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FUTURE SCIENTIFIC DIRECTIONS
Views from Early Career Scientists

T he fi rst National Center for Atmospheric Research 

(NCAR) Early Career Scientist Association Junior 

Faculty Forum on Future Scientifi c Directions in 

June 2003 was intended to promote interaction be-

tween junior scientists and faculty from the University 

Corporation for Atmospheric Research (UCAR) and 

its member universities by allowing young scientists 

to better defi ne their interests in a group of peers and 

increase awareness of resources at UCAR and NCAR. 

Th e attendees came from many disciplines—includ-

ing engineering, mathematics, biology, meteorology, 

oceanography, and societal impacts— and separated 

into small breakout sessions to discuss specifi c topics, 

including the water cycle, interactions between land 

ecosystems and the atmospheric hydrologic cycle, 

and predictability. Th e following group of essays fol-

lows this format and looks ahead to what attendees 

believe to be the major issues facing three important 

interdisciplinary areas in their fi eld. We hope that 

these brief summary articles stimulate a continuation 

of the wide ranging and candid discussion that took 

place at the forum.

T he study of predictability is multifaceted and 

appears in diverse fi elds. One important goal of 

the NCAR Junior Faculty Forum was to identify 

and understand diff erent approaches to predictability 
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problems. For purposes of discussion—following the 

lead of Joseph Tribbia1—we adopted the defi nition of 

predictability proposed by Th ompson (1957), which 

is “the extent to which it is possible to predict [the 

atmosphere] with a theoretically complete knowledge 

of the physical laws governing it.” More precisely, we 

interpreted this as the state-dependent rate of diver-

gence2 of trajectories in phase space given complete 

knowledge of system dynamics. Th erefore, predict-

ability is intrinsic to a system, and the atmosphere 

(most likely) has predictability properties distinct 

from those of any model. Similar statements can 

be made about biological and all other dynamical 

1 Tribbia, a senior scientist at NCAR and an expert in predict-

ability of geophysical fl ows, spoke to the group on the state of 

the science and future challenges. A summary of his talk is not 

part of this essay, but the papers he considers seminal in the 

fi eld are noteworthy: Th ompson 1957; Lorenz 1963; Epstein 

1969; and Leith and Kraichnan 1972.
2 Th e rate of trajectory divergence is actually inversely propor-

tional to the predictability of the system.
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systems. We can exactly describe and solve for the 

evolution of some simple systems analytically, but we 

are faced with the frustrating reality that we cannot 

precisely know the predictability of more complex 

systems. Th us, much of our science is the pursuit of 

an unknowable goal.

Using this defi nition of predictability, we present 

three basic threads that emerged at the forum. First, 

we consider model error and initial-condition error, 

given that unknowable predictability means the two 

may never be completely separated. Th is leads natu-

rally into the second topic, a discussion about the im-

plications of the choice of norms used to measure the 

results of our studies. Finally, we address the potential 

for generalization of concepts and results.

INITIAL-CONDITION AND MODEL ER-
ROR. Although model and initial-condition error 

have been addressed extensively in the literature (e.g., 

Tribbia and Baumhefner 1988), the synergy between 

error sources has kept quantifi cation of their respec-

tive importance elusive. Th ompson’s (1957) defi nition 

of predictability implies that we can measure the 

predictability of a model, but the predictability of a 

physical system cannot be precisely known without a 

perfect model or a very long and precise observational 

record. Unfortunately, it is impossible to perfectly 

observe geophysical systems, biological systems, and 

many engineering processes; thus, we eternally face 

initial-condition uncertainty. Model error is equally 

unavoidable for complex systems. It inhibits both our 

ability to forecast and our physical understanding of 

a system because models are indispensable tools for 

studying a physical system. By improving our models 

using a combination of empiricism, physical under-

standing, and computational power, we hope to make 

better estimates of the predictability of the physical 

system. Thus, attempting to forecast the physical 

system in the face of initial-condition and model 

uncertainty is tantamount to seeking a fundamental 

property of the system—its predictability.

A model M propagates its state, x, from time 0 to 

t following

x
t
 = M(x

0
) + f ,

where f includes all external forcing and may include 

spatial and temporal dependence. Initial-condition 

and model error is typically found in x
0
 and M, re-

spectively. Th e problem at hand determines whether 

boundary-condition error should be considered as 

part of model error or as a third, independent source 

of uncertainty. In discretized models, boundary 

conditions can be included in either M or f, both of 

which include errors. Incorporating them into the 

model M implies that boundary-condition error is 

part of model error. But if boundary conditions are 

specifi ed in f, then boundary-condition error must 

also be considered elsewhere, and one might choose 

to conceptually include it as an independent source 

of uncertainty.

Approaches to understanding the predictability 

of a physical system or a model need not coin-

cide with efforts designed to improve forecasts. 

Predictability is a system property that depends 

on intrinsic dynamics. Fortunately, complete 

understanding of the system is not a prerequisite 

for forecasting, as demonstrated by the success 

of operational weather prediction. Because many 

forecasting applications rely heavily on statistical 

parameterizations of poorly understood processes, 

research results may lead to forecast improvement 

without a concomitant improvement in physical 

understanding. Carefully defining research goals 

as either forecast improvement or physical under-

standing is an important step toward interpreting 

results and designing studies.

