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Abstract This is the second part of the 148 years (1856–

2003) singular vector analysis, as an extension of part I

(Cheng et al. 2009 Clim Dyn, doi:10.1007/s00382-

009-0595-7), in which a fully physically based tangent

linear model has been constructed for the Zebiak-Cane

model LDEO5 version. In the present study, relationships

between the singular values and prediction skill measures

are investigated for the 148 years. Results show that at

decadal/interdecadal time scales, an inverse relationship

exists between the singular value (S1) and correlation-based

skill measures whereas an in-phase relationship exists

between the S1 and MSE-based skill measures. However,

the S1 is not a good measure or predictor of prediction skill

at shorter time scales such as the interannual time scale and

for individual prediction. To explain these findings, S1 was

decomposed into linear perturbation growth rate (L1) and

linearized nonlinear perturbation growth rate (N1), which

are controlled by the opposite underlying model dynamical

processes (the linear warming and the nonlinear cooling).

An offsetting effect was found between L1 and N1, which

have opposite contributions to the S1 (i.e., S1 & L1 - N1).

The ‘‘negative’’ perturbation growth rate -N1 (denoted as

NN1) probably is the consequence of the unrealistic

nonlinear cooling in the LDEO5 model. Although the cor-

relations of the actual prediction skill to both the L1 and the

NN1 are good, their opposite signs lead to a weak rela-

tionship between S1 and actual prediction skill. Therefore,

either L1 or N1/NN1 is better than S1 in measuring actual

prediction skill for the LDEO5 model.

Keywords ENSO � Predictability �
Singular vector analysis � Potential predictability measure

1 Introduction

El Niño and the Southern Oscillation (ENSO) predictabi-

lity displays multiple time scales in numerical models,

including the seasonal, interannual, and decadal/interdec-

adal time scales. On the seasonal time scale, ENSO fore-

cast skills in many models decline significantly in the

boreal spring with apparent skill recovery in subsequent

seasons, showing the ‘‘spring barrier’’ phenomenon (e.g.,

Jin et al. 2008). On the interannual time scales (2–7 years),

ENSO prediction skills are associated with ENSO phase

and ENSO intensity, namely, strong ENSO events have

high prediction skills, while the neutral ENSO states have

poor prediction skills (e.g., Tang et al. 2005, 2008a, Tang

et al. 2005, 2008a); The growth phases of both the warm

and cold events are better predicted than the corresponding

decaying phases in many coupled ENSO forecast models

(e.g., Jin et al. 2008). These features of ENSO predict-

ability also occur in the Zebiak-Cane model (Zebiak and
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Cane 1987; Chen et al. 2004; hereafter ZC); for example,

the warm and cold events are equally predictable while

near normal conditions are harder to predict (Chen and

Cane 2008). On the decadal/interdecadal time scales,

ENSO predictability has apparent decadal/interdecadal

variations (e.g., Wang 1995; Kirtman and Schopf 1998;

Latif et al. 1998; Chen et al. 2004; Tang et al. 2008a). Tang

et al. (2008a) explored ENSO predictability using three

models and long term retrospective predictions. Consistent

results and conclusions were found in the three models

with different complexity, namely, higher prediction skills

for the late 19th century and late 20th century, and lower

skills for the period of 1916-1955. These consistent rela-

tionships found in the three models offer valuable insight to

some important issues of ENSO predictability on the

longer time scales.

Typically, there are two hypotheses responsible for the

loss of predictability with forecast lead time. The first

argues that the loss of predictability is due to the chaotic

behavior of the nonlinear dynamics of the coupled system

(e.g., Jin et al. 1994; Chen et al. 2004), whereas the second

attributes it to the stochastic nature of the coupled system

characterized by weather noise and other high-frequency

variations, such as westerly wind bursts and the Madden–

Julian oscillation (e.g., Kirtman and Schopf 1998; Penland

and Sardeshmukh 1995; Kleeman and Moore 1997; Moore

and Kleeman 1999; Vecchi 2003; Moore et al. 2006;

Gebbie et al. 2007; Jin et al. 2007). It is still not clear to

date which regime plays the dominant role in controlling

the variation of ENSO predictability.

Singular vector analysis (SV) is a powerful tool to study

predictability because the optimal perturbation growth

suggests the intrinsic limits of prediction skill. The SV has

been widely used to study the loss of ENSO predictability

due to initial error/perturbation growth (i.e., Lorenz 1965;

Chen et al. 1997; Xue et al. 1997a, 1997b; Fan et al. 2000;

