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Abstract In this study, singular vector analysis was

performed for the period from 1856 to 2003 using the latest

Zebiak–Cane model version LDEO5. The singular vector,

representing the optimal growth pattern of initial pertur-

bations/errors, was obtained by perturbing the constructed

tangent linear model of the Zebiak–Cane model. Variations

in the singular vector and singular value, as a function of

initial time, season, ENSO states, and optimal period, were

investigated. Emphasis was placed on exploring relative

roles of linear and nonlinear processes in the optimal per-

turbation growth of ENSO, and deriving statistically robust

conclusions using long-term singular vector analysis. It

was found that the first singular vector is dominated by a

west–east dipole spanning most of the equatorial Pacific,

with one center located in the east and the other in the

central Pacific. Singular vectors are less sensitive to initial

conditions, i.e., independence of seasons and decades;

while singular values exhibit a strong sensitivity to initial

conditions. The dynamical diagnosis shows that the total

linear and nonlinear heating terms play opposite roles in

controlling the optimal perturbation growth, and that the

linear optimal perturbation is more than twice as large as

the nonlinear one. The total linear heating causes a

warming effect and controls two positive perturbation

growth regions: one in the central Pacific and the other in

the eastern Pacific; whereas the total linearized nonlinear

advection brings a cooling effect controlling the negative

perturbation growth in the central Pacific.

Keywords ENSO � Predictability �
Singular vector analysis

1 Introduction

ENSO is the strongest interannual variability in the global

climate system. It happens in the tropical Pacific Ocean

with a period of 2–7 years and has world-wide climatic,

ecological, and social impacts. Significant progress has

been made in understanding and predicting ENSO over the

past few decades. At present, there are many ENSO pre-

diction models with differing levels of complexity,

including intermediate coupled models, hybrid coupled

models and fully coupled general circulation models

(GCM). When measured by the anomaly correlation

between the predicted and observed sea surface tempera-

ture anomalies (SSTA) in the eastern Pacific, these models

generally have prediction skills as measured by the corre-

lation over 0.5 for lead times of 6–12 months (Latif et al.

1998; Kirtman et al. 2002; Chen and Cane 2008). However,

some important issues still remain unsolved such as the

relationship between potential predictability and the actual

prediction skill and the control factors of predictability.
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Generally, there are several sources that limit ENSO pre-

dictability: uncertainty in initial conditions and model

parameters; the chaotic behavior of the nonlinear dynamics

of the coupled system (e.g., Jin et al. 1994; Chen et al.

2004) and the atmospheric noise and other high-frequency

variations such as westerly wind bursts and the Madden–

Julian oscillation (e.g., Penland and Sardeshmukh 1995;

Kleeman and Moore 1997; Vecchi and Harrison 2003;

Moore et al. 2006; Gebbie et al. 2007). Some studies

suggested that the model-based prediction of ENSO

depends more on the initial conditions than on unpredict-

able atmospheric noise (i.e., Tang and Hsieh 2003; Chen

et al. 2004).

A widely used strategy in studying initial perturbation

growth is through singular vector (SV) analysis, a method

to describe optimal perturbation growth. The earliest work

using SV analysis to explore the growth of initial errors

was documented in Lorenz (1965). In recent years, a

number of models have been used to explore optimal

perturbation growth of ENSO predictions using SV ana-

lysis. Chen et al. (1997) used the Battisti (1988) version of

Zebiak–Cane (ZC) model to calculate the SV and found

that the optimal perturbation pattern consists of an east-

west dipole in the entire tropical Pacific basin superim-

posed on a north–south dipole in the eastern tropical

Pacific. Xue et al. (1997a, b) constructed a tangent linear

model (TLM) in an EOF-reduced space for the ZC model

via the Markov method. Their SV spatial distribution

was similar to that of Chen et al. (1997). Fan et al. (2000),

using a different intermediate complexity coupled model,

found that the optimal perturbation growth depends criti-

cally on the seasonal cycle and ENSO phase as well as the

prediction lead time. Tang et al. (2006) studied ENSO

potential predictability using a fully coupled GCM and

discussed some deficiencies in the GCM and their possible

influences on SV growth. Zhou et al. (2007) explored the

impact of atmospheric nonlinearity on the optimal pertur-

bation growth by comparing SVs of two ENSO models that

have the same oceanic model coupled, respectively, to a

linear and a nonlinear statistical atmospheric model.

However, there are still challenging issues concerning

optimal perturbation growth that warrant further investi-

gation. First, all of the above studies focused on a period of

only 20–40 years, with a rather limited number of ENSO

cycles, basically precluding statistically robust conclusions.

A longer-term SV analysis would result in more robust

ensemble feature of SV. Second, it has been well recog-

nized that the actual predictability of ENSO has striking

decadal/interdecadal variations (e.g., Chen et al. 2004;

Tang et al. 2008). One might be able to shed light on the

mechanism of decadal/interdecadal variation in ENSO

predictability by exploring decadal/interdecadal variation

of the optimal perturbation growth by SV analysis.

Obviously, the SV analysis for only a 20–40 year period, as

performed previously, is unable to achieve this goal. Third,

it has been of great interest to identify the sources and

processes that limit the predictability of ENSO. Nonlin-

earity and stochastic noise are generally thought to be two

most important factors limiting ENSO predictability. One

effective method to explore the importance of nonlinearity

in ENSO predictability might be to examine the relative

roles that linear and nonlinear processes play in optimal

perturbation growth, which has not been well addressed in

previous studies. Finally, the relationship between optimal

perturbation growth and the actual model prediction skill,

i.e., between the potential predictability and actual pre-

dictability, should be examined under a framework of

statistically robust analysis.

Thus, further SV analysis is required to more fully

understand optimal perturbation growth and ENSO pre-

dictability. In this first part of a two paper study of ENSO

predictability, the first three challenges discussed above are

addressed. In part two of the study, we will focus on actual

model prediction skills and their relationship to optimal

perturbation growth over a long-term period, which will

provide insights on mechanisms of ENSO predictability.

Recently, Chen et al. (2004) used KAPLAN sea surface

temperature anomaly (SSTA) reanalysis data and the ZC

model (LDEO5 version) to perform a 148 year hindcast

experiment for the period of 1856–2003. They successfully

predicted all of the prominent El Niño events during this

period at lead times of up to 2 years, with the SST being

the only data used for model initialization. Tang et al.

