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Abstract

In this study, a long-term analysis of the tropical Pacific upper ocean heat content

(HC) was obtained for the period from 1881-2000, by assimilating historic sea surface

temperature dataset into an oceanic general circulation model (OGCM) with Ensemble

Kalman filter. The validation against the NCEP (National Center of Environmental

Prediction) HC and the observed HC indicates that the analyzed HC captures very well

the large-scale observed features of HC. There exists a striking interannual variability

in the tropical Pacific upper ocean HC anomalies (HCA). Like ENSO (El Niño and the

Southern Oscillation), the HCA interannual variability also has a significant interdecadal

variation. The interdecadal variation in the HCA causes the interdecadal variation in

the lagged correlation between the HCA of the equatorial western Pacific ocean and the

SSTA (sea surface temperature anomalies) of the equatorial eastern Pacific, which in

turn affects ENSO prediction skill (Niño3.4 SSTA). The long-term retrospective ENSO

prediction from 1881-2000 by the model supported the above conclusion.

1



1 Introduction

The tropical Pacific upper hear content (HC) is an important component of the coupled

ocean-atmosphere system of the tropical Pacific ocean on the interannual timescale, and

a major source of memory for the system. It plays an essential role in the oscillation

of the ENSO cycle by controlling the temperature of the waters upwelled in the east-

ern equatorial Pacific. The link of ENSO variability to the heat content build-up and

discharge in the tropical Pacific has been evidenced in theory and observation (e.g.,

Wyrtki, 1985; Suarez and Schopf 1988; Battisti 1988; Jin 1997). It has been found that

the HC redistribution in the western tropical Pacific can lead to the evolution of SST

anomalies in the eastern Pacific and has been known to be an important factor in the

evolution of many ENSO episodes. In particular, the HC anomalies over the equatorial

band 5oN to 5oS can be a very good precursor for the SST anomalies in the Niño3 region

(5oN- 5oS, 150oW- 90oW) (e.g., Zebiak 1989; Latif and Graham et al. 1992; Meinen

and McPhaden 2000; Kessler 2002; Trenberth et al, 2002; McPhaden 2003; Yu and Kao

2007). The equatorial Pacific HC also is a useful predictor of Indian summer monsoon

rainfall (Rajeevan and McPhaden, 2004).

There is a large body of literature studying the HC variability and its link to ENSO

in the past decades (e.g., review papers by Latif et al. 1998 and Neelin et al 1998;

McPhaden 2003; White 1995; Lohmann and Latif 2005). However all of these studies

only cover time periods of 20-50 years due to lack of long-term subsurface observations.

The period available for studying HC variability at interannual time scale, in particular

at the decadal time scale, probably precludes statistically robust conclusions. Therefore

it is of interest and practical importance to explore the possibility to obtain long-term

HC data, thereby effectively studying HC variability. An effective method towards this

goal is to generate a long-term analysis dataset of HC using the state-of-the-art models
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and using other long-term observations available. With the development of assimilation

technique in recent years, the reanalysis strategy has accepted an intensive attention.

In fact, the reanalysis NCEP and ECMWF wind datasets have been widely used as the

“observations” since they were generated.

This study attempts to produce a long-term HC analysis dataset over 100 years

through an OGCM, and then to further explore the variability of the upper oceanic

heat content. Recently we reconstructed the surface wind stress of the tropical Pacific

for the period from 1875-1947 using statistical technique and using the historic SST

and sea level pressure datasets (Deng and Tang 2008), which enables it available to

implement a long-term control run of the OGCM. The reconstructed wind stress has

been successfully applied to perform retrospective ENSO prediction for the past 120

years (Deng and Tang 2008; Tang et al. 2008), suggesting the high quality and good

credits of the reconstructed wind. Further, we recently also completed the assimilation

of a long-term historic SST dataset into the OGCM that led to skillful retrospective

predictions (Deng at al. 2008). All of these allow us to produce a long-term analysis of

the upper ocean heat content for the tropical Pacific.