Tang et al. 2006; Zhou et al. 2008). These SV analyses

showed that the perturbation growth rate (i.e., singular

value) is sensitive to the seasonal cycle, ENSO phase, and

ENSO signals. However, all of the above studies focused on

a period of only 20–40 years, with a rather limited number

of ENSO cycles, basically precluding statistically robust

conclusions. In theory, an inverse relationship could be

expected between the leading growth rate and the ENSO

predictability. Due to a lack of long term retrospective

prediction and corresponding SV analysis, however, the

relationship between the singular value and ENSO pre-

dictability has not been sufficiently addressed, and espe-

cially has not been validated by actual prediction skill

measures in previous SV studies. Chen et al. (2004) per-

formed a retrospective forecast experiment spanning the

past 148 years, using only reconstructed SST data for model

initialization. At a 6-month lead, the model was able to

predict most of the warm and cold events occurred during

this long period, especially for the relatively large ENSO

events. Using the long-term reconstructed SST data and the

ZC model LDEO5 version, we recently completed a long-

term SV analysis and corresponding retrospective ENSO

prediction for the period from 1856 to 2003. In part I of this

work (Cheng et al. 2009), we constructed a fully physically

based tangent linear model (TLM) for the ZC model,

explored the variations of singular vectors and singular

values in the time scales from seasons to decades, and

examined the control factors responsible for SV variations

over the 148 years. A robust and stable optimal perturbation

growth pattern and the optimal perturbation growth rate for

the 148 years were obtained in part I (Cheng et al. 2009),

which could be useful indicators of predictability. To

extend this work, the present study focuses on exploring the

relationships between the optimal perturbation growth rate,

a potential measure of predictability which does not make

use of observations, and ENSO actual prediction skills that

do make use of observation, for the 148 years at multiple

time scales ranging from the interannual time scale to

decadal/interdecadal time scale. The identified relationship

has a theoretical contribution to predictability study using

SV, and a practical significance in estimating the confidence

that we can place in future predictions using the same

ENSO forecast model.

In Sect. 2, we present a brief introduction to the LDEO5

model and the metrics used to measure actual ENSO pre-

diction skill. The relationships between these prediction

skill metrics and the perturbation growth rates are dis-

cussed in Sects. 3 and 4. The relationships between the

actual prediction skill, perturbation growth rate, and ENSO

signals are analyzed in Sect. 5, followed by a conclusion

and discussion in Sect. 6.

2 Methods

2.1 ZC model

The model used in this study is the ZC model (Zebiak and

Cane 1987) LDEO5 version. The ZC model has been

widely applied for ENSO simulation and prediction over

two decades, with the latest version of LDEO5 developed

in 2004 (Chen et al. 2004). For long retrospective predic-

tions, historic SST of the past 148 years from 1856 to 2003

has been assimilated into the coupled model using a

nudging scheme (Chen et al. 2004). The skillful retro-

spective predictions initialized by the historic SST data, as

shown in Chen et al. (2004) and Tang et al. (2008a), are

evidence of the good quality of SST initial conditions.

The atmospheric dynamics follows Gill (1980) using

steady-state, linear shallow-water equations. The
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circulation is forced by a heating anomaly which depends

on the SST anomaly and moisture convergence. The ocean

dynamics uses the reduced-gravity model, and ocean cur-

rents were generated by spinning up the model with

monthly wind. The thermodynamics describe the SST

anomaly and heat flux exchange. The model time-step is

10 days. The spatial region is focused on the tropical

Pacific Ocean (124�E–80�W; 28.75�S–28.75�N); The grid

for ocean dynamics is 2� longitude 9 0.5� latitude, and the

grid for SST physics and the atmospheric model is 5.625�
longitude 9 2� latitude.

A fully physically based tangent linear model (TLM)

was constructed for the LDOE5 model and singular vector

analysis performed for the 148-year period from 1856 to

2003, as shown in Cheng et al. (2009). From the long-term

SV analyses, the leading singular value (S1) that represents

the optimal perturbation growth rate of forecast SSTA, the

linear component of S1 (denoted by L1), and the nonlinear

component of S1 (denoted by N1) for the 148 years have

been obtained. L1/N1/S1 was calculated in the region

(11�S–11�N, 129�E–84�W), covering the equatorial tropi-

cal Pacific Ocean. We will use these perturbation growth

rates as the potential predictability measures to investigate

their relationship with several actual prediction skill mea-

sures for the LDEO5 model. The actual prediction skill

metrics are discussed in Sect. 2.2.

2.2 Metrics of actual prediction skill

Traditionally, the actual prediction skill of ENSO is mea-

sured by anomaly correlation coefficient (R) and the mean

square error (MSE) between predicted the Nino3.4 SSTA

index (averaged over 5�N–5�S, from 170�W to 120�W)

against the observed counterpart.

RðtÞ ¼
PN

i¼1 Tp
i ðtÞ � lp½ � To

i ðtÞ � lo
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Tp
i ðtÞ � lp½ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 To

i ðtÞ � lo½ �2
q ð1Þ

MSE ðtÞ ¼ 1

N � 1

XN

i¼1

Tp
i ðtÞ � To

i ðtÞ
� �2 ð2Þ

where T is the index of NINO3.4 SSTA, t is the lead time

of the prediction from 1 to 12 months, Tp is the predicted

NINO3.4 SSTA, and To is corresponding observed

counterpart, subscript i the initial time of prediction

(i = 1,…,N); lp is the mean of the forecasts, lo is the

mean of observations. N is the number of samples used

over 148 years in this study, a total of 148 9 12

(N = 1,776) forecasts, initialized from January 1856 to

December 2003, were run starting at 1 month interval (1

January, 1 February…1 December), and continued for

12 months for the ZC model. SST assimilation was used

to initialize the forecasts as discussed in Chen et al.

