winds. The first of

these, denoted by UV_realstoc, is our second ensemble

construction strategy. A dataset of the atmospheric high-

frequency components were first obtained by applying

a 3-month high-pass filter to the National Centers for

Environmental Prediction (NCEP) daily wind dataset

from 1948 to 2000 (Deng and Tang 2008). This dataset,

referred to as the noise dataset, realistically represents

all possible temporal and spatial characteristics of at-

mospheric noise. Then, the atmospheric model (winds)

is perturbed using the high-frequency winds, randomly

drawn from the noise dataset, at each model time step

(10 days).

c. Stochastic optimal perturbation

The spatial structure of initial perturbations has an

important effect on the ensemble forecasts. The third

method used for ensemble construction in this study is

the stochastic optimal (SO) mode perturbation (Farrell

and Ioannou 1993; Kleeman and Moore 1997; Moore
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et al. 2006; Tang et al. 2005; Tang et al. 2008b). Instead

the realistic high-frequency winds that might not gen-

erate optimal perturbation growth, we used the leading

SO mode of winds (SO1_wind) to perturb the model

through the entire forecast period. As discussed in Tang

et al. (2005, 2008b), for white noise in time, the SOs are

the eigenvectors of the operator S:

S 5

ðt

0

R*(0, t)R(0, t) dt. (5)

Here t is the forecast interval of interest, set at 24

months in this study, R(0, t) is the forward tangent

propagator of the TLM that advances the state vector

of the system from time 0 to time t, and R*(0, t) is the

transpose of R(0, t). A detailed description of the SO can

be found in Moore et al. (2006), Tang et al. (2005), and

Tang et al. (2008b). Specifically, at each initial time,

the perturbation was held constant for a total of 30 days,

as a continuous wind perturbation following Karspeck

et al. (2006), and then a new temporally uncorrelated

perturbation was applied. The perturbations were con-

trolled by (4) but using SO1_wind instead of SV1_sst,

where X is still a normalized random number; and a 5 0.7

equivalent to the RMSE of winds anomaly of 0.7 m s21,

obtained using sensitivity experiments based on the first

verification principle (6) described in section 4.

d. Combination of stochastic optimal and initial
SSTA perturbations

The fourth ensemble construction method is denoted

by SO1_wind1SV1_sst, including the SV1_sst pertur-

bation at initial conditions and the SO1_wind during

the whole forecast period. Thus, two key sources of

uncertainties were included in the SO1_wind1SV1_sst

method. Comparisons between the SO1_wind1SV1_sst

method against the SV1_sst method and the SO1_

wind method reflect relative importance of the uncertainty

from the SO1_wind and from the SV1_sst in ensemble

probabilistic predictions.

4. Verification principles of probabilistic forecasts

ENSO probabilistic forecasts are made for three cat-

egories in this study: La Niña, neutral, and El Niño. The

category classification follows the definition (available

online at http://portal.iri.columbia.edu/portal/server.

pt?open5512&objID5945&PageID50&cached5true

&mode52&userID52) used by the International Re-

search Institute for Climate Prediction (IRI) ENSO

forecast system, where the LDEO5 model is one of

the forecast models used routinely for ENSO probabilistic

forecast. Specifically, three ENSO categories are defined

by the observed Niño-3.4 SSTA binned at its climato-

logical frequency (the overall sample average frequency

O, or named as the base rate) of 25%, 50%, and 25%,

respectively, which approximately match the common

historical ENSO events during 1950–2002.

It is necessary to mention key properties of a proba-

bilistic system here. A probabilistic forecast system has

two important attributes: (i) reliability—defined by sta-

tistical consistency between forecast probability (Pf, the

proportion of ensemble members that indicate the oc-

currence of an event) and the corresponding observed

frequencies Po over the long time period (Toth et al.

2003). For example, the forecast system for precipitation

is reliable if the proportion of occurrences of rain is close

to Po. However, reliability alone is not sufficient for a

probabilistic forecast system. For example, a system al-

ways forecasting the climatological probability of the

event is reliable but not useful because the system would

not provide any forecast information beyond climatol-

ogy. Thus another key property of a probabilistic sys-

tem is also required: (ii) resolution—which measures the

difference between observed frequencies Po and clima-

tological probability O (Murphy 1973). Compared to the

base rate, a larger Po indicates a higher resolution of the

forecast system. Note Po is obtained by compiling a set

of cases for forecasts with Pf, Po depends on Pf implic-

itly. To achieve a reliable and high ‘‘resolution’’ ensemble-

based probabilistic ENSO forecast, several principles

used to measure the two properties are applied to eval-

uate our ensemble construction methods as discussed

next.