This paper is structured as follows: Section 2 briefly describes the model, data and

assimilation scheme. Section 3 examines the quality of analyzed HC by comparing it

against the NCEP reanalysis dataset for their common period from 1980-2000, as well

against the observed HC from 1961-2000. In sections 4 and 5, the HC variability and its

link to ENSO are investigated for the period from 1881-2000. A summary and discussion

are given in Section 6.
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2 Model,data and assimilation scheme

2.1 data

In this study we used the monthly Extended Reconstruction version2 SST (ERSST.v2)

dataset from 1878-2002, reconstructed by Smith and Reynolds (2004), with a resolution

of 2o × 2o. The data domain was configured for the tropical Pacific ocean. This bias

corrected dataset has been used for studying climate variation and prediction (e.g.,

Xue et al. 2003; Nakaegawa et al. 2004; Monahan and Dai 2004). Due to relatively

poor quality of the dataset prior to 1881, we focus on the period from 1881 - 2001

in this study. For the validation of SST assimilation, the NCEP reanalysis subsurface

temperature from 1980-2000 is also used in this study (Behringer et al. 1998; referred

to as the NCEP data hereafter). The data domain is confined in the tropical Pacific

Ocean, spanning from 1980 to 2000 with the resolution of 1.0◦ lat. by 1.5◦ lon..

The monthly 400-m depth-averaged heat storage anomalies from the Joint Environ-

mental Data Analysis Center at the Scripps Institution of Oceanography. This data

set consists of all available XBT, CTD, MBT and hydrographic observations, optimally

interpolated by White (1995) to a three-dimensional grid of 2◦ lat. by 5◦ lon., and 11

standard depth levels between the surface and 400m. This dataset is referred to as the

observation although it is still, strictly saying, a kind of reanalysis dataset.

To perform a long-term analysis with an OGCM, the past wind stress data, as the

model forcing, is required. Using SST as a predictor and SVD technique, a long-term

wind stress dataset from 1881-1947 was reconstructed, with the resolution 2o×2o and the

domain of tropical Pacific from 30oS-30oN (see http : //web.unbc.ca/ ytang/wind.html).

The cross-validation scheme was used in the reconstruction to ensure the training data

not used in test periods. The training data of the wind is the NCEP reanalysis 10m

wind speed in monthly T62 Gaussian grids for 1948-2006 (Kalnay et al. 1996). For
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consistency, we also used the reconstructed surface wind for the period from 1948-2001

instead of the observed wind in this study. The reconstructed wind has been applied to

study ENSO predictability as mentioned in the introduction.

HC is defined here as the integral of the temperatures over the first 17 model levels,

equivalent to the depth of 250 meter, calculated from

HC =

∑17
i=1 hiTi

∑17
i=1 h(i)

(1)

where Ti and hi are the temperature and depth of level i.

2.2 Model

The ocean model used in this study is the latest version of NEMO (Nucleus for European

Modeling of the Ocean), identical to that used in Tang et al. 2008 and Deng and Tang

2008. Details of the ocean model are described in http://www.lodyc.jussieu.fr/NEMO/.

The domain of the model used here is configured for the tropical Pacific Ocean from

30oN - 30oS and 122oE - 70oW, with horizontal resolution 2.0o in the zonal direction

and 0.5o within 5o of the equator, smoothly increasing to 2.0o at 30oN and 30oS in the

meridional direction. There are 31 vertical levels with 17 concentrated in the top 250m

of the ocean. The time step of integration is 1.5 hours and all boundaries are closed,

with no-slip conditions.

The model was first spun up for 500 years using climatological wind stress derived

from the 50-year NCEP Reanalysis wind stress and the heat flux Qs is parameterized

by model temperature as follows:

Qs = Q0 + λ(T − T0) (2)

where Q0 is the climatological heat flux, obtained from the European Center for Medium-

Range Weather Forecasts (ECMWF) reanalysis project for the base period 1971-2000.
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T is the model SST, T0 is Levitus observed climatological SST (Levitus 1998), and λ is

the relaxation rate, set to -40Wm2K−1 (Tang et al. 2004; Moore et al. 2006). For a 50

m mixed-layer depth, this value corresponds to a relaxation time scale of two months

(Madec et al. 1998).