(2008) further analyzed the interdecadal variation in ENSO

prediction skill from 1881 to 2000 using multiple models.

These retrospective ENSO predictions allow us to achieve

a robust and stable study of statistical predictability of

ENSO.

In the present paper, we perform SV analysis for the

ZC model version LDEO5, from 1856 to 2003 using a

newly constructed TLM, then explore ENSO predict-

ability using SV analysis. To our knowledge, this study is

the first attempt to explore optimal perturbation growth of

ENSO predictions by SV analysis for a period over

100 years. Emphasis will be placed on the first three

aforementioned issues, in particular, investigating possi-

ble control factors and mechanisms responsible for vari-

ations in the SV. Section 2 briefly introduces the LDEO5

model, the construction of the TLM, and the SV method.

Section 3 presents the optimal perturbation growth pat-

tern and perturbation growth rate by SV analysis. In Sect.

4, the variability of SSTA is dynamically diagnosed and

the dominant factors controlling the perturbation growth,

i.e., nonlinear heating (NH) and linear heating (LH), are

discussed, followed by a conclusion and discussion in

Sect. 5.
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2 Methods

2.1 ZC model LDEO5 version

The model used in this study is the Zebiak and Cane model

(Zebiak and Cane 1987; hereafter ZC), which has been

widely applied for ENSO simulation and prediction. LDEO5

is the latest version of ZC model (Chen et al. 2004). For long

retrospective predictions, a historic SST of the past

148 years from 1856 to 2003 has been assimilated into the

coupled model using a nudging scheme (Chen et al. 2004).

The skillful retrospective predictions initialized by the his-

toric SST data, as shown in Chen et al. (2004) and Tang et al.

(2008), evidence the good quality of SST initial conditions.

The atmosphere dynamics follows Gill (1980) using steady-

state, linear shallow-water equations. The circulation is

forced by a heating anomaly which depends on the SST

anomaly and moisture convergence. The ocean dynamics

uses the reduced-gravity model, and ocean currents were

generated by spinning up the model with monthly wind. The

thermodynamics describe the SST anomaly and heat flux

change. The model time-step is 10 days. The spatial region

is focused on the tropical Pacific Ocean (124�E–80�W;

28.75�S–28.75�N). The grid for ocean dynamics is 2� lon-

gitude 9 0.5� latitude, and the grid for SST physics and the

atmospheric model is 5.625� longitude 9 2� latitude.

2.2 Theory of SV analysis

The evolution of a small perturbation X of the initial state

vectors of a nonlinear dynamical model can be represented

as:

oX

ot
¼ LX ð1Þ

where L is the linearized operator of the nonlinear model.

At time t þ Dt; the solution to Eq. 1 is given by

Xðt þ DtÞ ¼ Rðt;DtÞXðtÞ ð2Þ

R, a function of time and the lead time, is often called the

propagator and represents the perturbation growth

matrices. From (1) and (2),

Rðt;DtÞ ¼ exp

ZtþDt

t

Ldt

0
@

1
A ð3Þ

For the whole model domain, the amplitude of perturbation

growth is defined as below,

A ¼ Xðt þ DtÞk k
XðtÞk k ¼ Xðt þ DtÞ;Xðt þ DtÞh i1=2

XðtÞ;XðtÞh i1=2

¼ RXðtÞ;RXðtÞh i1=2

XðtÞ;XðtÞh i1=2
¼ XðtÞ;R�RXðtÞh i1=2

XðtÞ;XðtÞh i1=2

ð4Þ

where hi denotes the inner product, R* is the transpose of

R. An L-square norm is used in Eq. 4. The eigenvector (E)

of R*R is the SV of R, representing the perturbation growth

patterns. Thus the SV can be obtained by two methods: the

empirical orthogonal function (EOF) analysis for R*R

matrix or singular value decomposition (SVD) analysis. In

this study, we use the second method,

R ¼ FKE� ð5Þ

where K is a real, positive, diagonal matrix; E and F are

orthonormal (unitary) matrices. The columns of E and F

are SVs and final patterns (FP). From (5), we can see the

relationship between the first SV mode (E1) and the first

final pattern FP mode (F1):

Rðt;DtÞE1 ¼ k1F1 ð6Þ

k1 is the largest singular value in the K matrix, representing

the amplitude (rate) of the optimal perturbation growth

(E1).

Generally, there are two approaches for SV analysis: a

direct method and an indirect method. The direct method

derives the linearized operator L in (1) and its adjoint

operator from the original nonlinear model, i.e., the tangent

linear model (TLM) and the adjoint model (AM), both

being used for calculating the derivative and gradient of

model state variables. The procedure of the direct method

is to run the original model, TLM, and AM simultaneously

together with an SVD (Singular value decomposition)

algorithm. The application of the direct method can be

found in the literature (e.g., Moore and Kleeman 1996; Li

et al. 2005). The indirect method uses two steps to get the

propagator (R) in (2). The first step is to integrate the

original model from initial time to several months later

(i.e., the optimal period) and to record the final state X0f : In

the second step, small perturbations, denoted by Xi, are

added in the initial field of the original model and the

original model runs grid by grid. The final state, denoted by

X00f ; is recorded. The perturbation growth during the opti-

mal period, denoted by Xf, is the difference between X00f and

X0f and the propagator R is thus ðX00f � X0f ÞX�1
i : The maxi-

mum possible perturbation growth is the first (largest)

singular value of the propagator R. The initial and final

patterns that accomplish this perturbation growth are the

right and left singular vectors of R.

In this study, we propose a mixed algorithm for SV

analysis, in which the TLM model was directly constructed

from the original ZC model but only used for producing R.

The advantage of this mixed algorithm is that it maintains

the computational accuracy by using TLM and avoids the

technical difficulty inherent in producing the AM model. In

implementation, given a perturbation onto a model grid, the

TLM model integrates forward once; so that the TLM

model runs as many times as the number of model grids.
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The initial SSTA perturbation is 0.05�C, about 1% of the

original SSTA amplitude. It should be noted that the SVs

are not very sensitive to the amplitude of initial perturba-

tions when the initial perturbation varies between ±0.25�C

for SSTA, ±2 m/s for zonal and meridional wind anoma-

lies, and ±2 m for thermocline depth anomaly (H). The

total perturbation growth during the optimal period (Xf) is

actually a final pattern responding to the initial perturbation

(Xi). The relationship between the Xf and the Xi can be

described by (2), i.e.,

Rðt; t þ DtÞXi ¼ Xf ð7Þ

To avoid calculating the inverse matrix Xi*, the initial

perturbation is fixed at 0.05�C, thus Xi is a diagonal matrix

with all diagonal elements equal to 0.05�C.