a. Ensemble spread and error of ensemble mean

If the observation is statistically indistinguishable from

the ensemble members, then the error of the ensemble

mean (i.e., RMSEEM) must close to the mean distance of

the individual members from their mean (i.e., ensemble

standard deviation or SPRD; Buizza 1997; Stephenson

and Doblas-Reyes 2000; Toth et al. 2003). In addition,

the RMSEEM is comparable to the RMSE of the deter-

ministic forecast (RMSECTL), obtained from the un-

perturbed initial condition. However, when nonlinearity

becomes pronounced with increased lead time, the en-

semble prediction could be better than the control fore-

cast (Toth and Kalnay 1997). Furthermore, the standard

deviation of the observed SSTA distribution over a long

time period indicates the upper limit of RMSE for

ENSO climatological predictions. With the observed

NIÑO-3.4 SSTA index for the period of 1856–2003, the

standard deviation value is 0.71.

Thus, if an ensemble forecast system includes all pos-

sible uncertainties of the realistic ENSO system, over a

long time period, the following relationship is valid:
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SPRD ’ EME # RMSE
CTL

# 0.71. (6)

Note the SPRD in (6) is a function of lead time t only.

We will see in section 5b that (6) is useful in generating

a reliable ensemble system.

b. Reliability diagram (RD)

The traditional reliability diagram (RD; Wilks 1995)

is often used to evaluate the reliability of probability

forecast, which examines the consistency of the observed

relative frequency of event occurrence Po and the fore-

cast probabilities Pf. The Po is calculated at a set of

forecast probabilities from 0% to 100% in 10% intervals.

The reliability diagram is a plot of Po against Pf. If the

forecast is perfectly reliable, Po should be equal to Pf.

The RD method is good at evaluating and calibrating

the reliability of a two-category (yes–no) forecast. It also

can be applied for a multicategory forecast by exam-

ining the reliability of individual categories separately.

Also, one can evaluate the reliability by another method,

the multicategory reliability diagram (MCRD) method

(Hamill 1997).

c. The Brier score

The Brier score (BS; e.g., Wilks 1995) is a commonly

used verification measure for assessing the accuracy of

probability forecasts. It is the mean squared distance

between the forecast probability and the observed fre-

quency over the verification period:

BS 5
1

N
�
N

i51
(P

i
�O

i
)2, (7)

where N is the number of total verification samples (N 5

1776 here), Pi is the forecast probability, and Oi has a

value of 1 or 0 depending on whether the event occurred

or not. Similar to the deterministic prediction skill

RMSE, a smaller BS indicates a good forecast system.

The BS can be decomposed into three items: reliability

(REL), resolution (RES), and uncertainty (UNC) as fol-

lows (e.g., Wilks 1995):

FIG. 1. RMSE of Niño-3.4 SSTA for the control run (CTL, circle), ensemble mean (RMSEEM, plus), along with

ensemble spread (SPRD, asterisk), and climatological standard deviation of SSTA (dashed–dotted line) as a function

of lead time (month), averaged over 1856–2003. RMSE and SPRD for (a) SV1_sst method, (b) UV_realstoc method,

(c) SO1_wind method, and (d) SO1_wind1SV1_sst method.
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BS 5
1

N
�

K510

k51
n

k
(P

fk
�O

k
)2

2
4

3
5

REL

� 1

N
�

K510

k51
n

k
(O

k
�O)2

2
4

3
5

RES

1 [ O(1�O)]

UNC
. (8)

Over the verification period, the observed frequency of

occurrence Po can be partitioned into K bins (K 5 10 in

this study) according to the forecast probability Pf. Here

Pfk is the averaged forecast probability at bin k and Ok is

the corresponding observed frequency. The uncertainty

term UNC and base rate O are obtained from the long-

term observed data they are independent of the forecast

system. For the cold, neutral, and warm ENSO cate-

gories, UNC is 3/16, 4/16, and 3/16, respectively, according to

the definition of the climatological frequency (base rate)

from IRI as mentioned earlier. Here nk is the number of

the forecast and observation pairs located in an in-

dividual bin k. The first term reliability RES on the rhs

of (8) is actually equal to the mean squared deviation of

the reliability curve from the diagonal line in RD plot. A

smaller reliability term REL indicates a better consis-

tency between Pfk and O
k
, which results in a smaller BS

and a more reliable ensemble system. The second term

resolution RES is equivalent to the variance of observed

distribution. RES measures the ability of a forecast sys-

tem to discern different situations where the frequency

of the occurrence of the event is different from the base

rate s. Note that the RES term has a negative sign, but it

is often used without the negative sign, as a positive-

oriented measure. A good Brier score occurs at a large

RES item and a small REL item, corresponding a high

resolution and good reliability. The ideally perfect RES

value equals to the uncertainty item UNC that gives the

upper limit of the predictability of the probabilistic

prediction system.

