Filter Analysis

1 Digital filters

(a) Unity gain filter

$$y_n = x_n$$

Each output value y_n is exactly the same as the corresponding input value x_n :

$$y_0 = x_0$$

$$y_1 = x_1$$

$$y_2 = x_2$$

...etc

(b) Simple gain filter

$$y_n = Kx_n$$

where K = constant.

(c) Pure delay filter

$$y_n = x_{n-1}$$

The output value at time t = nh is simply the input at time t = (n-1)h, i.e. the signal is delayed by time h:

 $y_0 = x_{-1}$ $y_1 = x_0$ $y_2 = x_1$ $y_3 = x_2$... etc

Note that as sampling is assumed to commence at t = 0, the input value x_{-1} at t = -h is undefined. It is usual to take this (and any other values of x prior to t = 0) as zero.

(d) Two-term difference filter:

$$\mathbf{y}_{n} = \mathbf{x}_{n} - \mathbf{x}_{n-1}$$

The output value at t = nh is equal to the difference between the current input x_n and the previous input x_{n-1} :

$$y_0 = x_0 - x_{-1}$$

$$y_1 = x_1 - x_0$$

$$y_2 = x_2 - x_1$$

$$y_3 = x_3 - x_2$$

... etc

(e) Two-term average filter

$$y_n = \frac{x_n + x_{n-1}}{2}$$

The output is the average (arithmetic mean) of the current and previous input:

$$y_{0} = \frac{x_{0} + x_{.1}}{2}$$

$$y_{1} = \frac{x_{1} + x_{0}}{2}$$

$$y_{2} = \frac{x_{2} + x_{1}}{2}$$

$$y_{3} = \frac{x_{3} + x_{2}}{2}$$
... etc

This is a simple type of low pass filter as it tends to smooth out high-frequency variations in a signal.

(f) Central difference filter

$$y_n = \frac{x_n - x_{n-2}}{2}$$

This is similar in its effect to example (4). The output is equal to half the change in the input signal over the previous two sampling intervals:

$$y_{0} = \frac{x_{0} - x_{.2}}{2}$$

$$y_{1} = \frac{x_{1} - x_{.1}}{2}$$

$$y_{2} = \frac{x_{2} - x_{0}}{2}$$

$$y_{3} = \frac{x_{3} - x_{1}}{2}$$
... etc

(2) Order of a digital filter

The *order* of a digital filter is the number of *previous* inputs (stored in the processor's memory) used to calculate the current output.

Thus

Examples (a) and (b) above are zero-order filters; Examples (c) and (d) above are first-order filters; Examples (d) and (e) above are second-order filters;

(3) Digital filter coefficients

All of the digital filter examples given above can be written in the following general forms:

Zero order: $y_n = a_0 x_n$ First order: $y_n = a_0 x_n + a_1 x_{n-1}$ Second order: $y_n = a_0 x_n + a_1 x_{n-1} + a_2 x_{n-2}$

(4) Recursive and non-recursive filters

For all the examples of digital filters discussed so far, the current output (y_n) is calculated solely from the current and previous input values $(x_n, x_{n-1}, x_{n-2}, ...)$. This type of filter is said to be *non-recursive*.

A recursive filter is one which in addition to input values also uses previous *output* values. These, like the previous input values, are stored in the processor's memory.

(5) Example of a recursive filter

A simple example of a recursive digital filter is given by

$$\mathbf{y}_{n} = \mathbf{x}_{n} + \mathbf{y}_{n-1}$$

In other words, this filter determines the current output (y_n) by adding the current input (x_n) to the previous output (y_{n-1}) :

$$y_0 = x_0 + y_{-1}$$

$$y_1 = x_1 + y_0$$

$$y_2 = x_2 + y_1$$

$$y_3 = x_3 + y_2$$

... etc

Note that y_{-1} (like x_{-1}) is undefined, and is usually taken to be zero.

Let us consider the effect of this filter in more detail. If in each of the above expressions we substitute for y_{n-1} the value given by the previous expression, we get the following:

$$y_{0} = x_{0} + y_{-1} = x_{0}$$

$$y_{1} = x_{1} + y_{0} = x_{1} + x_{0}$$

$$y_{2} = x_{2} + y_{1} = x_{2} + x_{1} + x_{0}$$

$$y_{3} = x_{3} + y_{2} = x_{3} + x_{2} + x_{1} + x_{0}$$

... etc

This example demonstrates an important and useful feature of recursive filters: the economy with which the output values are calculated, as compared with the equivalent non-recursive filter. In this example, each output is determined simply by adding two numbers together. For instance, to calculate the output at time t = 10h, the recursive filter uses the expression

$$y_{10} = x_{10} + y_9$$

To achieve the same effect with a non-recursive filter (i.e. without using previous output values stored in memory) would entail using the expression

$$y_{10} = x_{10} + x_9 + x_8 + x_7 + x_6 + x_5 + x_4 + x_3 + x_2 + x_1 + x_0$$

This would necessitate many more addition operations as well as the storage of many more values in memory.

Order of a recursive (IIR) digital filter

The order of a recursive filter is the largest number of previous input *or* output values required to compute the current output.

Coefficients of recursive (IIR) digital filters

From the above discussion, we can see that a recursive filter is basically like a non-recursive filter, with the addition of extra terms involving previous inputs (y_{n-1} , y_{n-2} etc.).