Rðt; t þ DtÞ ¼ Xf

0:05
ð8Þ

Finally, from Eq. 5, we can find the SVs, final patterns, and

singular values.

3 SV analysis over 148 years

3.1 Variations of the first SV and the final pattern

First, we only consider initial uncertainties in SST. The SV

analysis is performed every month at the optimal period of

6 months (i.e., 6-month lead) for 1856–2003, using the

TLM and SVD method, as discussed in Sect. 2.2. In each

SV analysis, the optimal perturbation growth pattern (the

first singular vector, SV1), final pattern, and perturbation

growth rates (singular values) are obtained. Figure 1(a, b)

show the averaged SV1 and the corresponding final pattern

at 6-month lead time over 148 years. As can be seen, the

SV1 is dominated by a west–east dipole in the tropical

Pacific Ocean: one center located south of the equator in

the eastern tropical Pacific Ocean and the other located in

the central Pacific Ocean near 150�W (Fig. 1a). Such a

dipole structure favorable for the perturbation growth is

probably inherent in ENSO dynamics. For example, the

zonal SSTA gradient at the equatorial eastern Pacific

weakens local upwelling and intensifies the warm Kelvin

waves propagating eastward according to the delayed

oscillator theory (Suarez and Schopf 1988). The warm

eastward propagating Kelvin waves bring warm waters to

the eastern Pacific Ocean and further intensify the anom-

alies, finally leading to an El Niño-like pattern as shown in

Fig. 1b. Figure 1a, b are similar to that in the SV1 and FP

of the Battisti coupled atmosphere–ocean model (Chen

et al. 1997) and an older version of the ZC model (Xue

et al. 1997a).

In a coupled ocean–atmosphere model, initial uncer-

tainties may come from the atmosphere as well. To

examine the sensitivity of the SV1 and the final pattern to

uncertainties in the atmosphere, we repeated the above SV

analysis but included perturbations on the initial conditions

of both the SSTA and anomalous wind (zonal wind U and

(a)

(b)

Fig. 1 The first singular vector

and the first final pattern of

SSTA averaged in the

148 years. a The first singular

vector of SSTA. b The first final

pattern of SSTA. (SV1 & FP

explain 32% of the variance of

R in the SVD analysis using

Eq. 5) (Unit: �C)
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meridional wind V). The initial perturbation of winds is

0.05 m/s in Fig. 2c. The results show that the spatial dis-

tributions of the new SV1 (Fig. 2a) and the final pattern of

SSTA (Fig. 2b) are similar to those shown in Fig. 1(a, b),

indicating the SV1 and the final pattern of SSTA are

mainly determined by the uncertainty in SST itself. This

similarity is because the stochastic atmospheric noise is not

included in the ZC model and uncertainties in winds are

highly related to those in SST, thereby, they can be well

represented by SST uncertainties. The adjustment of the

atmosphere to ocean variables such as SST and upper

ocean heat content is fast, making the atmosphere a

‘‘slave’’ to the ocean at monthly or longer time scales.

Warm SST causes atmospheric convection, resulting in a

convergence of mass in the atmosphere on both sides of the

equator as shown in Fig. 2c, the SV1 of winds. Corre-

spondingly, the final pattern of winds shows a strong

association with El Niño. For example, large westerly wind

anomalies prevail over the central equatorial Pacific. The

close relationship between SST and the surface wind stress

(a)

(b)

(c)

(d)

Fig. 2 Same as Fig. 1 but

perturbing both SSTA (�C) and

wind field (m/s). a The first

singular vector of SSTA.

b The first final pattern of

SSTA. c The first singular

vector of the wind field.

d The first final pattern of the

wind field
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over the tropical Pacific has been documented in many

studies. The tropical atmosphere responds to large-scale

SST anomalies in a coherent and reproducible way; the

tropical flow patterns, especially over the open ocean, are

so strongly determined by the underlying SST that they

show little sensitivity to changes in the initial conditions of

the atmosphere (e.g., Stern and Miyakoda 1995; Shukla

1998). Vialard et al. (2005) performed a series of ensemble

forecasts by the European Centre for Medium-Range

Weather Forecasts (ECMWF) seasonal forecasting system

using wind, SST perturbation and random perturbation to

the atmosphere during the forecast, individually and col-

lectively. Their results suggested that the uncertainties in

SST determine the spread of ensemble forecasts during the

first 2 months of the forecast, while perturbations of the

wind stress or atmospheric internal variability alone

underestimate the perturbation growth during the early

months of the forecast. Therefore these results suggest that

ENSO predictability depends more on initial conditions in

SST than in atmospheric winds. However, the air–sea

coupled components are much deterministic than the

uncoupled atmospheric noise, thus, to a certain extent,

uncertainties are supposed to be originated from such

noise. Because the atmospheric noise component is not

fully considered in the ZC model, it leaves room to

improve the ENSO predictability by including stochastic

atmospheric noise. A more useful forecast strategy might

be to perform ensemble predictions and evaluate the

uncertainties of the forecast system and ENSO predict-

ability using probabilistic methods (Chen and Cane 2008).

And the SV method is one of the widely used ensemble

construction methods to generate the probabilistic weather

forecasts.