(2004). The seasonal cycle has always been removed

from forecasts and observations prior to measuring

prediction skill. To evaluate an individual prediction

skill, the mean square error of individual prediction

(MSEIP) is used for all leads up to 12 months, as defined

in Tang et al. (2008a, b),

MSEIPi ¼
1

12

Xt¼12

t¼1

T
p
i ðtÞ � To

i ðtÞ
� �2 ð3Þ

2.3 Cross-wavelet analyses

The Cross-wavelet transform (XWT) method is used for

examining relationships between two time series in time–

frequency space (e.g., Grinsted et al. 2004). From the XWT

analysis, the common power and relative phase can be

revealed. The phase differences between two variables are

depicted by the direction of a vector, with in-phase point-

ing right, anti-phase pointing left, and the first variable

leading the second by 90� pointing straight down. In this

study, a continuous XWT technique with the Morlet

wavelet as the mother function was applied. Monte Carlo

methods are used to assess the statistical significance

against a red noise background. The standard software

package of cross-wavelet transform is available online

(http://www.pol.ac.uk/home/research/waveletcoherence).

Further details on XWT analysis can be found in Grinsted

et al. (2004) and Torrence and Compo (1998).

3 The singular value and ENSO predictability

As a potential predictability measure, the optimal pertur-

bation growth rate (S1) presumably has an inverse rela-

tionship to the actual model prediction skill, namely, when

S1 is large, the predictability is low and vice versa. Such a

perception has been applied in studying potential predict-

ability of ENSO using the theory of optimal perturbation

growth (e. g., Moore and Kleeman 1998; Moore et al.

2006; Tang et al. 2006). However, the relationship between

S1 and the actual prediction skill measures such as the

anomaly correlation (R) and mean square error (MSE) to

date has not been well examined due to a lack of long-term

retrospective ENSO predictions and corresponding SV

analysis, as discussed in the introduction. Different from

previous SV studies, we will focus on discussing rela-

tionship for individual forecasts rather than an overall

feature, which offers useful potential metric in estimating

the performance of a forecast when verification data is

absent. In the next section, the relationships between sin-

gular value and actual prediction skill metrics will be

investigated at various time scales for the period of

148 years from 1856 to 2003.
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3.1 S1–predictability relationship on the decadal/

interdecadal time scale

Firstly, we examine the relationship between the pertur-

bation growth rate S1 and the ENSO prediction skills at the

decadal/interdecadal time scales. All the skill measures

presented in Sect. 2 are used, including anomaly correla-

tion (R), MSE, and MSEIP. The correlation preliminarily

evaluates the phase differences between the forecasts and

observations, while the MSE and MSEIP quantify the

amplitude departure between the forecasts and the obser-

vations. Unless otherwise indicated, the predicted and

observed Nino3.4 SSTA indices are used to evaluate these

actual prediction skills in this study. The S1 was calculated

with the optimal period of 9-months. As found in Cheng

et al. (2009), the fastest perturbation growth rate (maxi-

mum S1) occurs at a 9-month lead in the LEDO5 model.

Correspondingly, the prediction correlation skill and MSE

skill vary slowly with lead time after 9-month leads (Chen

et al. 2004; Chen and Cane 2008). This motivates us to

choose the S1 of 9-month lead in the following discussions.

To examine the relationship of S1 to predictability on

the interdecadal time scales, a running window of 25-year

was applied to the S1 and the actual prediction skill mea-

sures, namely that, they were evaluated at each window of

25 years, starting from January 1856 and moving forward

by 1 month each time until December 2003. Since R and

MSE are a function of lead time, their values averaged over

lead times of 1–12 months are presented in Fig. 1. As can

be seen in Fig. 1, on the interdecadal time scale over the

148 years, there is an inverse relationship between the S1

and the correlation skill (R) and an in-phase relationship

between S1 and the MSE. These relationships are consis-

tent with the conventional concept of S1 and predictability,

namely, when the S1 is small, prediction skill was good,

i.e., high correlation skill R and small MSE-based skill;

whereas when the S1 was large, the opposite situation

occurs. Note that the averaged MSEIP over a running

window is equivalent to the averaged MSE over all lead

times, as suggested by (2) and (3).

The running mean method used above may not be able

to present objectively a full spectrum of the relationship

between S1 and predictability; for example, the relation-

ship is probably sensitive to the length of running window.

To explore the decadal/interdecadal relationships, further

we extract low-frequency components using the fast Fou-

rier transform (FFT) filter. Shown in Fig. 2a are low-fre-

quency components of S1 and the MSEIP, obtained by a

10-year low-pass FFT filter. Generally, Fig. 2a confirms

the in-phase relationship in Fig. 1b, with a significant

positive correlation coefficient of 0.4 over the 148 years

between the S1 and MSEIP. A further scrutiny to Fig. 2a

reveals that the in-phase relationship has decadal/inter-

decadal variation. Figure 2b shows the correlation coeffi-

cient between the filtered S1 and MSEIP, computed using

the running window of 25 years over the 148 years. As can

be seen, the in-phase relationship between S1 and MSEIP

was much stronger during the late nineteenth and twentieth

centuries than during the periods from 1910 to 1920 and

1940 to 1955. In following discussions, we will see that the

in-phase relationship between S1 and predictability is most

probably due to decadal variation in ENSO signals.