2.3 Assimilation Scheme

The ERSST.v2 data from 1881-2000 was assimilated into the OGCM using Ensemble

Kalman Filter (EnKF). The assimilation domain covers the tropical Pacific from 140oE

to 80oW and 15oS to 15oN in horizontal and in the upper 17 levels (250 m). The

assimilation was performed by every 5 days.

Usually SST is a prognostic variable in ocean models, and the general procedure of

SST assimilation is to optimally insert it into the models. However this strategy is unable

to effectively correct the subsurface temperature, leading to serious imbalances between

the surface and subsurface during the assimilation cycle (Tang and Kleeman 2002).

Therefore, a key issue for SST assimilation is an effective vertical transfer of information

from the surface to the subsurface. Towards this goal, a special strategy of initial

perturbation is used in this study to generate ensemble, namely that the perturbation

field is designed to be of not only horizontal coherence but vertical coherence between

adjacent levels. The vertical coherence is considered using the below method

ǫk = αǫk−1 +
√

1 − α2Wk (3)

Where ǫk is the pseudorandom field at the kth level (k=1,2...17), and Wk is the

pseudorandom field at the kth level without considering vertical coherence, constructed

using the method of Evensen (2003).

With such a well-designed perturbation scheme, the forecast error covariance matrix

in EnKF can act as a time-variant transfer operator to project the SST corrections onto
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the subsurface temperatures effectively (Deng et al. 2008). As such the increments of

subsurface temperatures can be obtained via the transfer operator during assimilation

cycles. The details of the assimilation system by EnKF can be found in Deng et al.

(2008).

3 Validation of the HC analysis from 1980-2000

A long-term control run was performed with the OGCM, forced by the reconstructed

wind from 1881-2000. In this control run, the SST was also assimilated into the OGCM

sequentially every five days from 1881-2000 using EnKF with a well-designed pertur-

bation scheme as aforementioned. From the long-term assimilation run, we obtained a

long term analysis for all variables of the OGCM including SST and subsurface tem-

peratures. The SST analysis and the retrospective ENSO predictions initialized from

these analyses were discussed in details in Deng et al. (2008). In this section, we will

validate HC analysis through comparing it with the NCEP HC dataset of the upper

250 m that assimilated both altermetry data and observed SST, and with the monthly

400-m depth-averaged heat storage anomalies from Scrippts Institution that consists of

all available XBT, CTD, MBT and hydrographic observations.

Fig. 1 shows the correlation and RMSE (root mean square error) between the ana-

lyzed HCA and the NCEP counterpart for the period from 1980-2000. The best analysis

skill appears in the eastern Pacific and the whole equatorial belt, with correlation coef-

ficient over 0.7. The HC analysis is relatively poorer in the region 10o off the equator.

This is due mainly to two reasons: i) the assimilation domain is confined within the

equatorial belt of 15o based on the consideration of computation expense; ii) the OGCM

only has good simulation skills in the equatorial belt. The poor simulated skills off the

equator are common defects in almost all ocean models including OGCMs (e.g., Deng et
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al. 2008; Lou et al. 2005). The good HC analysis in the equatorial Pacific is important

and has practical significance since the strongest coupling of the air-sea occurs there, and

the HCA distribution along the equator dominates ENSO characteristics and evolution.