It has been found in previous work that the SV1 is not

sensitive to initial conditions in many models (i.e., Chen

et al. 1997; Xue et al. 1997a). It is of interest to further

explore the sensitivity of SV1 to initial conditions using a

long-term analysis. To do this, we calculated spatial cor-

relations between the 148-year averaged SV1 and each

individual SV1, which measures the similarity among

individual SV1s. The result is shown in Fig. 3. For most

cases (over 80%), the spatial correlation coefficients are

over 0.80, with an overall average of 0.85 for all initial

conditions (148 9 12 months). Even though the majorities

(80%) of SV1s are similar, it is interesting to know the

differences of initial patterns for those (20%) SV outliers

from majority SVs. Composite maps of SV1 are made for

those 80% and 20% cases, as shown in Fig. 4(a, b),

respectively. As can be seen in Fig. 4, the difference

between the two SV1 patterns is small, only manifested in

the equatorial western Pacific. The strong spatial similarity

in Fig. 3 and small difference in Fig. 4 indicate that SV1 is
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Fig. 3 a Spatial correlation

coefficients between each first

SV over 148-year and the

averaged SV-1, the mean

correlation coefficient is 0.85

(dash line). b Accumulated

frequency against the spatial

correlation coefficient. It

indicates the fraction of SVs

that is smaller than the spatial

correlation coefficient. For

example, 20% of SV samples

have the spatial correlation less

than the spatial correlation

of 0.8
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indeed insensitive to initial conditions in the ZC model. A

stable SV1 pattern will be useful in ensemble construction

to improve the resolution of ensemble-based probabilistic

forecasts.

SV1 is also insensitive to the background SST of the

ENSO phase. Based on a threshold of ±0.5�C of NINO3.4

SSTA (SSTA over the region 5�S–5�N, 120�W–170�W),

El Niño and La Niña events are defined when the threshold

is met for a minimum of five consecutive months. The peak

phase and the onset phase of La Niña are further defined by

NINO3.4 SSTA \-1.2�C and -0.5�C \ NINO3.4 SSTA

-1.0�C, respectively. The neutral ENSO state, onset of El

Niño, and the peak El Niño phase are defined by |NINO3.4

SSTA| \0.5�C, 0.5�C \ NINO3.4 SSTA \1.0�C, and

NINO3.4 SSTA [1.5�C, respectively. For each stage, a

composite SV1 and a corresponding final pattern over

148 years are presented in Fig. 5. All SV1s in different

ENSO stages have a similar west–east dipole pattern in the

equatorial Pacific and with very similar amplitude. The

spatial coverage of final patterns, however, slightly varies

with ENSO phases. As seen in Fig. 5(b2–d2), at the onset

and neutral ENSO stages, final patterns span over almost

all the equatorial Pacific; whereas at peak ENSO stages

final patterns shrink and are confined to the east side of the

dateline. Figure 6 shows the SV1 of thermocline depth

anomaly (H) and their final patterns for different ENSO

phases. Similar to SSTA, the leading SV mode of ther-

mocline is not sensitive to ENSO background, as expected.

After 6 months, the final patterns show some differences

among ENSO phases, although the major features remain

consistence, i.e., thermocline deepening in the east and

shoaling in the west.

It is of interest to explore the variability of SV1 and final

pattern at interdecadal time scales. Based on the prediction

skill presented in Chen et al. (2004) and Tang et al. (2008),

we selected two 40-year SV1s and final patterns from the

148-year SV1 results. The model forecast correlation skill

in the 40-year period of 1876–1895 and 1976–1995 was

high; and another 40-year period is 1916–1955, with a low

correlation skill. It was found that the composite SV1 and

final pattern in two high prediction skill periods are very

similar to each other with the averages shown in Fig. 7(a,

c). As expected, the SV1 of 1916–1955 shown in Fig. 7b is

also very similar to Fig. 7a due to the fact that SV1 is not

sensitive to initial conditions. In contrast to this time

invariant feature of SV1, final pattern changes significantly

between high and low prediction skill periods. As seen in

Fig. 7, the final pattern has a weaker perturbation growth

amplitude and a smaller spatial coverage in the high cor-

relation skill period; final pattern in the low correlation

Fig. 4 Composite SV1 of

SSTA (�C) for a high spatial

similarity cases (80% of total

SV1) and b low spatial

similarity (20% of total SV1)
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(a1)

(b1)

(c1)

(d1) (d2)

(e2)(e1)

(c2)

(a2)

(b2)

Fig. 5 The first SV of SSTA (�C) starting from the phase of a1 peak

La Niña; b1 onset of La Niña; c1 Neutral; d1 onset of El Niño;

e1 Peak El Niño. The corresponding final pattern after 6 months is

shown in the right panel a2–e2. The averaged perturbation growth

rate S1 of each stage is marked in the title captions
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Fig. 6 Same as Fig. 5 but for thermocline depth anomaly (H) (unit: m)
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skill period is more than twice as large as the final pattern

in the high skill period. Therefore, there is an inverse

relationship between the prediction skill of the model and

the amplitude of final pattern on the interdecadal time

scale.

3.2 Variations of the singular value

The first singular value (S1) represents the fastest pertur-

bation growth rate. Shown in Fig. 8 are the 148-year

averaged S1s over all initial conditions for different

Fig. 7 a The SV and b the final

pattern (FP) averaged in the

higher skill period (1876–1895

and 1976–1995) and c SV and d
the final pattern in the lower

skill period (1916–1955)
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calendar months and lead times (1, 3, 6 and 9 months).

Note that in Fig. 8, S1s are from the SV analysis with

perturbation of only SSTA. The amplitude of S1s with

perturbations of both the SSTA and anomalous winds is

almost the same as that of Fig. 8, therefore, not shown

here. As can be seen in Fig. 8, large S1s often occur at their

verification time (the end of the forecast) from August to

October in corresponding predictions starting in the boreal

spring or summer. For example, the maximum S1 occurs

in September or October for 3, 6, and 9-month leads,

corresponding to the starting month of June, March and

February, respectively. This seasonal dependence in per-

turbation growth might explain why ENSO prediction skill

often drops remarkably when prediction periods start from

the boreal spring and pass through the boreal spring and

summer, i.e., the ‘Spring Barrier’. Jin et al. (2008) recently

performed 22-year retrospective ENSO predictions using

10 different coupled GCMs. Their results show that the

skill of forecasts that start in February or May drops faster

than that of forecasts that start in August or November

because predictions starting from February or May contain

more events in the decaying phase of ENSO. Based on

dynamics, the ‘‘Spring Barrier’’ is probably due to the fact

that the Intertropical Convergence Zone (ITCZ) is closest

to the equator during the spring, sustaining the unstable

condition, whereas the ocean–atmosphere interaction is

strong during the summer due to the relatively large ver-

tical temperature gradient and ocean upwelling (e.g., Xue

et al. 1997a). In addition, Fig. 8 shows that the magnitude

of S1 increases with the lead time as expected.