Fig. 1 Interdecadal variations

of (a) anomaly correlation

coefficient (R) and the singular

value (S1); (b) MSE and S1. A

25-year running window was

applied on all data at each

month from January 1856 to

December 2003. MSE measures

are averaged over lead times of

1–12 months

Y. Cheng et al.: Analysis of singular vector and ENSO predictability

123



3.2 S1–predictability relationship on interannual time

scales

In the proceeding section, an in-phase relationship was

found between the S1 and MSE skill metric at long time

scales greater than decade. A further analysis explores

whether such an in-phase relationship exists at interannual

time scales and for individual forecast cases. Shown in

Fig. 3 is the scatter plot of S1 against MSEIP, where a

2–7 year FFT filter has been applied to both variables to

extract their interannual variability. Figure 3 indicates

large uncertainties in the relationship between S1 and

MSEIP, suggesting that, on the interannual time scales, the

optimal error growth rate S1 might not be a good indicator

of actual model skill.

3.3 S1–predictability relationship on all time scales

For all time scales ranging from seasons to decades, the

relationship between S1 and predictability is measured

using all original samples without filtering, as shown in

Fig. 4 and the second column of Table 1. Here, MSE and R

were evaluated in a period as a function of lead time,

making them unavailable in Table 1. As shown in Fig. 4, a

large uncertainty exists in the relationship between S1 and

MSEIP, with a low correlation value of 0.16.

Fig. 2 a Decadal/interdecadal

variations of MSEIP and

singular value (S1). A 10-year

low-pass FFT filter method was

applied on these skill measures.

b Temporal variations of the

correlation coefficient between

S1 and MSEIP over the

148 years, correlation

coefficients were calculated in a

25-year running window

Fig. 3 The relationships between the singular value S1 and the actual

predictability measures at interannual time scales using a 2–7-year

FFT filter. The S1 against MSEIP

Y. Cheng et al.: Analysis of singular vector and ENSO predictability
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In summary, the relationship between S1 and predict-

ability is complex, dependent on time scales and the target

of evaluation. At decadal time scales, S1 has an in-phase

relationship to MSE and an inverse relationship to corre-

lation skill; whereas at interannual time scales and for

individual forecasts, the relationships between S1 and

prediction skill measures have larger uncertainties. Thus S1

might not be the best indicator of predictability. In next

section, we will further explore S1 and propose a better

measure for quantifying potential predictability.

4 The linear/nonlinear perturbation growth rates

and the actual predictability

As analyzed in the proceeding section, there are significant

uncertainties in the relationship between S1 and predict-

ability at interannual time scales and for individual initial

conditions. Conceptually, a good relationship between

them should be expected since S1 quantitatively measure

the fastest error growth. However, the potential predict-

ability measure S1 is the fastest error growth rate, which

might not always indicate the actual predictability in the

actual forecasts. Thus, it is interesting to explore additional

possible reasons responsible for the uncertainties of S1 and

actual predictability, in particular, to identify better mea-

sures of potential predictability than S1.

Practically, the perturbation growth, denoted by dS, can

be decomposed into the perturbation growth due to the

linear heating (LH), dL, and that due to the nonlinear

heating1 (NH), dN, namely;

dS ¼ dLþ dN ð4Þ

dS, dL, and dN are the final perturbation growth at the lead

time of 9-month, obtained by the TLM with the SV1 as the

initial perturbations. Cheng et al. (2009) found that there is

a strong inverse relationship (with a correlation coefficient

of -0.81) between dL and dN in the central and eastern

Pacific; the linear perturbation growth dL is about twice as

large as dN in amplitude, and dN is always negative

whereas dL is positive in most time. Thus, the strong

inverse relationship between linear and nonlinear

perturbation growth can be approximately depicted as

below

dN � bdL; ð5Þ

where b is a constant value with -1 \ b \ 0.

Applying the L-2 norm on (5) and (4), respectively, we

have

dNk k � bj j � dLk k ¼ �b dLk k: ð6Þ

dSk k ¼ dLþ dNk k ¼ dLþ bdLk k þ DS
¼ ð1þ bÞ dLk k þ DS ¼ dLk k þ b dLk k þ DS ð7Þ

In (7), the DS is the residual term arising from the

approximations in (5) and (6), representing the perturbation

growth due to the interaction of linear and nonlinear

heating. The value of 1 ? b is always positive due to of the

condition -1 \ b \ 0. Thus,

dSk k ¼ dLk k � dNk k þ DS ð8Þ

Based on the definition of perturbation growth rate

(singular value), the total optimal perturbation growth rate

S1 can be decomposed into the contribution of LH

(referred to as linear growth rate L1) and the contribution

of NH (referred to as nonlinear growth rate N1), given by

(8), namely,

S1 ¼ L1� N1þ DS ¼ L1þ NN1þ DS; ð9Þ

where NN1 = -N1, a negative value representing a nega-

tive/offsetting contribution of NH to S1. In following

Fig. 4 Same as Fig. 3 but for all time scales without using an FFT

filter

Table 1 Correlation coefficients of potential predictability measures

and actual predictability measure

S1 L1 NN1 LH NH

MSEIP 0.16 0.33 -0.36 0.58 -0.51

The actual predictability measure is MSEIP, whereas the potential

predictability measures include the leading singular value (S1), the

linear perturbation growth rate (L1) and the nonlinear perturbation

growth rate (NN1). The LH and NH represent the linear heating and

nonlinear heating items in SST governing equation, averaged over the

NINO3.4 region and over the optimal period of 12 months

1 Note that the nonlinear heating term has been linearized in the

TLM, thus the nonlinear perturbation growth used in this paper,

unless otherwise indicated, means the perturbation growth due to the

nonlinear heating term linearized in the TLM.
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analysis, we will find that the DS is small compared with

L1 and NN1.