Fig. 2 compares two leading EOF modes of the analyzed HCA with those derived

from the NCEP HCA during 1980-2000. The two EOFs of the analyzed HCA account

for 78% and 14% of the total variance, respectively, which compare with 33% and 15% of

the total variance accounted for by two leading modes from the NCEP HCA. The larger

variance accounted for by the leading modes of the analyzed HCA is probably because

the reconstructed wind stress that removed the high frequent components forced the

ocean model. As seen in Fig. 2, the leading EOFs for the analyzed HCA (Fig. 2a

and b) generally resembled the NCEP modes (Fig. 2c and d), except a stronger zonal

HCA gradient at the equatorial central Pacific. The major characteristics of the first

mode (Fig. 2a and c) has a dipole zonal structure involving a western Pacific “Rossby

wave-like” response of one sign and an eastern Pacific “Kelvin wave-like” response of the

opposite sign; whereas the second mode (Fig. 2b and d) has a large-amplitude signal

of the one sign located mainly in the equatorial central/eastern Pacific. These patterns

agree with the idea of a heat content buildup prior to El Niño as postulated by Wyrtki

(1985) and Jin (1997), and are consistent with the delayed-action oscillator mechanism

(e.g., Battisti 1988; Suarez and Schopf 1988). They are also very similar to those reported

in previous work (e.g. Tang et al. 2005). Comparing leading modes between the analyzed

HCA and the NCEP HCA reveals that the former has a stronger zonal HCA gradient at

the equatorial central Pacific and a more obvious wave-like structure along the equator,

probably because it was derived from the OGCM forced with the high-frequency free

reconstructed wind stress.

Comparison of the leading principal components (PCs) between the analyzed and

NCEP HCA is shown in Fig. 3. As can be seen, the analyzed HCA PCs are in very good
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agreement with the PCs of NCEP HCA, with their correlation coefficients over 0.8. This

is also true for the averaged HCA over several Niño regions as shown in Fig. 4. However

the analyzed HCA leads NCEP HCA by 1-2 months, which may be due to the model

bias in the OGCM. It was found that the model bias often results in the simulation of

temperature anomaly variation leading the observation by 1-2 months in many oceanic

models (e.g., Tang et al. 2001).

Fig. 5 shows the time-longitude plot of HCA along the equator during 1980-2000,

taken from the analyzed and the NCEP data. As shown in Fig. 5, the analyzed HCA

agreed well with the NCEP HCA, and captured all observed ENSO signals. The common

deficiency for the analysis is relatively weak simulated amplitude, which is a common

problem in many OGCMs.

We repeated all validations performed above using the observed heat storage (HS)

of the upper 400m for 1961-2000. The results are similar to those shown above. For

example, Fig. 6 shows the correlation coefficients between the analyzed HCA against the

observed HS anomalies, which is very similar to Fig. 1a. It should be noticed that HS

data is defined as the integral of temperature over the depth multiplied by a constant

coefficient and has a different unit (Watt-Seconds/Meter2) from the analyzed and the

NCEP HC, thus it is meaningless to compare their amplitude.

In summary, the analyzed HC can well characterize the realistic variations of the

upper oceanic heat at monthly or longer time scales. It allows us to explore the upper

ocean thermal states, in particular the HC variability at the interannual or longer time

scales.
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4 Variability of HC from 1881-2000

Fig. 7 shows the evolution of the analyzed HCA along the equator from 1881-2000. The

most striking feature in this time-longitude diagram is the interannual variability of

HCA with a period of 2-5 years during the whole period. Comparing the interannual

variability of HCA with ENSO variability of SSTA (not shown) reveals a very good

relationship between them, namely that, the analyzed HCA captures well all ENSO

events from 1881-2000. A further scrutiny of Fig. 7 finds that the interannual variability

of HCA has decadal/interdecadal variation as in that of SSTA (Tang et al. 2008). For

example, the magnitude of HCA is visibly larger during the period from 1980-2000 than

during other periods whereas the HCA is likely to have the smallest magnitude in the

1920s and 1930s. Such a decadal/interdecadal variation in HCA interannual variability

is more obvious in Fig. 8, which shows the wavelet power spectrums of the first two

principal components of HCA. The local wavelet power spectrum clearly indicates that

the significant periods are localized in time. During 1960-2000, the signal is significant

at the periods of 2-5 years whereas during 1905-1960 the strong signal appears at the

periods of 4-8 year with weak signal at the periods of 2-4 years. One might speculate that

the interdecadal variation of HCA interannual variability is due probably to the data

quality since the observations were very sparse and sporadic, even unavailable before

1960. However, there were strong ENSO signals at the periods 2-5 years before 1905,

which might effectively remove such a speculation.