It is interesting to explore whether S1 shows interannual

or even longer time scale variability given the existence of

decadal/interdecadal variations of ENSO prediction skill

(e.g., Kirtman and Schopf 1998; Tang et al. 2008; Chen

et al. 2004). A low-pass filter (2-year) based on the Fourier

transform (FFT) has been applied to the S1 of 6-month

leads and the NINO3.4 SSTA index to address interannual

and longer signals. The two filtered time series are shown

in Fig. 9(a, b). As can be seen, they have both visible

interannual and longer time scale variability. The inter-

annual and decadal/interdecadal variability of S1 and the

NINO3.4 SSTA index can be further verified by the

wavelet analysis shown in Fig. 9(c, d). The local significant

period varies between 2 and 20 years during the whole

period from 1856 to 2003, including the ENSO interannual

time scales (2–8 year) and the decadal/interdecadal modu-

lation of ENSO. On the interannual time scale, the signi-

ficant time period of S1 tends to shift from a longer time

scale to a shorter time scale. For example, the significant

time period shifted from 8-year to 3-year between 1870 and

1900; this phenomenon reoccurred between 1900 and

1960. When comparing Fig. 9c with the wavelet power

spectrum of the NINO3.4 index in Fig. 9d, similar shifting

characteristics are found indicating that the changes in the

significant periods of the perturbation growth rate was

associated with changes in the ENSO signal (spectrum

power of NINO3.4) on the interannual time scale. It also

indicates that ENSO tended to happen more frequently in

recent decades and has a higher frequency of error occur-

rence. However, on the decadal/interdecadal time scales,

Fig. 9(c, d) show that the power spectrums of S1 and

NINO3.4 were not consistent in most of the time period

except during the time period of 1900–1920 and around

1980. ENSO decadal/interdecadal signals were relatively

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

1

2

3

4

5

6

7

8

9

Verification month

Th
e 

fir
st

 s
in

gu
la

r v
al

ue

1m
3m
6m
9m

Fig. 8 Seasonal variations of

the first singular values S1

against the prediction target

time at different lead time, 1, 3,

6 and 9 months (from bottom to

top respectively) averaged over

148 years

Y. Cheng et al.: Further analysis of singular vector and ENSO predictability in the Lamont model

123



weak between 1945 and 1975 while the spectrum power of

the perturbation growth was significantly stronger over this

period.

To examine relationships between NINO3.4 SSTA

index and the S1, in particular their local relative phases, in

time frequency space, the cross-wavelet analysis method

(Grinsted et al. 2004) is applied for Nini3.4 SSTA and S1.

The temporal variation of cross wavelet power spectrum is

shown in Fig. 10, where the relative phase relationship is

shown as arrows, with in-phase pointing right, anti-phase

pointing left, and NINO3.4 SSTA index leading S1 by 90 Æ

pointing straight down. As can be seen, both the phase

synchrony and phase asynchrony between the two series

can be observed at different time scales from decades to

decades. For example, in-phase relationships are visible at

the interannual time scales from 1880–1920 and 1940–

1950 whereas the anti-phase relationships occurred at

decadal/interdecadal time scales from 1900–1940 and

1960–1980. The anti-phase feature at decadal/interdecadal

scales is in agreement with the ENSO predictability study

in Tang et al. (2008) using multiple models, where they

found that at decadal/interdecadal scales, strong ENSO

events were related to small perturbation growth rates and

vice versa. In addition, at interannual time sales, the sig-

nificant periods seem gradually shifted to shorter scales

from 1880 to 2000, which is probably due to the

enhancement of ENSO variability in amplitude and fre-

quency with time during the past 100 years. We will fur-

ther discuss the relationships between ENSO signals and

perturbation growth rate in part II of this work.

Many recent 20–30 years interval SV analyses con-

cluded that: (i) a small perturbation growth rate often

Fig. 9 Time series of the

low-pass filtered ([24 months)

a the first singular value (S1)

and b the NINO3.4 index used

for the wavelet analysis.

Wavelet power spectrum of c S1

and d NINO3.4 using the Morlet

wavelet. The thick contour

encloses regions of greater than

95% confidence, using a red-

noise background spectrum. The

solid smooth curves in the left

and right corners indicate the

edge effects become important
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occurs during an ENSO peak phase; and (ii) the larger

perturbation growth rate shows in the neutral and onset/

breakdown stages of ENSO (Chen et al. 1997; Xue et al.

1997a; Tang et al. 2006; Zhou et al. 2007). Cai et al. (2003)

obtained similar results when they analyzed the perturba-

tion growth rate of the ZC model using a very long period

breeding vector analysis. For comparison, we examined the

above features of perturbation growth rate and ENSO phase

over 148 years, resulting in a similar plot to Fig. 5 in Cai

et al. (2003), as shown in Fig. 11. The ENSO events are

binned into 18 categories between -2�C and 2.5�C with a

0.5�C interval based on the NINO3.4 SSTA index or

NINO3 SSTA index (5�S–5�N, 90�W–150�W). The mean

S1 of each category is shown as a function of the ENSO

phase and the SSTA tendency. As shown in Fig. 11a,

where 18 bars represent the 18 categories from the left to

right. Bins 1–9 have positive tendencies of SSTA and bins

10–18 have negative tendencies. In addition, bins 1–3 and

16–18 are at cold ENSO phase, bins 4–5 and 14–15 are at

neutral phase, and bins 6–13 are at warm phase. The small

perturbation growth rate occurs at the peak ENSO stage

(peak El Niño and La Niña, bins 8–10 and 1, 18, respec-

tively). While the large perturbation growth occurs prior to

the decay phase of El Nino (bins 11–13) and during the

transition period from a cold to a warm state (bins 3–5).

These results are generally consistent with former SV

studies (e.g., Chen et al. 1997; Xue et al. 1997a) and

breeding vector results (e.g., Cai et al. 2003; Tang and

Deng 2009) and further confirm the sensitivity of pertur-

bation growth on ENSO phase. In the next section, we will

identify and investigate the possible physical processes

controlling the perturbation (error) growth in the ZC

model.