Although strict separation of model and initial-

condition error is likely impossible, acknowledging 

forecast improvement and physical understanding 

as separate pursuits motivates further attempts at 

estimating model and initial-condition error. Th e 

relative importance of each may shift  depending on 

the goal and the type of model considered. In the 

atmospheric sciences, we typically focus on hydro-

dynamic models expressed as systems of diff erential 

equations, but other classes may be considered. Sta-

tistical and empirical models can be excellent tools 

for improving forecasts and should not be dismissed 

for being an “engineering” approach or “not derived 

from basic physical principles.” Separately, they may 

play an important role in fundamental studies to 

identify basic system properties.

A theory for the statistics of model error is cur-

rently unavailable, but the theory of state estimation 

Model error and initial-condition error
The choice of norms to quantify results
Generalization across disciplines

•
•
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has a long history as an inherently probabilistic prob-

lem. To approach an optimal estimate, we must seek 

ways to reduce model error, the impact of simplifying 

assumptions, and sensitivity to the chosen norm. At 

best, we can hope to gain an estimate of model error 

by trying to understand the impact of an inadequate 

model on probabilistic state estimation.

Probabilistic state estimation and forecasting may 

be a useful tool for attempting to disentangle initial 

condition and model error. Error can be systematic or 

appear random. A distribution that appears random 

does not ensure that the underlying process is truly 

random, but it does allow access to probability theory 

for describing it. From large samples we can estimate 

an initial-condition error distribution and a forecast 

error distribution. Due to the Bayesian nature of state 

estimation, the initial-condition error distribution 

can never be fully separated from the model, but we 

can make choices in a state-estimation algorithm to 

emphasize the observations (i.e., minimize the error 

at t = 0). Th e forecast error distribution includes both 

eff ects, and we might begin to estimate model error 

distributions by removing the estimated contribution 

of initial-condition error.

In state estimation the diffi  culty arises from the 

fact that distributions drawn from a model may 

never be the same as those from the true physical 

system. Because an imperfect model may not have 

access to the correct distributions, it cannot produce 

correct probabilistic forecasts to be used as a fi rst-

guess for state estimation. Th e scientifi c community 

will no doubt continue improving models by reduc-

ing deterministic model error, but gaps will always 

exist in our understanding and computational 

capabilities. Statistics may help fi ll those gaps by ac-

counting for model error such that the deterministic 

components of fi rst-guess forecasts do not destroy 

a probabilistic state estimate derived from a good 

observing system.

A few topics are relevant for any approach to 

characterizing initial condition and model error, 

and to understanding their relationship. Observation 

networks may be designed for the purpose of identi-

fying model error, and preliminary work is needed 

to identify potential designs. Fundamental research 

is needed to understand the impact of spatially and 

temporally correlated observational errors on state 

estimation and forecast assessment. Th e impact of 

strong nonlinearities (e.g., a threshold) on diff erent 

error sources should be better understood. Finally, a 

practical consideration is how to deal with the vast 

quantities of data as modern observation platforms 

continue to be deployed.

Here we have expressed that we want to measure 

initial-condition and model error. We next explore 

the implications of choosing how to measure it, and 

suggest some alternative methods.

THE IMPORTANCE OF THE NORM. In any 

quantitative study we must choose a norm or metric 

by which we evaluate results. For our purposes, the 

norm determines a magnitude (such as an error-vec-

tor length) in phase space. Th ough infi nite for many 

physical systems, the phase space of a model can be 

large, but is fi nite, and computational and observa-

tional constraints have led to norms in a subspace of 

the model phase space. In the atmospheric sciences, 

norms have traditionally been observable quanti-

ties evaluated on critical levels, such as 500-hPa 

geopotential heights. More recently, norms based on 

energy have become favorable because they include 

a larger subspace that represents more degrees of 

freedom in the system dynamics. Whether the goal 

is understanding system dynamics or producing the 

greatest forecast skill, we are free to choose the norm. 

Th e norm chosen to answer questions about system 

dynamics may be diff erent from one chosen to maxi-

mize forecast utility—and interpretation becomes 

more diffi  cult when considering forecast value.

In the context of a forecast cycle, the choice of 

norm and subspace has profound implications for 

both state estimation and verifi cation. Th e relation-

ship between state estimation and verification is 

complex, and choosing the same norm for both is 

satisfying because it is consistent, but it is certainly 

not a requirement. One example is the practice at 

the European Centre for Medium-Range Weather 

Forecasts (ECMWF) of using a 48-h energy norm to 

determine the initial perturbations in their ensemble 

forecasting system and later verifying quantitative 

precipitation forecasts. If the goal is a skillful pre-

cipitation forecast, then why not design perturba-

tions based on some “precipitation norm” instead? 

While compelling arguments may lead to a variety of 

answers, the best choice may still be the norm most 

closely related to the problem at hand.