To compare the Brier score to that for a reference

forecast system BSref, it is convenient to use the Brier

skill score (BSS; e.g., Wilks 1995):

BSS 5 1� BS

BS
ref

. (9)

If the climatological forecast is taken as reference

prediction, BSref 5 UNC 5 s(1 2 s). Here BSS is posi-

tively oriented. It has the range of 2‘ to 1. A negative

BSS indicates that the forecast is less accurate than the

climatology forecast. Here BSS is equal to 1 for a perfect

system, and 0 for a system that performs like the cli-

matology forecast.

From (8), (9) can be rewritten as

BSS 5
RES

UNC
� REL

UNC
5 B

res
� B

rel
. (10)

In (10), Brel and Bres are named as the reliability term

and resolution term of the BSS, respectively. The Brel is

negatively oriented and Bres is positively oriented, con-

sistent with the signs of the RES and REL terms in the

BS score. Both Bres 5 1 and Brel 5 0 indicate a perfect

forecast system.

d. The RPS score

The RPS (Epstein 1969; Murphy 1969, 1971) is an-

other commonly used skill (resolution) measure for

probabilistic forecasts, defined in terms of the squared

differences between the cumulative probabilities in the

forecast and observation vectors:

RPS(t, i) 5 �
3

l51
�

l

k51
p

k
(t, i)��

l

k51
O

k
(t, i)

2
4

3
5

2

, (11)

where Pk is the forecast probability assigned to the lth

category and Ok 5 1 when the observation falls into lth

category and 0 otherwise. The RPSS (Wilks 1995) is

FIG. 2. As in Fig. 1, but for the first ensemble construction

method SV1_sst, with a larger SSTA initial perturbation magni-

tude (1.5 times that in Fig. 1a).
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defined using the RPS and a reference forecast defined

to have zero skill. Here, the climatological forecast is

used as the reference forecast:

RPSS 5 1� RPS

RPS
clim

, (12)

where RPS/RPSS scores are functions of lead time t and

initial time i.

In summary, a good ensemble-based probabilistic fore-

cast system should have the following: (i) an ensemble

spread (SPRD) should be close to the RMSEEM, and the

RMSE of the control deterministic forecast, as given in (6);

(ii) probabilistic forecasts must be reliable, as measured

by the reliability diagram and the reliability term of the

BSS (i.e., Brel); and (iii) a skillful probabilistic forecast

system should have good resolution measured by the

resolution term of the BSS score, (i.e., Bres). In addition,

a good probabilistic forecast should have a small RPS

and a large BSS/RPSS score.

5. Results

a. Ensemble spread

We begin by first examining whether ensemble pre-

diction experiments can satisfy the first principle in (6).

As discussed in section 4a, the first principle offers a

measure to judge that whether an ensemble construction

can include sufficient uncertainties of the model. The

SPRDs of four ensemble experiments are compared

against the RMSE of the control run (RMSECTL) and

the RMSE of the ensemble mean (RMSEEM; Figs. 1a–d).

In Fig. 1a, although the RMSEEM for the SV1_sst method

is close to the RMSECTL and the standard deviation of

the climatological forecast (0.71; the blue dashed–dotted

line), the ensemble SPRD underestimates the model

uncertainty significantly. Of note is the decrease in en-

semble SPRD at lead times of 10–17 months, suggesting

a limitation of using linear SV theory in ensemble con-

struction over long lead times. We explored the evolution

of the model error growth in Cheng et al. (2010b). It was

found that the error growth reaches its maximum around

the lead times of 9–12 months and is controlled by the

underlying dynamical processes [i.e., linear and linear-

ized nonlinear heating processes (horizontal and vertical

advection/mixing)]. The linear/nonlinear heating has an

offsetting effect and opposite contribution to the total

error growth. A strong offsetting effect can be observed

in SV1_SST at the leading time of around 15–17 months.

This explains why the decrease in ensemble spread

happens after the lead times of around 10 months and

the ensemble spread rebounds and increases after the

lead time of around 17 months. Certainly, a large SPRD

could be obtained by increasing the perturbation mag-

nitude a of (4). Figure 2 shows a larger SPRD occurring

as the a increases 1.5 times of that in Fig. 1a. However,

FIG. 3. A sensitivity study for the SPRD by adjusting the strength of stochastic winds in the

second ensemble construction method. The perturbation magnitude varies from 0.5 to 3.0 times

of that of NCEP high-frequency winds.
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Fig. 2 still violates (6) after a lead time of 6 months.

Thus, the SV1_sst method might not be a good ensemble

construction strategy for the long lead time ENSO en-

semble predictions.