4 Physical processes of perturbation growth in the ZC

model

The evolutions of the model initial perturbations and ENSO

signals are simultaneously controlled by internal dynamical

and thermodynamical processes of the model such as the

horizontal advection and vertical mixing. To explore

underlying physical processes of the model perturbation

growth, we decomposed the model SSTA variations into

linear terms and nonlinear terms following the definition of

An and Jin (2004), and performed several sensitivity

experiments of SV analysis to investigate the contribution

of individual term to the original total perturbation growth.

The governing equation of SSTA in the ZC model can

be written as below

oT 0

ot
¼ �U
!
� rT 0 � U0 � rðT þ T 0Þ � ½MðW þW 0Þ

�MðWÞ�oT

oZ
�MðW þW 0ÞoT 0

oZ
� aT 0 ð9Þ

where T 0 T
� �

; U0ðUÞ; and W 0 W
� �

are anomalies (mean) of

SST, surface layer currents, and vertical velocity, respec-

tively, and a is a thermal damping coefficient. The first two

terms on the right hand side of (9) are the horizontal

advection terms. The third and fourth terms represent the

effects of anomalous upwelling in the presence of the mean

vertical temperature gradientoT
oz ; and the total upwelling

in the presence of the anomalous vertical temperature

Fig. 10 The cross-wavelet analysis for NINO3.4 SSTA index and the

singular value S1. The thick contour encloses regions of greater than

95% confidence, using a red-noise background spectrum. The relative

phase relationship is shown as arrows, with in-phase pointing right,
anti-phase pointing left, and NINO3.4 SSTA index leading S1 by 90�
pointing straight down

Fig. 11 Mean S1 (in solid star curve) as a function of the background

ENSO phase. a The bar curve is the NINO3.4 index of the composite

background ENSO cycle (S1 is divided by 2); b same as a but using

NINO3 index
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gradient oT 0

oz ; respectively. The final term is a linear damping

term, which can be interpreted as the change of SSTA due

to the heat exchange between ocean and atmosphere. M(x)

is a step function: M(x) = x if x C 0; M(x) = 0 if x \ 0

which brings a cooling effect when there is upwelling and

no effect otherwise since downward motion causes no

change in SSTA.

If we consider the linear and nonlinear heating effects of

horizontal advection and vertical advection (upwelling or

downwelling), Eq. 9 can be expressed as:

oT 0

ot
¼ �u � T 0x � u0Tx � u0T 0x � vT 0y � v0Ty � v0T 0y

�MðwÞT 0z � Mðwþ w0Þ �MðwÞf g Tz

� Mðwþ w0Þ �MðwÞf gTz
0 � aT 0

ð10Þ

where T, u, v, and w are SST, zonal, meridional, and ver-

tical current velocities, respectively. The overbar and prime

denote the climatological mean and anomaly, respectively.

The underlined terms are nonlinear heating (NH) and the

remaining terms are linear heating (LH), following the

definition of An and Jin (2004). The linear and nonlinear

heating terms can further be subdivided into the horizontal

linear (HL), the horizontal nonlinear (HN), the vertical

linear (WL), and the vertical nonlinear (WN), respectively.

The linear dumping term is considered in the horizontal

linear term (HL).

To identify the contribution of each individual heating

term to the original perturbation growth, we performed SV

analysis for each linear and nonlinear term over 148 years

respectively. Note that the nonlinear heating terms have

been linearized in the TLM, the nonlinear perturbation/

perturbation growth mentioned hereafter are actually the

linearized nonlinear perturbation contributions. The SV

analysis of each term is similar to the original analysis

described in Sect. 2.2 except that the perturbation growth

of SST (i.e., Xf in Eq. 7) was replaced by the perturbation

growth of an individual heating term obtained from the

TLM. This is confirmed by the results obtained using

tangent linear model (7), where the original SV1 is used as

initial condition Xi for integration of TLM. It was found

that SV1s of these heating terms are similar to the original

SV1 as shown in Fig. 1a. This is because the solution of

maximizing total perturbation growth rate A in (4) is

equivalent to the solution of maximizing growth rate of

each individual term. The final patterns of these terms are

subject to their physical processes, representing the per-

turbation contribution from each heating term. The final

pattern of each term from SV analysis is actually equiva-

lent to the response of corresponding term (Xf) to the ori-

ginal SV1 (Xi) by (7). The 148-year averaged final patterns

for the linear and nonlinear terms are given in the left and

the right panel of Fig. 12, respectively. The final pattern of

the total horizontal linear heating (Fig. 12e) is very similar

to the original final pattern in Fig. 1b. There are two

positive perturbation growth regions in the tropical equa-

torial Pacific, located in the central Pacific Ocean and the

eastern Pacific, respectively. The former center in the

central Pacific near 150�W, where the strong atmosphere–

ocean interactions and large instability conditions often

occur, is formed as a result of the horizontal linear per-

turbation growth (see Fig. 12a). The perturbation growth in

the eastern Pacific is clearly related to the vertical linear

term (Fig. 12c), indicating that the optimal growth in the

eastern Pacific Ocean is mainly due to the vertical linear

upwelling/downwelling term. This vertical linear optimal

growth is probably due to an inaccurate parameterization of

the vertical mixing process. The high spatial similarity of

the final patterns of the total linear and horizontal linear

optimal growth suggests the linear heating perturbation

growth dominates the total model perturbation growth.

However, if we ignore the perturbation contribution of the

nonlinear process, the perturbation growth in the central

Pacific would be much stronger than the perturbation

growth in the original final pattern. This large perturbation

growth in the linear process implies that there must be

some offset effects (negative optimal growth) in the total

nonlinear heating processes that reduce the large linear

perturbation growth. We can see this reduction in the total

nonlinear perturbation in Fig. 12f: there is a negative per-

turbation growth center in the central Pacific near the

dateline region where it can partly offset the positive per-

turbation growth in the total linear perturbation. Therefore,

both the linear perturbation growth and nonlinear pertur-

bation growth are important in the central Pacific. The total

nonlinear error can be further decomposed by the hori-

zontal nonlinear term and the vertical nonlinear term

shown in Fig. 12(b, d). There is a large negative pertur-

bation growth region in the central Pacific in the horizontal

nonlinear term, which is similar to the total nonlinear

perturbation growth pattern shown in Fig. 12f; meanwhile,

a relatively weak positive perturbation growth is shown in

the vertical nonlinear term in the central Pacific (Fig. 12d).

