Filter Analysis

1 Digital filters

filtered
—- signal

(b) Simple gain filter

where K = constant.

(c) Pure delay filter

http://ccrma-www.stanford.edu/~jos/filters/Matlab_Analysis_Simplest_Lowpass.html

}J’n = ¥

n-1

The output value at fume ¢ = nh 15 simply the mput at tume ¢ = (n-1)h. 1.e. the signal 15 delayed by fume
h:

Yo T X

Y1 T Xg

Y2 T X

Y3 T X»
. ete

Note that as sampling 1s assumed to commence at r = 0, the input value x_; at r = -/ 15 undefined. It 15
usual to take this (and any other values of x prior to 7= 0) as zero.

(d) Two-term difference filter:

Yo = X5 7 X

The output value at r = nh 1s equal to the difference between the current mput x,, and the previous
Mput x,.;:

Yo T Xg - X,
Yi = X - Xy
Yo T X - X

Y3 = X3 - X,

. BlIC

(e) Two-term average filter

The output 15 the average (arithmetic mean) of the current and previous input:

X, T X
}?E = M
2
X, T X,
}rl = - @@
2
X, + X
}r: =
2
_ 5T
}rj =
2
. etc

This 15 a simple type of low pass filter as it tends to smooth out high-frequency variations in a signal.

(f) Central difference filter

This 1s similar in 1ts effect to example (4). The output 1s equal to half the change 1 the input signal
over the previous two sampling intervals:

o= %o - %,
Yo 5
S S
Y1 = 5
v, = X, = X
B 2
o X3 -X
Y3 T 5

. etc

(2) Order of a digital filter

The order of a digital filter 15 the number of previous mnputs (stored in the processor's memory) used to
calculate the current output.

Thus

Examples (a) and (b) above are zero-order filters;
Examples (c) and (d) above are first-order filters;
Examples (d) and (e) above are second-order filters;

(3) Digital filter coefficients

All of the digital filter examples given above can be written in the following general forms:

Zero order: Vo = apX,

First order: V, T ayX, T ax
Second order: Yy, = ayX

p T Xy T oasx,,

(4) Recursive and non-recursive filters

For all the examples of digital filters discussed so far, the current output (y,) 1s calculated solely from the
current and previous input values (x,, Xp.1, Xu-2, ...). This type of filter 1s said to be non-recursive.

A recursive filter 15 one wluch in addition to mput values also uses previous oufput values. These, like the
previous mput values, are stored in the processor's memory.

(5) Example of a recursive filter

A simple example of a recursive digital filter 1s given by
Yo T %5 + Y

In other words, this filter determines the current output (y,) by adding the current input (x,) to the previous

output (Vp.1):

Yo = X0 T ¥a

Yi = X% T Yo

Yo T X T W

Yi = X 7
. efc

Note that y.; (like x.1) 15 undefined, and 1s usually taken to be zero.

Let us consider the effect of this filter in more detail. If in each of the above expressions we substitute for y,.;
the value given by the previous expression, we get the following:

Yo T Xp T Y TN

Y1 T X T Y¥o=x X

Y T X T Y =X+

Y3 T X3 T Y, T R TN

. efc

This example demonstrates an important and useful feature of recursive filters: the economy with which the
output values are calculated, as compared with the equivalent non-recursive filter. In this example, each output
1s determined simply by adding two numbers together. For instance, to calculate the output at time r = 104, the
recursive filter uses the expression

Yio = X9 T Yo

To achieve the same effect with a non-recursive filter (1.e. without using previous output values stored in
memory) would entail using the expression

Vip = Xyp T Xy T Xg TX, TX X TX, TX, TX, TX TX,

This would necessitate many more addition operations as well as the storage of many more values in memory.

Order of a recursive (lIR) digital filter

The order of a recursive filter is the largest number of previous input or output values
required to compute the current output.

Coefficients of recursive (lIR) digital filters

From the above discussion, we can see that a recursive filter 15 basically like a non-recursive filter, with the
addition of extra terms involving previous inputs (Vy.1, Yy etc.).