In the second ensemble construction method (UV_

realstoc), the high-frequency realistic stochastic winds

are used during the forecast period. The current LDEO5

model is free of atmospheric random forcing; thus, using

realistic stochastic winds might be able to potentially

improve ENSO predictability. Unfortunately, the UV_

realstoc method also underestimates the model error/

uncertainty, showing a small SPRD far away from the

RMSECTL and the standard deviation of the climato-

logical forecast in Fig. 1b. Increase in the magnitude of

external forcing can produce a large spread as shown in

Fig. 3; however, artificial adjustment of the strength of

stochastic winds results in unrealistic stochastic forcing.

For example, the spread is close to the RMSECTL when

the perturbation magnitude is increased to 3 times the

original NCEP winds in Fig. 3. This is in agreement with

the result from the LDOE4 model in Karspeck et al.

(2006), where a sufficient spread could not be obtained

until using an unrealistic strong wind forcing, with a

standard deviation of 10 m s21. Figure 4 shows that if

the stochastic winds are unrealistically large (e.g., a

strong wind perturbation 3.0 times as large as the origi-

nal NCEP winds), the anomaly correlation R and RMSE

FIG. 4. (a) Anomaly correlation skill R from the control run (circle) and ensemble mean forecast with different

level of stochastic wind perturbation (0.5, 1, 2, and 3 times) than the realistic NCEP winds. (b) As in (a), but for

RMSE.

FIG. 5. The 148-yr-averaged leading mode of the stochastic op-

timal (SO) winds (m s21). This mode explains the 30%–40% of the

original variance of S in (5).
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degrade in spite of a large SPRD. An unrealistic strong

wind perturbation may bias the model system and produce

a large dynamical imbalance. Thus, the second strategy

fails to construct a good ensemble forecast either.

In summary, both the SV1_sst and the UV_realstoc

methods cannot introduce sufficient uncertainties that

we expects for a good ensemble construction. For the

SV1_sst method, large differences between the SPRD

and RMSECTL at longer lead times suggest that the

perturbation introduced at the initial SSTA cannot ef-

fectively persist through the forecast period because of

dispersion. For the UV_realstoc method, uncertainty

estimated from the high-frequent components of NCEP

winds cannot produce sufficient prediction uncertainties

or errors due to the random nature of the perturbation

spatial structure. As mentioned in section 3c and in the

introduction section, the spatial structure of stochastic

wind perturbation is important in ensemble construction.

In the third experiment, we used the stochastic opti-

mal mode to construct the ensemble prediction for the

period from 1856 to 2003, as discussed in Kleeman and

Moore (1997) and in section 3c. To achieve this, we first

calculated the leading SO mode of winds (denoted by

SO1_wind) for each calendar month for the optimal

period of 24 months over the 148-yr period. It was found

that the spatial pattern of the SO1_wind is not sensitive

to initial conditions; thus, the average SO1 wind pattern

over all initial conditions, as shown in Fig. 5, was used

FIG. 6. (a1)–(a3) The RD for the first ensemble construction method: SV1_sst, at lead times of 6, 9, and 12 months. In each plot, three

reliability curves represent three ENSO categories: warm (circle), neutral (asterisk), and cold events (square). These are calculated based

on 100-member ensemble hindcasts for all months over the 1856–2003. For the second method: (b1)–(b3) UV_realstoc, (c1)–(c3)

SO1_wind, and (d1)–(d3) SO1_wind1SV1_sst.
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for the ensemble construction. Similar to the SV1 of

SSTA, the SO1_wind contributes to about 30%–40% of

the total variance. There is a strong convergence region

of winds centered at 1408W and a divergence at the cold

tongue region of the eastern tropical Pacific. That such a

structure is favorable for perturbation growth is proba-

bly inherent in ENSO dynamics. For example, this pat-

tern generates corresponding downwelling and upwelling

in the eastern tropical Pacific, and induces warm eastward-

propagating Kelvin waves and cold westward-propagating

Rossby waves, which in turn impacts on ENSO variability

according to the delayed oscillator theory (Suarez and

Schopf 1988). Figure 1c shows the SPRD variation as

a function of lead time, generated by the SO1_wind

method. As can be seen, the RMSEEM and SPRD from

this method are closer to the RMSECTL and the standard

deviation of ENSO climatological prediction (i.e., 0.71)

than the first two methods, satisfying the first principle (6).

Comparison of Fig. 1b with Fig. 1c suggests the impor-

tance of the spatial structure of wind perturbations in

ensemble construction. Note that the perturbation mag-

nitude used here is much smaller than that of UV_realstoc

(0.7 vs 2.5 m s21).