Therefore, the total nonlinear negative error is mainly the

result of the horizontal nonlinear term. Comparing Fig. 12e

with f shows the perturbation growth contribution of the

total linear heating is 3–4 times larger than the contribution

of the nonlinear heating (note that the perturbation growth

rates were included in FPs). Therefore, total model errors

are mainly caused by the linear advection heating process,

but the linear process can be partially offset by the non-

linear process which has a negative error contribution,

especially in the central Pacific.

To compare the error contributions of individual linear/

nonlinear heating terms, the seasonal variations of these

perturbation growth rates are given as a function of the

forecast verification time (Fig. 13). As expected, the
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horizontal linear heating term (HL) makes the largest

contribution to the original growth rate S1, and shows a

consistent seasonal variation with original perturbation

growth S1. The vertical linear heating (WL) and horizontal

nonlinear heating (HN) have comparable error contribu-

tions, but they are much smaller than horizontal linear

perturbation growth (HL). Comparing the vertical nonlin-

ear perturbation growth (WN) with the other three terms

shows that the vertical nonlinear perturbation growth is the

smallest contributor with very weak seasonal variations. To

visualize the linear and nonlinear error contributions more

clearly, seasonal variations of the perturbation growth rates

are given in Fig. 13b. The perturbation growth of the total

linear term is about twice as large as the total nonlinear

perturbation growth, which confirms again that the original

total perturbation growth S1 is mainly determined by the

linear process, and the nonlinear process contributes to a

smaller and negative perturbation growth. An offsetting

effect between the linear and nonlinear terms explains why

the horizontal perturbation growth rate HL is larger than

the original perturbation growth rate S1.

To further understand underlying mechanisms of linear

and nonlinear perturbation growth, we performed several

EOF analyses for individual linear/nonlinear heating terms

to look for dominating physical processes that control the

variation of total heating, and investigate the relationship

between the perturbation growth rate and the correspond-

ing heating term. These individual heating terms were

obtained from the integration of the original model again

over the period of 1856–2003. For the total linear heating

process, the first EOF mode, accounting for 73.1% of total

variance, shows an ENSO-like pattern (Fig. 14c). Com-

paring this EOF mode of total linear heating with the

horizontal linear heating (Fig. 14a) and vertical linear

heating (Fig. 14b), reveals that the warming in the equa-

torial central and eastern Pacific is from the contribution of

anomalous horizontal linear heating, and the warming

along the coastal zone is mainly due to vertical linear

(c)

(b)(a)

(d)

(e) (f)

Fig. 12 Final patterns for linear and nonlinear heating terms

averaged in 148 years. a The final pattern of horizontal linear heating

(HL). b The final pattern of horizontal nonlinear heating. c The final

pattern of vertical linear heating (WL). d The final pattern of vertical

nonlinear heating(WN). e The final pattern of total linear heating

(HL ? WL). f The final pattern of total nonlinear heating

(HN ? WN). (Unit: �C)
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heating. From the corresponding principal components

(PCs) shown in Fig. 14(d–f), linear heating is more likely

to cause warming as indicated by dominant positive values

in the PCs. Fig. 15(a–c) are the first EOF modes of the

horizontal, vertical, and total nonlinear heating terms

respectively. Their corresponding PCs are given in

Fig. 15(d–f). EOF analyses show a cooling and warming

pattern for horizontal and vertical nonlinear terms in

Fig. 15(a, b), respectively. Considering that all PCs are

positive and that the horizontal nonlinear PC has a larger

amplitude than the vertical nonlinear term, the total non-

linear heating NH can be explained by the horizontal

cooling effect as shown in Fig. 15c. Xue et al. (1997a)

obtained similar results from an older version of the ZC

model with a shorter time period, and concluded that the

horizontal nonlinear advection is mostly a cooling effect

and the vertical advection is mostly a warming effect,

namely that, the vertical nonlinear advection always

strengthens warm SST anomalies but diminishes cold SST

anomalies in the eastern Pacific.

These nonlinear vertical warming and horizontal cooling

effects can be further explained mathematically by Eq. 10

together with the final patterns of SSTA and the wind field

in Fig. 2. For example, during an El Niño event, the east-

erly trade wind is weakened and a westerly current

anomaly (u0[ 0) occurs in the central Pacific. Meanwhile,

the horizontal SSTA warming increases from the west to

the east showing a positive zonal SSTA gradient ðT 0x [ 0Þ:
Thus, the horizontal nonlinear advection �u0T

0

x\0
� �

con-

tributes a cooling effect in the central Pacific. This hori-

zontal nonlinear cooling effect in the ZC model is in

agreement with An and Jin’s report (2004) that during the

developing phase of El Niño, both the anomalous zonal

temperature gradient and the anomalous zonal current in

the surface layer are positive, which leads to a negative

nonlinear zonal advection. On the other hand, a weakening

of upwelling (w0\ 0) and a stronger warming at the sea

surface than in lower layers ðT 0z [ 0Þ are found in the ZC

model (opposite w0 and Tz0 in observations in An and Jin

(2004)). Therefore, the nonlinear vertical mixing

�w0T
0

z [ 0
� �

contributes to a warming effect in the central

Pacific, which can partly offset the horizontal nonlinear

cooling. For La Niña events, in the central Pacific u0\ 0,

T 0x\0 along with a strengthened upwelling, w0[ 0, and a

cooling sea surface T 0z\0: Therefore, the horizontal non-

linear cooling and vertical nonlinear warming are valid.

However, comparing the horizontal and vertical nonlin-

ear heating terms in the ZC model with that from the

observations in An and Jin (2004) shows some physical

deficiencies of the ZC model: (i) The model’s vertical non-

linear term does not show a great enough warming effect to

offset the horizontal nonlinear cooling contribution, there-

fore, the net nonlinear heating is a cooling effect, whereas, in

the observations of An and Jin (2004) the vertical nonlinear

warming dominates the net nonlinear heating; (ii) The ver-

tical nonlinear warming in the model is located in the central

Pacific, while the warming dominated in the eastern Pacific

near the cold tongue region in An and Jin (2004);

(iii) Although there is an out-of-phase relationship between

the upwelling (w0) and the vertical temperature gradient

T
0
z ¼ SSTA� Tsub

� �
through the ENSO cycle in the model,

both signs of the vertical motion and the temperature gra-

dient in the model are opposite to observations. The model

has a weakening of upwelling (w0\0) in El Niño events and

the subsurface warming is smaller than the surface warming

T 0z [ 0: However, there is a strong warm water upwelling

occurring in the eastern Pacific in the observations, espe-

cially for those strong El Niño events after 1980. An et al.