The interdecadal variations in HCA interannual variability are further displayed in

Fig. 9, which shows the variation of the strength of ENSO signal measured in each

running window of 20-yr from 1881-2000 (i.e., 1881-1900,1882-1901,...,1981-2000) 2. For

2The signal measured during a 20-yr window is plotted at the middle point of the window in Fig. 9.

For example, the signal at 1890 was calculated using the samples from 1881-1900. The 20-yr window is

shifted by one year each time starting from 1881 until 2000.
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comparison, the ENSO signal of SSTA is also presented. Two methods were applied to

extract the ENSO signal in this study. The first was to perform spectrum analysis for the

first principal component (PC1) of the analyzed HCA and observed SSTA, respectively,

for each 20-yr running window, using the total spectrum power at the frequencies of 2-5

years to represent the strength of ENSO signal, as shown in Fig. 9a. The second was

to use the variance of the analyzed HCA PC1 and observed SSTA PC1, computed for

each running window of 20-yr from 1881-2000, as shown in Fig. 9b. The two methods

produce very consistent results. Fig. 9 shows a significant interdecadal variation in

ENSO signal in both the surface temperature and the subsurface heat content, and a

consistent relationship between the variation in SSTA and that in HCA. In the late 19th

century and the early 20th century, ENSO signal was relatively strong and stable. Since

the early 1920s, the signal strength was weakened, reaching a minimum around 1940s,

beyond which the signal rebounded and increased with time until the 1960s. ENSO

signal was the strongest from the 1960s, especially in the late 20th century. Therefore,

there is a striking interdecadal variation of ENSO signal in the upper heat content

anomalies of the tropical Pacific during the past 120 years from 1881-2000. In the next

section, we will see the interdecadal variation of ENSO signal is a major reason to cause

the interdecadal variation in ENSO prediction skill.

5 HC variability and ENSO predictability

It has been reported in several recent works that ENSO predictability has decadal/interdecadal

variation, which was argued to be due mainly to the corresponding decadal/interdecadal

variation in ENSO variability (e.g., Chen et al. 2004; Tang et al, 2008; Deng and Tang

2008). In this section, we will examine the relationship of decadal/interdecadal vari-

ations between ENSO predictability and HCA variability, which has been so far little
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addressed. Towards this goal, a long-term retrospective ENSO prediction was performed

for the period from 1881-2000 using the hybrid coupled model (HCM), i.e., the OGCM

coupled with a statistical atmospheric model. The statistical atmospheric model is a lin-

ear model that predicts the contemporaneous surface wind stress anomalies from SSTA,

which was constructed by the singular vector decomposition (SVD) method with cross-

validation scheme. During the initialization of the hybrid coupled model, the OGCM

was forced by the sum of the associated wind anomalies computed from the atmospheric

model and the observed monthly mean climatological wind stress. Full details of the

HCM are given in Deng et al (2008) and Tang et al. (2004, 2008).

A total of 480 forecasts, initialized from January 1881 to October 2000, were run

starting at three months intervals (1 January, 1 April, 1 July, 1 October), and contin-

ued for 12 months for the HCM. The SST assimilation was performed to initialize the

forecasts as introduced in section 2.3.

Fig. 10 shows the averaged correlation R and MSE (mean square error) over 1-12

months lead measured in each running window of 20-yr from 1881-2000 (thin blue line

and dashed green line), i.e., 1881-1900,...,1981-2000, where the predicted Niño3.4 SSTA

(5oN- 5oS, 170oW- 120oW) is compared against the observed value. As can be seen,

there is a striking interdecadal variation of ENSO predictability in the past 120 years

from 1881-2000 in the HCM. Generally there is a high predictability in the late 19th

century and in the middle-late 20th century, and a low predictability from 1901-1960.