Shown in Fig. 5a–c are scatter plots of L1, NN1 and DS

against S1 for the period from 1856 to 2003; where DS is

obtained by S1 - (L1 ? NN1). As can be seen, the con-

tribution of DS to S1 is rather small (ranging from 0 to 5

with the mean value of 2.0 in Fig. 5c), and S1 is mainly

determined by the sum of the perturbation growth rates L1

and NN1. Figure 5a–c indicates that L1 and NN1 have an

offset effect or an opposite contribution on S1, i.e., a

positive relationship between L1 and S1 in contrast to an

inverse relationship between NN1 and S1. Such an off-

setting effect might be a preliminary reason why S1 is not a

good indicator of actual prediction skill as found above. In

other words, either L1 or NN1 might be expected to have a

better relationship with actual prediction skills than S1.

A strong anti-correlation between L1 and NN1 stems

from the underlying dynamical processes (i.e., linear

heating LH and nonlinear heating NH) as argued above. To

illustrate the strong inverse relationship between LH and

NH, a scatter plot of NH against LH is given in Fig. 5d,

where the LH/NH is the averaged linear/nonlinear heating

at the NINO3.4 region over the lead times from 1 to

9 months for individual forecasts. A strong inverse corre-

lation between LH and NH is visible with a significant

correlation coefficient value of -0.89. As seen in Fig. 5d,

the LH mainly has a warming effect in about 72% of

forecasts for the 148 years, whereas the NH always con-

tributes to a cooling effect. The cooling effect of the NH

becomes stronger as the warming effect of LH increases,

leading to a strong offsetting effect between LH and NH in

most cases. Due to the strong offsetting effect in the

underlying dynamical processes, the total heating

(LH ? NH) has a poor relationship with the total error

growth S1 with a small correlation coefficient of 0.13.

Table 1 shows the correlation coefficients between the

actual prediction skill MSEIP and potential predictability

measure L1/NN1 (the third and fourth column). As can be

seen, both L1 and NN1 have stronger relationships to

prediction skills than S1, indicating NN1 or L1 to be a

better measure of potential predictability in the ZC model.

A comparison between these correlation coefficients

reveals that the L1 and NN1 have opposite relationships to

predictability, as displayed by a positive correlation

Fig. 5 Scatter plots between (a) LH and NH (K/month). And the relationships of the linear (L1), nonlinear (NN1), and the total (S1) perturbation

growth rates. b L1 against S1. c NN1 against S1. d S1-(L1 ? NN1) against S1
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coefficient for L1 but a negative value for NN1. This offset

effect might explain well why there is a relatively small

correlation value between S1 and predictability as shown in

Table 1. From the sign of correlation coefficients, one can

infer that the positive S1–MSEIP relationship is mainly

determined by the positive L1–MSEIP relationship.

Shown in Fig. 6 are scatter plots of L1 and NN1 against

the prediction skill MSEIP. Like Fig. 3, a 2–7 year FFT

filter was applied here for each variable to address inter-

annual time scales. In contrast to the large uncertainties in

the relationship of S1–predictability as shown in Fig. 3,

Fig. 6 shows visible relationship of L1/NN1–predictability.

The correlation coefficients between L1/NN1 and predic-

tion skills are all statistically significant at the confidence

level of 95%, as shown in the upper-left corner of each

panel. An opposite relationship between L1–MSEIP and

NN1–MSEIP can be observed in Fig. 6, showing an offset

effect of L1 and NN1 on predictability, as found earlier in

Table 1. Thus, Fig. 6 explains the large uncertainties in

S1–predictability in Fig. 3, and also indicates that either L1

or NN1 is a better measure of potential predictability than

S1.

A further analysis is placed on the relationship between

the LH/NH and actual prediction skill. Table 1 includes the

correlation coefficients between the averaged LH/NH over

the optimal period of 9 months and the actual prediction

skill. As shown in the fifth and sixth columns of Table 1,

LH and NH significantly correlate with MSEIP, namely,

when LH/NH is strong, the MSEIP skill is large and vice

versa. Again, the NH has always a cooling effect as

aforementioned, thus the negative sign of its correlation

coefficient in Table 1 imply the link of stronger cooling

and the larger MSEIP. This explains the relationships

between the L1/NN1 and the prediction skill. These results

are in agreement with our previous findings that both the

model linear/nonlinear perturbation growth rate and the

linear/nonlinear heating term are controlled by the under-

lying linear/nonlinear processes, respectively (Cheng et al.

2009).