A first-order recursive filter can be written in the general form

(apx, + a;xy; - byyy)

by

Yo T

Note the minus sign m front of the "recursive" term &;y,. ;. and the factor (1/by) applied to all the coefficients.
The reason for expressing the filter in this way 1s that it allows us to rewrite the expression 1 the following
symumetrical form:

by, + by, = agx, + ax,;

In the case of a second-order filter, the general form 1s

) taX, tayx,, —by, by,
5
by
The alternatrve "symumetrical” form of this expression 15
Do¥n © Dyyoy + boyVan = agX, T oax,y T oax,,

Note the convention that the coefficients of the mputs (the x's) are denoted by a's, while the coefficients of the
outputs (the y's) are denoted by b's.

The transfer function of a digital filter

In this section, we mtroduce what 1s called the transfer finction of a digital filter. This 1s obtamed from the
symmetrical form of the filter expression, and 1t allows us to describe a filter by means of a convenient,
compact expression. We can also use the transfer function of a filter to work out its frequency response.

First of all, we must introduce the delay operator, denoted by the symbol 7'

Applying the operator z” to an input value (say x,) gives the previous input (x,.;):

Z Xy T Xn
Suppose we have an mput sequence
Xg = 5
X, = =2
X, =
Xy =
x, = 10
Then
z'X, = x5 = 5
z'%x, = x; = -2
Z X3 = X, = 0

and so on. Note that =7 x; would be x_;, which 1s unknown (and usually taken to be zero. as we have already
seefl).

Similarly, applying the =/ operator to an output gives the previous output:

S
Z }u_}ru-l

Applying the delay operator = twice produces a delay of two sampling intervals:

2z k) =z x,, = x,,

We adopt the (fairly logical) convention

L.e. the operator z~ represents a delay of two sampling intervals:

This notation can be extended to delays of three or more sampling intervals. the appropriate power of z/ being
used.

Let us now use this notation 1n the description of a recursive digital filter. Consider, for example, a general
second-order filter, given in its symmetrical form by the expression

boyy T byyay T bayan T agxX, Tapx,; Toax,,
We will make use of the following identities:
Yai1 = 2 Yu
Yn2 T Z ¥y

Substituting these expressions mto the digital filter gives

(b, + byz"' + byz?)y, = (@, + a,z" + a,z7) x,

Rearranging this to give a direct relationship between the output and mput for the filter, we get

-~

V. _ ag T a;z + a,z

1 2
X, b, + bz b,z

The general form of the transfer function of a nth-order recursive filter

v, @ota;z '+..+a,z"

71 —_
X, by+bz '+...4b,z

n

Any a filter can be expressed in form of transfer function. For example,
Yo T X0 T 2x 1 T X T zjlf-1:1-1 + Y2
Expressing this in terms of the z! operator gives
-1 -2 -1 -2
R _ S — L a1
(1 + 2z z7)y, = (1 + 2z z7) X,

and so the transfer function 1s
-1 -2
Vo 1 +2z7+ z

X 1 + 2771 - 27

Matlab Analysis
Function name for filter analysis is “filter”

Y = FILTER(B,A,X) filters the data in vector X with the filter described by
vectors A and B to create the filtered data Y.

B, and A are coefficients discussed above, which determine properties of the
designed filter. For different purposes (such as low-pass, high-pass and
band-pass), different A and B should be chosen. There are many methods to
design a specific filter. The typical one is called the Butterworth digital and
analog filter design. In Matlab, the function name is “butter”

[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth
filter and returns the filter coefficients in length N+1 vectors B (numerator)
and A (denominator). The coefficients are listed in descending powers of z.
The cutoff frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to
half the sample rate. If Wn is a two-element vector, Wn =[W1 W2],
BUTTER returns an order 2N bandpass filter with passband W1 <W < W2,

http://ccrma-www.stanford.edu/~jos/filters/Matlab_Analysis_Simplest_Lowpass.html

[B,A] = BUTTER(N,Wn,'high') designs a highpass filter.
[B,A] = BUTTER(N,Wn,'low') designs a lowpass filter.
[B,A] = BUTTER(N,Wn,'stop") is a bandstop filter if Wn =[W1 W2].

(Signal Processing Toolbox)