Fig. 10 also displays the signal of HCA in Niño4 (5oN- 5oS, 160oE- 150oW) (Fig. 10a)

and in Niño3.4 (Fig. 10b) (thick red line), respectively, measured by their individual

variance.

Fig. 10a demonstrates a significant relationship between the ENSO predictability

and the signal of Niño4 HCA. Both display a consistent interdecadal variation. In the

late 19th century, the signal was strong, and the model showed a large correlation R and
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a low MSE. Since then the signal strength weakened and the skill continuously declined

with time, both reaching a minimum around 1940s, beyond which both rebounded and

increased with time until the 1960s. The model has a relatively good prediction skill

from the 1960s, especially in the late 20th century. Correspondingly, the Niño4 HCA

signal is also the strongest in these periods. Such a good relationship between Niño4

HCA signal and prediction skills holds not only for correlation R but also for MSE skill.

Fig. 10b shows the Niño3.4 HCA signal (thick red line), which is somehow different

from that of Niño4. For example, the Niño3.4 HCA signal was week in the late 19th

century but relatively strong during the period from 1901-1940, which was almost out

of the phase of that of Niño4. The overall relationship between Niño3.4 HCA signal and

ENSO predictability is weak in Fig. 10b, although there is a good relationship after

the late 1960s. This is different from the relationship between Niño3.4 SSTA signal

and ENSO predictability, which is significantly strong for the whole period (Tang et al.

2008). We also explored the relationship between ENSO predictability and the HCA

signal measured using PC1 and Nino3 index respectively, and got similar results.

It is of interest to explore the underlying physical interpretation of the relationship

between Niño4 HCA signal and prediction skill. As discussed in the introduction, the

most important physical and dynamical process responsible for ENSO cycle probably

is the “Discharge” mechanism of the upper HC of the equatorial western Pacific or

“Delayed oscillator mechanism”, both asking a significant lagged relationship between

the Niño4 HCA signal and the Niño3 (Niño3.4) SSTA signal. Indeed, it has been found

in many ENSO prediction models that the model predication skill is usually high when

the lagged correlation is strong, and the Niño4 HCA is a very good precursor of Nino3

(3.4) SSTA evolution (e.g., Latif et al. 1998; Tang and Hsieh 2003).

Shown in Fig. 11b is Niño3.4 SSTA prediction skill measured in 6 sub-periods of 20

years each. It is evident in Fig. 11b that the correlation skills are significantly different
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among these periods. Comparing Figs. 11b and 10 reveals a considerable consistency

of variations in correlation skill. For example, high prediction skills appear in the late

19th century and the middle-late 20th century, i.e., 1881-1900, 1961-1980 and 1981-

2000, whereas the periods of 1901-1920, 1921-1940, and 1941-1960 have relatively low

prediction skills. A similar consistency is also found in the MSE skill (not shown). Fig.

11a shows the lagged correlation between the analyzed Niño4 HCA and the observed

Niño3 SSTA, with SSTA leading to HCA. As can be seen, the period that has a high

prediction skill has also a good lagged correlation and vice versa. For example, the

best correlation prediction skills appear in the middle-late 20th century when the lagged

correlation is the highest during this period whereas the periods that have the minimum

lagged correlation have very poor skills such as 1941-1960 and 1901-1921.

In summary, there is a striking interdecadal variation of ENSO predictability in the

past 120 years from 1881-2000, which is highly related to interdecadal variation of the

signal of Niño4 HCA. When the signal of Niño4 HCA is stronger, the lagged correlation

between it and the equatorial eastern Pacific SSTA is larger, leading to better prediction

skills.

6 Discussion and Summary

An important step in understanding ENSO and the interaction of air-sea of the tropical

Pacific ocean is to analyze the upper ocean heat content, as evidenced in a large body

of literature. However all studies about the tropical pacific upper ocean HC have been

so far confined within the last 20-50 years due to the unavailability of the longer data,

which is not long enough to study HC variability at the interannual and decadal scales.