To illustrate the time-scale-dependent characteristics of

the relationship between perturbation growth rates and

MSEIP, we performed cross-wavelet analyses for them as

shown in Fig. 7. The in-phase relationship is presented by

arrows pointing right, whereas the anti-phase (or inverse)

relationship is displayed by arrows pointing left. The thick

contour encloses regions of greater than 95% confidence,

using a red-noise background spectrum. Several features

can be revealed by Fig. 7. First, the scale-dependent feature

of the S1–MSEIP relationships is seen in Fig. 7a. At longer

time scales [10 years, a strong in-phase relationship is

displayed in the S1–MSEIP for the periods of 1860–1940

and 1970–2000 (Fig. 7a), which is in agreement with the

decadal variations of correlation coefficients in Fig. 2b. At

shorter time scales \10 years, wavelet analysis reveals

additional scale-dependent relationships. For example, at

6–10 years time scale, anti-phase relationships are shown

in two time periods of 1890–1910 and 1970–1980, which

are opposite to the in-phase relationships displayed at

decadal/interdecadal time scales. For 2–6 years time scale,

in-phase relationships occurred again but confined in 1860–

1900 and around 1960. This scale-dependent relationship is

consistent with the results shown in Sect. 3. Second, at all

time scales, the S1–MSEIP relationship (Fig. 7a) looks

more like the L1–MSEIP relationship (Fig. 7b) than the

NN1–MSEIP (Fig. 7c). This similarity is because that

the contribution of LH to SSTA is about twice as much as

the NH (Cheng et al. 2009), thereby the original S1–MSEIP

relationship is mainly determined by the L1–MSEIP rela-

tionship. Third, at interannual time scales, the L1 (NN1)

shows a more frequently consistent in-phase (anti-phase)

relationship with MSEIP, suggesting L1 or NN1 is a better

measure than S1. Furthermore, the NN1–MSEIP relation-

ship (Fig. 7c) is consistently inverse for almost over all the

time scales. It does not have the scale-dependent feature

like that in S1-skill (Fig. 7b) and L1-skill (Fig. 7b), where

in-phase and anti-phase relationship change alternatively

from time to time. This unique feature of the NN1-skill

relationship suggests that NN1 is a more reliable measure

Fig. 6 The relationships

between the linear/nonlinear

singular values and the

prediction skill MSEIP at

interannual time scales using a

2–7-year FFT filter. a L1 against

MSEIP; b NN1 against MSEIP
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of potential predictability. It should be noted that the NH

has much smaller contribution to SSTA, but NN1 has a

consistently significant anti-phase relationship with MSEIP

skill at all time scales, suggesting that a strong negative

perturbation growth is related to a large MSEIP. Another

feature shown in Fig. 7 is that, at interannual time scale, the

L1 and NN1 brings a strong offsetting effect on MSEIP

(opposite arrow direction) during the period from 1910 to

1960, leading to a large uncertainty in the relationship

between S1 and MSEIP as shown in Fig. 3.

5 ENSO signals, the optimal error growth rates,

and predictability

It has been suggested in many recent studies that ENSO

predictability is strongly associated with signal compo-

nents present in initial fields (e.g., Peng and Kumar 2005;

Tang et al. 2005, 2008a; Moore et al. 2006). Often, a

stronger ENSO event is easier to predict than a neutral

event. At the decadal/interdecadal time scales, Tang et al.

(2008a) compared retrospective ENSO predictions of

120 years from three models and found that, at the decadal/

interdecadal time scales, high correlation skills often

occurred at the time periods with strong ENSO events

whereas low correlation skills occurred at weak ENSO

periods. The positive relationship between ENSO signals

and the correlation skill was explained in Kleeman (2002),

Tang et al. (2005), and Tang et al. (2008a), using infor-

mation theory. They argued that the extra information

provided by the forecast, called prediction utility, is highly

associated with the signals present in the initial conditions.

As the ENSO signal is stronger, more extra information

will be produced compared with the climatological fore-

cast, which leads to a more skillful and reliable forecast.

However, the ENSO signal and predictability at shorter

Fig. 7 The cross-wavelet

analysis for the singular values

S1/L1/NN1 and actual

prediction skill MSEIP. (a) S1

and MSEIP; (b) L1 and MSEIP;

(c) NN1 and MSEIP. The thick

contour encloses regions of

greater than 95% confidence,

using a red-noise background

spectrum. The relative phase

relationship is shown as arrows,

with in-phase pointing right,

anti-phase pointing left, and

singular values leading skills by

90� pointing straight down. (A

2-year FFT filter was applied on

all data before performing the

cross-wavelet analyses)
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time scales, i.e., interannual time scales, has not been well

addressed. In this section, we will examine relationships

between the ENSO signal and the optimal growth rates at

time scales ranging from interannual time scale to decadal/

interdecadal time scales.

An inverse relationship has been suggested between the

optimal perturbation growth and the intensity of ENSO

variability, in some recent SV and breeding vector analy-

ses: a small perturbation growth rate S1 often occurs during

an ENSO peak phase, and the larger perturbation growth

rate S1 appears in the neutral and onset/breakdown stages

of ENSO (Chen et al. 1997; Xue et al. 1997b; Tang et al.

2005; Cai et al. 2003; Zhou et al. 2008; Cheng et al. 2009).