(2005) compared nonlinear heating terms in 10 coupled

models and found only one model gave the correct simula-

tion. Most models did not represent both the location and

strength or even the sign of the nonlinear vertical warming.

This model bias in the internal model dynamics and physical

processes certainly will cause perturbation growth but that is

beyond the scope of this paper.
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Fig. 13 The seasonal variation of singular values for linear and

nonlinear heating terms a horizontal linear heating (HL, solid line),

vertical linear heating (WL, dash line), horizontal nonlinear heating

(HN, solid star line), and vertical nonlinear heating (WN, dash dot
line). The original singular values (open circles); b singular values for

the linear heating (solid star line), nonlinear heating (dash dot line)
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The spatial patterns of linear and nonlinear heating

terms revealed by EOF analysis are very similar to their

corresponding final patterns of perturbation growth. Fur-

thermore, over 148 years, significant positive correlations

have been found between each PC and its corresponding

singular value. Strong linear heating is associated with a

faster positive perturbation growth while strong nonlinear

heating leads to a faster negative perturbation growth. For

example, the correlation coefficients between PCs of linear

terms HL/WL/total linear and their corresponding singular

values are 0.56/0.46/0.44 over 148 years, which are all

statistically significant at the 99% confidence level. The

correlation coefficients between PCs of nonlinear terms

HN/WN/total nonlinear and their singular values are 0.54/

0.66/0.46, respectively. Very high spatial similarity and

temporal correlations between each perturbation growth

rate and the corresponding heating term suggest that the

linear perturbation growth (L1) and nonlinear perturbation

growth rate (N1) are highly related to the linear/nonlinear

physical processes themselves. Comparing Fig. 15 with

Fig. 14 reveals that the total linear heating makes a larger

contribution to the total heating, leading to the finding that

linear processes contribute more to the total perturbation

growth than nonlinear processes as found in Fig. 13.

5 Conclusion

It is important to identify a statistically robust SV analysis

of ENSO prediction models. The relationship between

singular value and ENSO predictability has not been suf-

ficiently addressed in previous studies of ENSO predict-

ability due to a lack of long term retrospective prediction

and corresponding SV analysis. In this work, a TLM is

constructed for the latest ZC model version LDEO5 to

study perturbation growth and ENSO predictability for the

past 148 years from 1856 to 2003. It provides a substantial

account of the error growth rate and spatial patterns in

LDEO5 from seasonal to interdecadal time scales.

From the 148-year singular vector analyses by our new

constructed physical-based TLM, the long-term averaged

first singular vector SV1 is a west–east dipole spanning the

equatorial Pacific with centers located in the east and the

central Pacific Ocean. Comparing the SV1 of LDOE5 with
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Fig. 14 EOF analyses for linear

heating terms in Eq. 10. From

top to bottom, figures in the left
panel are the EOF-1 spatial

patterns of a horizontal linear

(HL), b vertical linear (WL) and

c total linear heating
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that of the previous SV studies (i.e., Chen et al. 1997; Xue

et al. 1997a), we find that the north–south dipole in the

older ZC model version in the eastern Pacific is missing,

which might be due to improvements in the ZC model (i.e.,

model dependent). A spatial correlation between the

monthly SV1s and the 148-year averaged SV1 agrees with

previously published results showing that SV1 is less

sensitive to model initial conditions while there is a strong

sensitivity of singular values to initial conditions. The

faster model perturbation growth during spring/summer is

probably caused by the stronger atmosphere–ocean inter-

action. Besides the seasonal variations, the leading singular

value, S1, has significant periods ranging 2–20 years as

seen in the wavelet analysis. On the interannual time

scales, the significant time scales of S1 and the ENSO

signal occasionally shifted from longer periods to shorter

periods during the 148 years.

The relative contribution of linear and nonlinear heating

to S1 has not so far been addressed well. In this study, we

also conducted SV analysis for each individual heating

term in the SST governing equation. SV analyses on the

individual linear and linearized nonlinear terms reveal that

the model optimal perturbation growth is mainly from

linear heating terms. The total linear optimal perturbation

growth is twice as large as the total nonlinear term. The

final optimal perturbation growth pattern of an individual

heating term has a similar spatial pattern as the EOF pat-

tern of the heating term. In addition, significant correlations

have been found between the perturbation growth rate of

each term and corresponding PC-1 of the EOF analysis for

the individual heating terms. Therefore, the singular value

of each heating term depends significantly on the heating

term itself. The perturbation growth in the central equato-

rial Pacific, where strong atmosphere–ocean interaction

occurs, is dominated by a positive perturbation growth

from the horizontal linear term. The perturbation growth in

the eastern Pacific is dominated by vertical linear mixing,

which is probably related to inaccurate parameterization of

the mixing process.

A robust and stable optimal error growth pattern,

SV1, and the optimal error growth rate, S1, over

148 years will be useful indicators of potential predict-

ability. Further discussion of the relationship between

potential predictability that does not use observations,

and the model prediction skills indicated by correlation

and root mean square error (RMSE) from a comparison
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Fig. 15 Same as Fig. 14 but

EOF analyses results for

nonlinear heating terms. Figures

from top to bottom are

a horizontal nonlinear (HN),

b vertical nonlinear (WN) and

c total nonlinear heating

(HN ? WN)
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with observations will be presented in Part II of this

study. The relationship will offer a practical means of

estimating the confidence level of ENSO prediction using

the dynamical model. In addition, the SV1s obtained in

the present study provide an optimal tool to construct

ensemble predictions, i.e., repeating a prediction many

times by perturbing the initial conditions of a forecast

model with SVs and random noise each time. Through

statistical predictability theory and ensemble prediction

of the past 148 years, the shape of the forecast prob-

ability density function (PDF) that describes the predic-

tion uncertainty can be estimated, and the nature of

ENSO predictability explored in part II of this study.
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