A first-order recursive filter can be written in the general form

$$y_{n} = \frac{(a_{0}x_{n} + a_{1}x_{n-1} - b_{1}y_{n-1})}{b_{0}}$$

Note the minus sign in front of the "recursive" term $b_l y_{n-l}$, and the factor (l/b_0) applied to all the coefficients. The reason for expressing the filter in this way is that it allows us to rewrite the expression in the following symmetrical form:

$$b_0 y_n + b_1 y_{n-1} = a_0 x_n + a_1 x_{n-1}$$

In the case of a second-order filter, the general form is

$$y_n = \frac{a_0 x_n + a_1 x_{n-1} + a_2 x_{n-2} - b_1 y_{n-1} - b_2 y_{n-2}}{b_0}$$

The alternative "symmetrical" form of this expression is

$$b_0y_n + b_1y_{n-1} + b_2y_{n-2} = a_0x_n + a_1x_{n-1} + a_2x_{n-2}$$

Note the convention that the coefficients of the inputs (the x's) are denoted by a's, while the coefficients of the outputs (the y's) are denoted by b's.

The transfer function of a digital filter

In this section, we introduce what is called the *transfer function* of a digital filter. This is obtained from the symmetrical form of the filter expression, and it allows us to describe a filter by means of a convenient, compact expression. We can also use the transfer function of a filter to work out its frequency response.

First of all, we must introduce the *delay operator*, denoted by the symbol z⁻¹.

Applying the operator z^{-1} to an input value (say x_n) gives the previous input (x_{n-1}):

$$z^{-1} x_n = x_{n-1}$$

Suppose we have an input sequence

$$x_0 = 5$$

 $x_1 = -2$
 $x_2 = 0$
 $x_3 = 7$
 $x_4 = 10$

Then

and so on.	Note that z ⁻¹	x_0 would be x_{-1} ,	which is unk	nown (and us	ually taken to	be zero, as	we have	already
seen).								

 $z^{-1}x_1 = x_0 = 5$

 $z^{-1}x_2 = x_1 = -2$

 $z^{-1}x_3 = x_2 = 0$

Similarly, applying the z^{-1} operator to an output gives the previous output:

$$z^{-1} y_n = y_{n-1}$$

Applying the delay operator z^{-1} twice produces a delay of two sampling intervals:

$$z^{-1}(z^{-1}x_n) = z^{-1}x_{n-1} = x_{n-2}$$

We adopt the (fairly logical) convention

$$z^{-1} z^{-1} = z^{-2}$$

i.e. the operator z^{-2} represents a delay of two sampling intervals:

$$z^{-2} x_n = x_{n-2}$$

This notation can be extended to delays of three or more sampling intervals, the appropriate power of z^{-1} being used.

Let us now use this notation in the description of a recursive digital filter. Consider, for example, a general second-order filter, given in its symmetrical form by the expression

$$b_0y_n + b_1y_{n-1} + b_2y_{n-2} = a_0x_n + a_1x_{n-1} + a_2x_{n-2}$$

We will make use of the following identities:

$$y_{n-1} = z^{-1} y_n$$

 $y_{n-2} = z^{-2} y_n$
 $x_{n-1} = z^{-1} x_n$
 $x_{n-2} = z^{-2} x_n$

Substituting these expressions into the digital filter gives

$$(b_0 + b_1 z^{-1} + b_2 z^{-2}) y_n = (a_0 + a_1 z^{-1} + a_2 z^{-2}) x_n$$

Rearranging this to give a direct relationship between the output and input for the filter, we get

$$\frac{y_n}{x_n} = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{b_0 + b_1 z^{-1} + b_2 z^{-2}}$$

The general form of the transfer function of a nth-order recursive filter

$$\frac{y_n}{x_n} = \frac{a_0 + a_1 z^{-1} + \ldots + a_n z^{-n}}{b_0 + b_1 z^{-1} + \ldots + b_n z^{-n}}$$

Any a filter can be expressed in form of transfer function. For example,

$$y_n = x_n + 2x_{n-1} + x_{n-2} - 2y_{n-1} + y_{n-2}$$

Expressing this in terms of the z⁻¹ operator gives

$$(1 + 2z^{-1} - z^{-2})y_n = (1 + 2z^{-1} + z^{-2})x_n$$

and so the transfer function is

$$\frac{y_n}{x_n} = \frac{1 + 2z^{-1} + z^{-2}}{1 + 2z^{-1} - z^{-2}}$$

Matlab Analysis

Function name for filter analysis is "filter"

Y = FILTER(B,A,X) filters the data in vector X with the filter described by vectors A and B to create the filtered data Y.

B, and A are coefficients discussed above, which determine properties of the designed filter. For different purposes (such as low-pass, high-pass and band-pass), different A and B should be chosen. There are many methods to design a specific filter. The typical one is called the Butterworth digital and analog filter design. In Matlab, the function name is **"butter"**

[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and returns the filter coefficients in length N+1 vectors B (numerator) and A (denominator). The coefficients are listed in descending powers of z. The cutoff frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. If Wn is a two-element vector, Wn = [W1 W2], BUTTER returns an order 2N bandpass filter with passband W1 < W < W2. [B,A] = BUTTER(N,Wn,'high') designs a highpass filter.
[B,A] = BUTTER(N,Wn,'low') designs a lowpass filter.
[B,A] = BUTTER(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2].

(Signal Processing Toolbox)