When the goal is to understand system behavior, 

the results can be sensitive to the choice of norm 

and subspace, and a thorough treatment should 

include evaluation with more than one. In the long 

term we should seek norms, or groups of norms, 

that expose similar dynamics. Basic research is 
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required to establish whether such groups exist. 

Assessing the usefulness of norms based on infor-

mation theory, such as relative entropy or mutual 

information (Schneider and Griffies 1999), may be 

a starting point.

Inasmuch as end users defi ne the value of a fore-

cast, state estimation norms based on user needs may 

lead to a more socioeconomically valuable forecast. 

Th e possibility of user-defi ned norms to estimate or 

measure value admits that the most skillful forecast 

in physical terms may not be the most valuable. Even 

a perfect forecast with respect to a norm defi ned by 

a class of users, however, need not result in maxi-

mum value for all in that class. For example, a small 

farmer may not be able to adjust crops to account for 

a forecast of freezing weather because he lacks access 

to the forecast information or the resources to make 

an adjustment, and thus is at a disadvantage relative 

to a modern agricultural company. Defi ning classes 

of users that can benefi t similarly from a forecast is a 

complex problem in itself, and it combines physical 

and socioeconomic issues.

User-defi ned norms could also rely on information 

external to the physics of the system we are model-

ing. If we care about increasing forecast value, then 

the established practice of verifying state variables, 

or even diagnostic variables that are primary to 

the modeled system, may not be the best approach. 

Rather, defi ning norms with variables that are not 

immediately part of our physical system may lead 

to more useful forecasts and even physical insight in 

the absence of rigorous physical understanding. For 

example, a biological problem might include a norm 

for animal health when producing a state estimate 

for a vegetation model. In ocean forecasting, ship-

ping effi  ciency may be considered. Again, specifi c 

goals determine the norm or subspace by which one 

should evaluate success. Regardless of one’s defi nition 

of value, deduction from quantitative results that 

are extremely sensitive to the choice of norm may be 

insignifi cant, and seeking norm-insensitive results 

seems prudent.

TOWARD GENERALIZATION. So far it would 

seem that widely generalizable results may be impos-

sible to achieve, but in fact generalization may be both 

possible and profi table. Scientifi c studies with broad 

implications potentially contribute the most to our 

understanding of the natural world. Th ey may cross 

disciplinary boundaries or cover a wide range of 

problems within one discipline, accelerating learning 

with a greater exchange of ideas. Generalization of 

predictability studies is also likely to promote rapid 

progress. Because of norm-dependence, initial-condi-

tion and model error, and our lack of understanding 

of some physical systems, generalization has proven 

difficult. But generalization may be facilitated by 

seeking diff erent bases for system classifi cation and 

cross-disciplinary communication.

The geophysical sciences lend themselves to a 

specifi c type of generalization based on mathematical 

representation of a dynamical system with diff erential 

equations. In the context of predictability this has led 

to hierarchical studies where certain characteristics 

of simple systems, which are arguably similar to more 

complex systems, are generalized.

Although hierarchical approaches are satisfying 

because simple systems are computationally inex-

pensive, can sometimes be analytically tractable, 

and have results that can oft en be unambiguously 

interpreted, the results may not always withstand 

experimentation with more complex systems. One 

alternative approach to generalization is to seek dif-

ferent bases for system classifi cation, and a natural 

place to begin is by grouping nonlinear systems, since 

nonlinearity is ubiquitous. Examples of characteris-

tics appearing in many types of nonlinear systems are 

multiple states, bifurcation, thresholds, transition to 

chaos, hysteresis, scale cascades, and the existence of 

coherent structures. Atmospheric, oceanic, ecologi-

cal, biological, and engineering control systems all 

demonstrate one or more of these attributes, though 

they may not be modeled with similar sets of equa-

tions. Each of those sciences may stand to benefi t 

from methods and results already established in the 

others. We may similarly benefi t from looking outside 

of geophysics, biology, or engineering to fi nd other 

systems that display threshold phenomena, coherent 

structures, and nonlinear error growth.

Systems may also be grouped by other characteris-

tics that are not typically considered in the geophysi-

cal sciences, thereby engendering interaction with 

other scientists. One characteristic, for example, is 

robustness, which essentially means insensitivity 

to perturbations. Biological, control, and computer 

systems are classifi ed as robust when they have cer-

tain levels of diversity, redundancy, modularity, and 

control (Carlson and Doyle 2002). Th is particular 

set of classification criteria may or may not have 

applications to geophysical systems, but the process 

that led to identifi cation of a robust class of systems 

may be useful.
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A signifi cant barrier to successful cross-disciplin-

ary interaction is the use of incompatible terminology 

(this is even evident among the geophysical scien-

tists). Despite the hurdles, we believe that expanding 

informal discussions and perhaps organizing a larger, 

more inclusive predictability workshop would likely 

prove benefi cial.

To summarize, we are optimistic that generaliza-

tion is possible, despite the diffi  culties, by seeking 

diff erent bases for system classifi cation and fostering 

cross-disciplinary interaction. Seeking classifi cation 

bases outside our own fi elds may lead to new bases 

and ultimately accelerate the learning process. It will 

take eff ort to expand our experience, but the return 

on scientifi c progress may prove substantial.
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