The fourth perturbation ensemble construction method

(SO1_wind1SV1_sst) is to combine the SV1_SST and

the SO1_wind perturbations. In terms of the first principle

in (6), the ensemble spread produced by this method is

the best, as shown in Fig. 1d. Compared with the SO1_

wind and the SV1_sst method, the SPRD from SO1_

wind1SV1_sst method is the closest to the RMSEEM and

RMSECTL, showing the important effect of both the

SV1_SST and the SO1_wind perturbation on the en-

semble spread. Especially, SO1_wind likely dominates

the ensemble spread of long lead times.

FIG. 7. The reliability term Brel of the BSS as a function of lead time for the four ensemble prediction experiments at (a) warm, (b) cold,

and (c) neutral ENSO categories as functions of lead time (month). SV1_sst (asterisk); UV_realstoc (dashed–dotted); SO1_wind (square);

and SO1_wind1SV1_sst (diamond). Note that Brel is negatively oriented.
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b. Reliability

The second principle, ‘‘reliability,’’ is examined by the

RD. The forecasted/observed SSTA are grouped into

three categories representing the cold, neutral, and warm

ENSO states, as defined at the beginning of section 4. In

each ENSO category, a RD curve is made by using the

forecast probability Pf at 11 intervals of 0%, 10%, . . . ,

100% against the corresponding observed relative fre-

quency Po over the 148 yr. The diagonal line in an RD

diagram indicates a perfect reliable system (i.e., Pf 5 Po).

The RD diagrams are shown in Fig. 6 for the four

ensemble construction methods and at three different

lead times: 6, 9, and 12 months. The RD curves from the

first two ensemble construction methods cross the di-

agonal line from the upper left to bottom right showing

poor reliability and overconfidence(Figs. 6a,b). These

features are probably due to the smaller SPRDs of the

first two methods. For the last two ensemble construction

methods, their reliability is greatly improved as shown

in Figs. 6c,d where the RD curves oscillate around the

diagonal lines, especially for the fourth method SO1_

wind1SV1_sst.

Reliability can be further quantified using the reli-

ability component of the BSS (Brel; Wilks 1995). Figure 7

shows the reliability scores for four ensemble experi-

ments for the three ENSO categories. Again, the two

SO-based ensemble construction methods provide more

reliable results (i.e., smaller reliability scores) than the

other two methods over all lead times and in all cate-

gories, especially at long lead times. Thus, both the RD

analysis and the reliability score Brel demonstrate the

importance of the stochastic optimal winds in the en-

semble construction.

Next, we will use the verification rank histogram to

explore the role of ensemble SPRD on reliability. The

rank histogram diagram, also called Talagrand diagram

(e.g., Anderson 1996; Talagrand et al. 1997), is another

FIG. 8. Analysis rank histograms for a small SPRD case (i.e., the second ensemble construction method UV_realstoc

using the original high-frequency winds) at different lead times of 3, 6, 9, 12, 15, and 24 months. The perfect percentage

is 3% (dashed line). The rank of the verification is tallied 500 times.
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way to present the reliability of an ensemble forecast

system. The underlying basis of the rank histogram di-

agram is that the observation and ensemble members in

a reliable ensemble system are subject to an identical

probability distribution. To make a rank histogram plot,

first, at a given lead time, ensemble forecasts with M

members will be ranked in an order from the smallest to

the largest, which will provide M 1 1 categories in-

cluding two open-ended categories. Observations falling

in the two open-ended categories represent those ob-

servations that cannot be resolved by the forecast sys-

tem. Finally, over a long time period, the frequency of

observation at each category will be obtained.

A reliable system would be equally likely to contain

the observed value in a rank histogram (Toth et al. 2003).

For a small SPRD case, observations fall more frequently

on the first and the last categories and rarely show in the

middle categories, which results in a U-type distribution

in a rank histogram. Figure 8 shows the rank histogram

of the ensemble predictions by the second construction

method that has the smallest SPRD. As can be seen,

Fig. 8 shows a U-like type at all lead times, where the

perfect percentage value is 3%, but there are 20%–30%

observations fall in the first or the last category, whereas

few samples fall in the middle categories. Figure 8 was

obtained using a bootstrap strategy to ensure a robust

histogram structure: 1) for each lead time, 30 members

out of 100 ensemble predictions are randomly chosen to

calculate the rank; 2) the process in 1) was repeated 500

times and the averaged percentage values of the 500 times

are shown in Fig. 8.1 For a relatively large SPRD case

[e.g., the SPRD satisfying (6) by using an unrealistic

strong wind perturbations in the second construction

method], the rank histogram displays a homogenous dis-

tribution, as shown in Fig. 9, that is, the frequency

FIG. 9. As in Fig. 8, but for a good/sufficient SPRD case, derived by a strong wind perturbation (3 times of the original

high-frequency NCEP winds).

