

Part 1. Energy and Mass

Chapter 2. Solar Radiation and the Seasons

Introduction

- Solar Radiation
 - Initiates atmospheric motions and weather processes
- Energy Classified as
 - **Kinetic** or *potential*

- Intensity and Wavelengths of Emitted Radiation
 - Energy radiated over many wavelengths
 - Physical laws define the amount and wavelength of emitted energy
 - *Blackbodies* = hypothetical perfect emitters

Stefan-Boltzmann Law

- Energy emitted is proportional to temperature
 - Hotter objects emit more energy

 $-I = \operatorname{P}T^4$

Graybodies emit a percentage of the maximum possible for a temperature

• I =
$$\varepsilon \mathfrak{F} T^4$$

🔮 Wein's Law

Determines peak wavelength

• 🖑 _{max}= 2900/T

Hotter objects = shorter wavelengths

- Solar radiation = $0.5 \square m$ peak $^{\frown}$
- Terrestrial radiation = $10 \square m$ peak $^{\circ}$

The Solar Constant

- Energy intensity decreases in proportion to the distance squared
- Inverse square law
 - Solar emission =
 - $3.865 \times 10^{26} \text{W} / 4 \otimes (1.5 \times 10^{11} \text{m})^2 = 1367 \text{ W} / \text{m}^2$

- Causes of the Earth's Seasons
 - Orbital alignment to the Sun = seasonal variations in solar energy
 - Revolution
 - The *ecliptic plane*
 - Perihelion (Jan 3; 147 mil km, 91 mil mi)
 - Aphelion (July 3; 152 mil km, 94 mil mi)
 Seasonal radiation variation = ~7%

Earth Rotation

- Once every 24 hours
- Rotational axis offset by 23.5°
 - Axis is "fixed"
 - -Changes hemispheric orientation through orbit
 - -Causes seasons

Extreme Hypothetical Axis Orientation

Solstices

- Maximum axial tilt in relation to the Sun
 - June and December
- Hemispheric axes inclined toward or away from Sun
 - Causes maximum or minimum solar radiation receipt

June Solstice (~ June 21)

Subsolar point = Tropic of Cancer (23.5°N)

December Solstice (~ Dec. 21)

Subsolar point = Tropic of Capricorn (23.5°S)

Subsolar Point Migrates 47°

• Between the Tropics

Equinoxes

Temporally centered between solstices

• ~ March 21 and ~ Sept 21

The subsolar point = 0°

Solar Angle

- Radiation is proportional to solar angle
- Higher angles equal reduced beam spreading = greater heating

Angle of incidence

Period of Daylight

- Circle of illumination unequally bisects latitudes
- Day length changes across latitudes
 - Latitudes are equally split everywhere on equinoxes

TABLE 2-2	Variations in Solar Angle and Daylength		
	SOLAR ANGLE At Noon	LENGTH OF DAY	TOTAL RADIATION FOR DAY (Megajoules/m ²)
December 21			
Winnipeg	16.5 °	7 hr, 50 min	7.44
Austin	36.5 °	10 hr, 04 min	12.18
June 21			
Winnipeg	63.5 °	16 hr, 10 min	37.15
Austin	83.5 °	13 hr, 56 min	35.97

Copyright © 2007 Pearson Prentice Hall, Inc.

Lower Angles = Increased Path Length