In this study, we explored the possibility of producing a long-term HC analysis

dataset over 100 years through an OGCM and a well-designed EnKF-based assimilation
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system for the historic SST dataset. The results show that the analyzed HC, compared

with the NCEP data and the observation, well characterizes the realistic variability of the

HC at monthly or longer time scales. The correlation coefficients between the analyzed

HC with the NCEP HC are very high up to 0.9 in the equatorial eastern Pacific ocean.

It is also true when the analyzed HC is validated against the observed HC.

Further we examined the variation of the tropical Pacific upper ocean HC from 1881-

2000. It was found that there exists a striking interannual variability in the tropical

Pacific upper ocean HCA. Like ENSO variability, the HCA interannual variability has

also a significant interdecadal variation. In the late 19th century and the early 20th

century, the HC interannual signal was relatively strong and stable. Since the early

1920s, the signal strength was weakened, reaching a minimum around 1940s, beyond

which the signal rebounded and increased with time until the 1960s. The interannual

variability was the strongest from the 1960s, especially in the late 20th century.

We also analyzed a set of long-term retrospective forecasts of the past 120 years with

the HCM. It was found that the model prediction skill displays a consistent interdecadal

variation with that of HCA variability, namely that the prediction skill was high in the

late 19th century from 1881-1900, and then declined with time, reaching a minimum

around 1940-1950s, beyond which it rebounded and increased with time until the 1960s.

It had relatively high prediction skill from the 1960s, especially in the late 20th century

from 1981-2000. A good relationship between ENSO predictability and the lagged corre-

lation of Niño4 HCA-Niño3 SSTA was also found. These indicate that the interdecadal

variation in predictability is highly related to the interdecadal variation of HCA vari-

ability itself. A strong HCA signal in the equatorial western Pacific produced a large

lagged correlation of Niño4 HCA-Niño3 SSTA, leading to more precursory information

at the initial time of predictions. As such, the prediction is likely to be more reliable.

Several cautions should be borne in mind when using the long term HC analysis.
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First, the oceanic analysis was obtained through forcing the reconstructed wind and

historic SST data where the former was constructed by the line statistical method.

The SST data is coarse and gappy before 1950s, thus it might only contain useful in-

formation on large-scale interannual or decadal/interdecadal climate variability. Such

information might be sufficient to describe and characterize some large-scale climate

modes such as ENSO, but not enough for relatively short and small scale variability

such as some tropical oceanic waves. Thus the HC analysis should be mainly used for

studying large-scale climate signals. Second, the long-term trend was removed from

SST prior to constructing the wind in order to manifest the signal of the interannual

variability, thereby precluding the long-term trend in the HC analysis. This suggests

that the HC analysis might not be suitable for studying the issues related to the global

warming that has been detected in the upper ocean (e.g., White et al. 2003). Third we

used a running window of 20-yr to analyze interdecadal variations in predictability and

the HC variability. The window length of 20 years was motivated by Chen et al (2004)

where the interdecadal variations in predictability were discussed in such interval. We

also performed several sensitivity experiments, with the window length of 10-yr, 30-yr

and 40-yr. The relationships of predictability to the HCA signal are similar to those

presented in this paper. Finally the reconstructed winds, subject to a common statistical

problem, generally underestimate the amplitude of wind anomaly, thus underestimating

the amplitude of HCA. Nevertheless, this study is to date the first work to produce

the tropical Pacific upper ocean heat content analysis for the past 120 years. The HC

analysis has led to some interesting findings about ENSO variability and predictabil-

ity as presented in this paper. It has been posted in the internet and freely loadable

(http://web.unbc.ca/ ytang/wind.html). Therefore, this work has both theoretical con-

tribution and practical significance in studying the tropical Pacific climate variability,

especially for ENSO.
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Figure Caption

Figure 1. (a) Anomaly correlation R and (b) RMSE between the analyzed HC and

the NCEP HC for the period from 1980-2000.

Figure 2. The first and second EOF modes for the analyzed HC (a and b) and

the NCEP HC (c and d).

Figure 3. Variations of the first and second principal components for the analyzed

and the NCEP HC.