1 We also tried different sample sizes in bootstrap experiments

from 30, 40, 50, etc., and found that all results are similar to Fig. 8,

which is actually consistent with the histogram using 101 categories.
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distribution is around the perfect percentage line, in-

dicating the consistency of forecast and observed dis-

tributions (a good reliability). Thus, Figs. 8 and 9 suggest

that an ensemble system with good ensemble SPRD can

result in a reliable probabilistic forecast system.

c. Resolution

To examine the resolution of the four ensemble con-

struction methods, we will analyze the resolution item

Bres of the Brier score in (8). Figure 10 displays the Bres

for the warm, cold, and neutral ENSO states as a func-

tion of lead time. Two common features can be seen: (i)

The Bres scores for the warm and cold ENSO events are

greater than those of the neutral ENSO state for a given

lead time, and resolution drops faster at the neutral ENSO

state than the others, indicating that El Niño and La Niña

events are more predictable than neutral events. This

signal-dependent characteristic of ENSO predictability is

in agreement with many studies (e.g., Chen and Cane 2008;

Tang et al. 2008a). (ii) Compared with the large differ-

ences of reliability terms among four methods in Fig. 7,

resolution terms for the four methods only show slight

differences, although their SPRD are visibly different in

Fig. 1. This implies that ensemble SPRD is more related

to reliability than resolution. In other words, the reliability

of ENSO probabilistic forecast is more sensitive to choice

of ensemble construction strategy than the resolution.

d. Overall probabilistic skill

The overall performance of the four ensemble con-

struction methods is evaluated by BSS score and RPS/

RPSS score, as defined by (10)–(12). The BSS measures

the overall probabilistic skill, contributed by reliability

and resolution scores for each ENSO category. The RPS

and RPSS are accumulated skill scores for three ENSO

categories. Figure 11 presents BSS for four ensemble

FIG. 10. As in Fig. 7, but for the resolution term Bres of the BSS, where Bres is positively oriented.
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methods at cold, neutral, and warm ENSO states. As

seen, the SO1_wind and SO1_wind1SV1_sst methods

provide better BSS skill scores than SV1_sst and UV_

realstoc methods, indicating the important role of sto-

chastic optimal winds in improving probabilistic skill.

The larger BSS scores in the last two methods mainly

benefit from the better reliability terms in Fig. 7 because

four experiments have resolution terms similar to those

shown in Fig. 10. Figure 11 also indicates the upper limit

of ENSO predictability of the LDEO5 model using BSS

score. Warm and cold ENSO events are predictable for

lead times of 2 yr or longer, whereas the neutral ENSO

state reaches its lowest predictability at the lead time of

10 months (i.e., at the lead time longer than 10 months,

the BSS is negative, indicating the system has no skill at

longer lead times).

The RPS and RPSS scores measure the distance be-

tween the probability of the forecast and observation

similar to the RMSE value, but in a probabilistic sense.

From the definition of RPS, the range of the RPS score is

between 0 (the perfect forecast) and 1. The RPSS score

is zero or positive if the forecast skill equals to or ex-

ceeds that of the climatological probabilities, whereas a

negative RPSS represents that the forecast skill is worse

than climatology (e.g., Mason 2004). A smaller RPS or

a larger RPSS score indicates higher predictability. To

compare the skill of the four ensemble methods, indi-

vidual RPS and RPSS scores were calculated over 148 yr

for lead times from 0 to 24 months. The averaged RPS

and RPSS score over the 148 yr are given in Fig. 12. The

SO1_wind1SV1_sst method has the smallest RPS score

and largest RPSS score, providing a more skillful fore-

cast than other methods. It is worth noting that the RPSS

scores shown in Fig. 12 are averaged over 3 ENSO cat-

egories for lead times of 0–24 months over the 148 yr;

thus, although the averaged RPSS scores have negative

FIG. 11. As in Fig. 7, but for the BSS, which is positively oriented.
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values at lead times .5 months, for individual forecasts

of warm or cool events the skill score can have positive

RPSS scores.

In summary, Figs. 11 and 12 indicate that the fourth

ensemble construction method SO1_wind1SV1_sst is

superior to the other three, providing the highest prob-

abilistic prediction skill. Also, the third method SO1_

wind has relatively higher prediction skill than the first

and the second methods. Thus, we have demonstrated

that the stochastic optimal winds play important roles in

constructing ensemble prediction in the LDOE5 model.

6. Conclusions and discussion

Skillful ENSO predictions will assist in the manage-

ment of natural resources and the environment. Signif-

icant progress has been made in ENSO prediction over

the past few decades (e.g., Latif et al. 1998; Goddard et al.

2001). Currently there are a few ENSO prediction models

issuing routine predictions (e.g., IRI online at http://

portal.iri.columbia.edu), including statistical models, in-

termediate complexity dynamical models, hybrid coupled

models, and fully coupled general circulation models.