These works identified the inverse relationship either using

a comparison of the maximum S1 against the intensity of

ENSO variability or using an analytical solution of the

delay oscillator model.

A metric to measure the intensity of the ENSO signal

should be defined. Tang et al. (2008a) proposed three

measures to quantify the intensity of ENSO over a time

period including: (1) the variance of NINO3.4 SSTA

index, (2) the variance of the first EOF mode, and (3)

total spectrum power at frequencies of 2–5 years. Tang

et al. (2008a) shows that the three measures produce

similar decadal/interdecadal variation of ENSO signal. In

Part I of this work (Cheng et al. 2009); ENSO signal

was defined by the absolute value of NINO3.4 SSTA

index. In the present study, we use the same definition to

measure the intensity of ENSO signal to be consistent

with Part I.

Fig. 8 The cross-wavelet

analysis for ENSO signal

(|NINO3.4|) and the singular

values S1, L1, and NN1
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The relationships between S1/NN1/L1 and ENSO sig-

nals are displayed in Fig. 8 using cross-wavelet analyses.

At the decadal/interdecadal time scales, the L1 and NN1

have stronger relationships to ENSO signals than the S1,

especially for the period from 1880 to 1910 and around

1980. This is especially true for the NN1–signal relation-

ship which holds for almost all the periods from 1880 to

1980. At the decadal/interdecadal time scales, the S1–sig-

nal relationship in Fig. 8a is determined by both L1 and

NN1. As can be seen, the anti-phase NN1–signal relation

cancels the in-phase L1–signal relationship completely in

1860–1900 and partly in the 1980s and later. Therefore,

both L1 and NN1 have important contributions to the ori-

ginal S1–signal relationship at decadal/interdecadal time

scales. These features are furthered revealed in plots of

variations in S1/NN1/L1 against signal as shown in Fig. 9.

On the interannual time scales, the relationship between

S1 and ENSO signals is not clear in Fig. 8a. The in-phase

and anti-phase relationships occur randomly from decade

to decade. On the other hand, for most periods during the

148 years, the L1–signal and NN1–signal show consis-

tently good in-phase and anti-phase relationship, namely, a

strong ENSO signal is associated with a large L1 (small

NN1) while a weak ENSO signal corresponds with a small

L1 (large NN1). Especially, the NN1–signal relationship is

most significant during the 148 years at both decadal and

interannual time scales.

The relatively good relationship between NN1/L1 and

ENSO signals can be further demonstrated in the plots of

variations in NN1/L1/S1 against ENSO signals. Shown in

Fig. 9 are these variations at decadal time scale. As can be

seen, a much better relationship between NN1 and ENSO

signals can be identified, which explains the importance of

nonlinear heating in ENSO variability and predictability as

found in other studies (e.g., Tang and Deng 2009; Cheng

et al. 2009). For interannual time scale, we also found that

the ENSO signal is more related to NN1 than to others (not

shown).

Fig. 9 Decadal/interdecadal

variations of ENSO signal

(|NINO3.4|; the solid line) and

perturbation growth rates (dash

lines): (a) the linear perturbation

grow rate (L1); (b) the

linearized nonlinear

perturbation growth rate (NN1);

(c) the total perturbation growth

rate S1. A 10-year low-pass

filter has been applied
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6 Conclusion

In this study, we investigated ENSO predictability using

the optimal perturbation growth and long-term retrospec-

tive hindcasts using the ZC model. Emphasis was placed on

exploring the relationship between potential predictability

measured by the optimal perturbation growth rates and

actual hindcast skill for long-period from 1856 to 2003. A

good measure of potential predictability is useful practi-

cally because it can estimate the prediction skill without

using the observations, and offer a practical means of

estimating the confidence level of an individual prediction.

To find the best measure of potential predictability, three

metrics obtained from SV analyses in part I of this work

(Cheng et al. 2009) have been examined at different time

scales, including the leading singular value S1, the linear

(L1) and linearized nonlinear (N1) components of S1. The

L1 and N1 reflect the optimal perturbation growth of the

linear and nonlinear heating terms in the SST governing

equation of the ZC model. The measures of actual pre-

diction skill include correlation coefficient, MSE, and

mean square error of individual prediction (MSEIP).

Generally, at decadal/interdecadal time scales, our findings

from the long-period analysis of 148 years confirmed the

theoretical perception that S1 has an inverse relationship

with correlation-based skill, and a positive relationship

with MSE-based skills. However, at shorter time scales,

e.g., interannual time scales, and for individual forecast

cases, there are large uncertainties in the relationship

between S1 and actual prediction skills, which prevents the

S1 from being a good measure of potential predictability.

Several reasons are probably responsible for the small

correlation between S1 and actual predictability. First, S1

is a collective error growth jointly contributed by the linear

and nonlinear processes. A strong inverse relationship

between LH and NH might cause an unrealistic offsetting

contribution to S1, as indicated by strong anti-correlation

between L1 and NN1, biasing the relationship between S1

and prediction skill. Instead, L1 or NN1, removing the

offsetting influence, might better characterize the rela-

tionship between potential skill and actual skill. Second,

S1/L1/NN1 is a potential measure, and represents the

optimal/fastest error growth rate but such an extreme sit-

uation does not always happen in the realistic forecasts.