Figure 4. Variations of the analyzed and the NCEP HC anomalies, averaged over

the (a) Niño3 and (b) Niño3.4, for the period from 1980-2000.

Figure 5. Time-longitude diagrams along the equator, from (a) the analyzed HC

and (b) the NCEP HC. Contour interval is 0.5o C in (a) and 1.0o C in (b). The positive

anomalies above 0.1o C are shaded.

Figure 6. Correlation between the analyzed HC and the observed HC for the

period from 1961-2000.

Figure 7. Same as Fig. 5 but for the period from 1881-2000

Figure 8. The wavelet power spectrum of (a) HCA PC1 and (b) HCA PC2. The

power spectrum is normalized by 95% confidence critical power calculated by Monte

carlo significant test method. The area under the arc line is the cone of influence, where

zero padding has reduced the variance. Black contour is the 5% significance level, using

a red-noise (autoregressive lag 1) background spectrum. The period of unit (y-axis) is

year.

Figure 9. The strength of the interannual variability of SSTA and HCA, measured

by (a) the spectrum power at ENSO frequencies of 2-5 years of PC1 and (b) the variance

of PC1, both calculated in each 20-yr running window from 1881-2000.
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Figure 10. The averaged prediction skill of Niño3.4 SSTA index over the first 12

month leads, against the HC signal measured by (a) HCA Niño4 index and (b) HCA

Niño3 index. The evaluation was done in each 20-yr running window from 1881-2000.

The normalization was applied prior to plotting for removing the unit.

Figure 11. (a) The lagged correlation between Niño4 HCA index and Niño3

SSTA index, with the HCA behind SSTA, for six different periods; (b) the correlation

skill between predicted Niño3.4 SSTA index against the observed value, as a function of

leading time, for the corresponding periods.
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Figure 1: (a) Anomaly correlation R and (b) RMSE between the analyzed HC and the

NCEP HC for the period from 1980-2000.
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Figure 2: The first and second EOF modes for the analyzed HC (a and b) and the NCEP

HC (c and d).

25



1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
−100

−50

0

50

100

150

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
−60

−30

0

30

60

(a) PCA1

(b) PCA2

NCEP

Analysis

Figure 3: Variations of the first and second principal components for the analyzed and

the NCEP HC.
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Figure 4: Variations of the analyzed and the NCEP HC anomalies, averaged over the

(a) Niño3 and (b) Niño3.4, for the period from 1980-2000.
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Figure 5: Time-longitude diagrams along the equator, from (a) the analyzed HC and

(b) the NCEP HC. Contour interval is 0.5o C in (a) and 1.0o C in (b). The positive

anomalies above 0.1o C are shaded.
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Figure 6: Correlation between the analyzed HC and the observed HC for the period

from 1961-2000.
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Figure 7: Same as Fig. 5 but for the period from 1881-2000.
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Figure 8: The wavelet power spectrum of (a) HCA PC1 and (b) HCA PC2. The power

spectrum is normalized by 95% confidence critical power calculated by Monte carlo

significant test method. The area under the arc line is the cone of influence, where zero

padding has reduced the variance. Black contour is the 5% significance level, using a

red-noise (autoregressive lag 1) background spectrum. The period of unit (y-axis) is

year.
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Figure 9: The strength of the interannual variability of SSTA and HCA, measured by

(a) the spectrum power at ENSO frequencies of 2-5 years of PC1 and (b) the variance

of PC1, both calculated in each 20-yr running window from 1881-2000.
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Figure 10: The averaged prediction skill of Niño3.4 SSTA index over the first 12 month

leads, against the HC signal measured by (a) HCA Niño4 index and (b) HCA Niño3.4

index. The evaluation was done in each 20-yr running window from 1881-2000. The

normalization was applied prior to plotting for removing the unit.
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Figure 11: (a) The lagged correlation between Niño4 HCA index and Niño3 SSTA index,

with the HCA behind SSTA, for six different periods; (b) the correlation skill between

predicted Niño3.4 SSTA index against the observed value, as a function of leading time,

for the corresponding periods.
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