However, some important issues still remain and are

challenging to the ENSO and seasonal climate prediction

community. One specific issue is the measures of the

uncertainties in ENSO prediction.

An ideal approach to deal with prediction uncer-

tainty is to issue probabilistic prediction, which has

been widely applied in weather forecasting. Compared

with weather probabilistic forecasting, ENSO probabi-

listic prediction has not been well addressed. Probabi-

listic predictions are typically generated by ensemble

prediction methods. Thus, an interesting question is the

following: which ensemble construction method can lead

to the best ENSO probabilistic model? In this study, we

explored four typical ensemble construction methods

through the LDOE5 model. A long-term retrospective

ensemble prediction was carried out for the past 148 yr

(1856–2003) for each ensemble construction method.

The performance of probabilistic prediction is measured

using several probabilistic verification methods (e.g., the

spread principle, reliability diagram, RPS and RPSS, and

BSS). The reliability, resolution, and amplitude of the

FIG. 12. (a) The RPS as a function of lead time for four ensemble construction methods. (b) As in (a), but

for the RPSS.
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ensemble spread were considered as the key principles

to evaluate the performance of ensemble construction

methods.

It was found that the SV1_sst ensemble construction

method and the realistic stochastic winds method UV_

realstoc failed to generate reliable probabilistic predic-

tions because they characterize insufficient uncertainties

in the model, resulting in small ensemble spreads. Mean-

while, their lower reliability and poor BSS skill are

revealed by several probabilistic methods. The small

spreads in both of the SV1_sst and UV_realstoc methods

are probably due to the limitation of linear SV theory at

the longer lead times and to the random nature of spatial

structure in the high-frequency realistic winds, respec-

tively. To overcome the small spread issue, stochastic

optimal perturbation of winds were applied over the

whole forecast period in the last two SO-based methods.

After removing the spread issue, the two SO-based

methods exhibit good reliability in probabilistic measures.

Among four ensemble construction methods, the

overall probabilistic skills measured by BSS and RPSS

indicate that the SO1_wind1SV1_sst ensemble construc-

tion method is superior to the other three. Also, the third

method SO1_wind has a higher BSS score than the first

and the second methods, suggesting the stochastic opti-

mal winds play important roles in constructing ensemble

prediction in the LDOE5 model. The skillful perturba-

tion method (large BSS or RPSS score) mainly benefits

from the good reliability contributed by the stochastic

optimal winds. However, the differences of resolution

scores are subtle among the four ensemble construction

methods in spite of large differences in the reliability

scores existing. This indicates that the reliability score

is much more sensitive to the ensemble construction

method than resolution score, suggesting that the merits

of a good ENSO probabilistic prediction system are mainly

reflected in the reliability score. Basically, a good en-

semble SPRD helps to achieve a good reliability score,

thereby bringing a higher overall probabilistic skill (i.e.,

BSS/RPSS).

One interesting finding in this study is the great im-

portance of stochastic forcing on ENSO probabilistic

FIG. 13. (a) The anomaly correlation R as a function of lead time for four ensemble construction methods. (b) As in

(a), but for the RMSE.
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prediction. Generally, there are two kinds of sources

that limit ENSO predictability: the chaotic behavior of

the nonlinear dynamics of the coupled system (e.g., Jin

et al. 1994; Chen et al. 2004); and the stochastic nature of

the coupled system characterized by weather noise and

other high-frequency variations, such as westerly wind

bursts and the Madden–Julian oscillation (e.g., Penland

and Sardeshmukh 1995; Kleeman and Moore 1997; Moore

et al. 2006; Gebbie et al. 2007). It is still not clear which

source plays the more dominant role. Thus, the im-

portance of stochastic forcing on ENSO probabilistic

prediction provides insight into this central question

challenging the ENSO community.

Different from older versions of the ZC model and

many models, the LDEO5 version can effectively remove

model biases through two MOSs (model output statistics)

schemes: one for SSTA and the other one for other var-

iables (Chen et al. 2000; Chen et al. 2004). Both MOS

schemes take effect at each time step during the whole

forecast period, and well consider uncertainties in model

parameters. Thus, the advantage of ensemble methods

developed in this study might have been weakened by

the MOS schemes. For example, the ensemble predic-

tions do not show improvement in correlation skill than

the control run experiment at short lead times in Fig. 13a

(however, the RMSE skill of all ensemble mean pre-

dictions are actually still better than control prediction

for lead time longer than 4 months as shown in Fig. 13b).