Therefore, even under the perfect model scenario, they still

may not have a very good relationship with the actual

predictability. S1 represents a more extreme situation than

NN1 and L1 since it contains L1, NN1, probably leading to

worse relationship to actual skill. Third, the relationship

between potential and actual skill is also influenced by

model bias inherent to model internal dynamics and

physical processes. The model is always not perfect. The

S1 involves more physical processes than either L1 or

NN1, thus the model bias can more easily impact S1 than

L1/NN1, more biasing the relationship between potential

predictability and actual prediction skill.

An important finding in this work is that the linear/

nonlinear perturbation growth rate L1 and NN1 are better

measures of potential predictability than the optimal per-

turbation growth rate S1 in terms of the capability of

estimating the actual prediction skills. Among the three

potential measures, NN1 has a consistent relationship with

actual prediction skills for all time scales. Uncertainty in

the relationship between S1 and prediction skill measure is

due to an offsetting effect of linear heating and nonlinear

heating on the optimal perturbation growth, causing an

opposite relationship between L1–predictability and NN1–

predictability.

A practical application of this study is to use L1 and

NN1 to characterize potential predictability. It was also

found that the residual term in Eq. (9) has small contri-

bution to the S1, allowing to use the sum of L1 and NN1 to

replace S1. The analysis of L1 and NN1 can be applied to

all time scales and is suitable for individual cases and

overall features. It should be noted that a high correlation

skill and a large MSE value can occur simultaneously,

namely one prediction is good in phase but poor in mag-

nitude. This is most probably due to the nature of predic-

tion target whose variance is large. It is well recognized

that strong El Niño events might be easier to predict than

normal events but the prediction errors in amplitude often

are larger for strong ENSO events. Thus, it might be nec-

essary to draw conclusions and summarize findings from

the two different predictability measures.

The perturbation growth rate L1/NN1 depends on the

nature of initial conditions and the internal dynamical

processes (i.e., linear and nonlinear heating). The latter

often controls the intensity of ENSO variability. Due to the

offsetting effect of linear and nonlinear heating on ENSO

variability and the time-scale dependent nature of these

dynamical processes, the relationship between S1 and

ENSO signals depends on both the time periods and time

scale (e.g., Fig. 8). For example, an inverse relationship can

be identified on the interannual time scales over the recent

decades (after 1960s), consistent with those documented in

previous BV and SV studies. However, this inverse rela-

tionship does not hold well for other periods and for other

time scales. In contrast to the uncertain S1–signal rela-

tionship, the NN1 shows a consistent inverse relationship

with ENSO signals for all periods and time scales.

Several cautions should be borne in mind. First, the SV

analyses and retrospective hindcasts are often model-

dependent, suggesting that the results and conclusion

drawn from this work might not be generalized. More

models are required to fully generalize these conclusions.

Second, some physical processes are either simplified or
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missing in the ZC model. For example, stochastic atmo-

spheric noise is not considered in this model. Stochastic

forcing has been thought to be a main source to limit ENSO

predictability. Thus, the predictive skill shown in the ZC

model might be a lower bound of ENSO actual prediction

skill (Chen and Cane 2008). Third, the total nonlinear

heating NH always contributes to a cooling effect in the ZC

model, which is opposite to the observation as discussed in

An and Jin (2004) where the vertical nonlinear warming

dominates the total nonlinear heating term. This is due

mainly to model unrealistic simulation of the zonal current

anomaly. Thus, some results found in this work may be

model dependent. However, the unrealistic simulation of

NH is common in current ENSO prediction models.

Comparing nonlinear heating terms in ten coupled models

reveals that only one model gave the correct simulation of

NH and others fail to represent both the location and

strength or even the sign of the nonlinear vertical warming

(An et al. 2005). Fourth, the results and conclusions in this

study might be also dependent on the metrics of actual

prediction skill. In this study, we explored ENSO predict-

ability using correlation-based and MSE-based measures,

especially MSEIP. When the chosen metrics have been

widely used in the field of predictability study, they might

not be able completely characterize all properties of pre-

dictability. Finally, we used a running window of 25-year

to analyze interdecadal variations in predictability and

other variables. The window length of 25-year was arbi-

trary and subjective although several sensitivity experi-

ments with different window lengths did not essentially

change the aforementioned results. These concerns need to

be addressed through more comprehensive analyses.

Nevertheless, this work explored ENSO statistical pre-

dictability over the past 148 years, providing insights on

ENSO predictability, especially offering a practical means

to estimate the confidence level for individual forecasts for

the ZC model. An investigation of individual error growth

rates, i.e., the linear perturbation growth L1 and the non-

linear perturbation growth N1 from their controlling pro-

cesses (the underlying linear and nonlinear advections)

offer the better potential measures for ENSO predictability.

Since the perturbation growth L1 and N1 are determined by

the underlying linear and nonlinear dynamical processes,

respectively, these processes are fundamental reasons that

contribute to the strong relationships of signal/perturbation

growth and ENSO predictability. For example, the rela-

tionship between N1 and forecast skill probably is the

result of two known relationship: (1) relation between

ENSO magnitude and forecast skill, (2) relation between

the nonlinear heating and ENSO magnitude.
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