It is expected that our proposed methods such as sto-

chastic optimal modes might be more useful and pow-

erful for these models, which do not have bias correction

schemes. To confirm this point, we performed an en-

semble prediction perturbed by SV1_sst and a control

prediction, both using the ZC model without MOS

schemes. The results were shown in Fig. 14, indicating

that both correlation and RMSE skill are improved at

lead times of 5 months and beyond. Since SV1_sst per-

turbation method only considers the initial condition

perturbation, the results suggests that ensemble-mean

prediction skill could be significantly improved only by

the initial condition perturbation. Figure 14 also sug-

gests that including MOS schemes is probably a primary

FIG. 14. Correlation skill R and RMSE skill for the control run and the ensemble prediction experiment with SV1_sst

construction method, as functions of lead times (without using two MOS schemes).
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reason why our perturbation methods have less signifi-

cant improvement in ensemble mean prediction skill for

short lead times.

Another interesting result found in this study is that

the probabilistic and deterministic skills are not always

consistent with each other. For example, the second

method UV_realstoc provides the best correlation skill

correlation skill as shown in Fig. 13a but has much

worse reliability score (Fig. 7). In other words, a reliable

and skillful ENSO probabilistic prediction system might

not necessarily have better deterministic skills than a

poor reliable system. A typical case happens when an

unrealistically large perturbation puts on the wind (e.g.,

3 times as much as the high-frequent realistic wind). As

such, a dynamical imbalance occurs, degrading the de-

terministic prediction skills although a good reliability

can be obtained. For example, SO1_wind and SO1_

wind1SV1_sst lead to similar RMSE skills but they

produce differences in BSS, RPSS, and Brel scores at

short lead times. In other words, a reliable and skillful

ENSO probabilistic prediction system might not neces-

sarily have better deterministic skills than a poor reli-

able system. The possible reasons for the inconsistency

between probabilistic skill measure and deterministic

measure include the following. (i) Reliability/SPRD and

RMSE have different meaning in concept. Reliability

evaluates the consistency between forecast and obser-

vation distribution for events dependent on the classi-

fication of events (categories) whereas RMSE does not

fully include the category information. (ii) SPRD is

different from RMSE unless the model is perfect. It is

possible that a large RMSE could have a small SPRD in

an imperfect ensemble system. Because of the possible

inconsistency between deterministic and probabilistic

skill measure, it seems inappropriate to evaluate a

probabilistic prediction system using deterministic skill

measures.

It is interesting to discuss the general relationship

between deterministic prediction skill and probabilistic

skill for ensemble predications. In Wang et al. (2009),

FIG. 15. Scatterplots of deterministic prediction skill and probabilistic prediction skill as functions of lead times for

four ensemble construction methods. (a) Correlation and BSS at each lead time. (b) RMSE and BSS. The curve and

solid line indicate the relationships from the most skillful ensemble construction method: SO1_wind1SV1_sst.
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a nonlinear relationship was found between correlation

skill and probabilistic skill (i.e., BSS and ROC core) in

seasonal prediction for winter precipitation predictions

using the multiple model ensemble method (super-

ensemble). They found that a correlation skill of 0.6

corresponds to a BSS of 0.1. Shown in Fig. 15 is the

scatterplot of correlation skill against BSS for all ensem-

ble construction methods, where correlation R, RMSE,

and BSS are overall prediction skill averaged over the

148 yr, and they are functions of lead time. In Fig. 15a,

we found similar results in ENSO ensemble predictions,

namely, that there is a nonlinear relationship between

BSS and correlation skill, especially in the most skillful

ensemble construction method (SO1_wind1SV1_sst). A

correlation skill of 0.6 corresponds to a BSS of 0.13, which

is very close to the result in Wang et al. (2009). In addi-

tion, the relationship between BSS and RMSE skill is

a linear relationship (Fig. 15b).

Several cautions should be borne in mind. First, we

only investigated four ensemble construction methods.

Based on a recent study of Ham et al. (2009), Zheng

et al. (2009) suggested that the ENKF data assimilation

approach is a good ensemble construction method that

can provide reliable and high-resolution ensemble pre-

dictions. Thus, further comparisons of the SO-based

methods with other methods such as ENKF and ET

methods are expected. Second, we only perturbed two

variables (i.e., the SSTA and anomalous winds); other

variables could also have important impacts on ENSO

predictability. For example, Karspeck et al. (2006) sug-

gested that thermocline depth H1 or subsurface tem-

perature Te might have large impacts on error growth

and predictability in the LDEO4 model. However, be-

cause SSTA is the only initial conditions used in the

LDEO5 model, choosing the errors and uncertainties

from SV1_sst at the initial time and using SO1_wind to

represent external atmospheric wind noise seems to be

a reasonable way of perturbing the LDEO5 model.

Nevertheless, a good ensemble construction strategy

found in this study provides a reliable and skillful ENSO

probabilistic prediction, offering a fundamental tool for

the further study of ENSO predictability.
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