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ABSTRACT

In this study, ensemble seasonal predictions of the Arctic Oscillation (AO) were conducted for 51 winters
(1948–98) using a simple global atmospheric general circulation model. A means of estimating a priori the
predictive skill of the AO ensemble predictions was developed based on the relative entropy (R) of
information theory, which is a measure of the difference between the forecast and climatology probability
density functions (PDFs). Several important issues related to the AO predictability, such as the dominant
precursors of forecast skill and the degree of confidence that can be placed in an individual forecast, were
addressed. It was found that R is a useful measure of the confidence that can be placed on dynamical
predictions of the AO. When R is large, the prediction is likely to have a high confidence level whereas
when R is small, the prediction skill is more variable. A small R is often accompanied by a relatively weak
AO index. The value of R is dominated by the predicted ensemble mean. The relationship identified here,
between model skills and the R of an ensemble prediction, offers a practical means of estimating the
confidence level of a seasonal forecast of the AO using the dynamical model.

Through an analysis of the global sea surface temperature (SST) forcing, it was found that the winter
AO-related R is correlated significantly with the amplitude of the SST anomalies over the tropical central
Pacific and the North Pacific during the previous October. A large value of R is usually associated with
strong SST anomalies in the two regions, whereas a poor prediction with a small R indicates that SST
anomalies are likely weak in these two regions and the observed AO anomaly in the specific winter is likely
caused by atmospheric internal dynamics.

1. Introduction

The Arctic Oscillation (AO) is the dominant mode of
monthly mean sea level pressure variability over the
Northern Hemisphere with an out-of-phase relation be-
tween the sea level pressure over the Arctic Basin and
at the midlatitudes (Thompson and Wallace 1998). The
AO has a close association with the North Atlantic Os-

cillation (NAO) due to its strong manifestation over the
Atlantic sector. The interannual and longer-term
changes in the wintertime AO have an enormous im-
pact on the climate of the Northern Hemisphere (e.g.,
Thompson and Wallace 2001). The NAO has long been
recognized as the major circulation pattern influencing
the weather from the eastern North America to Europe
(e.g., Greatbatch 2000). The seasonal climate predic-
tion skill in the Northern Hemisphere to a great extent
relies on the predictive capability of major atmospheric
modes of monthly mean variability, for example, the
AO and the Pacific–North American (PNA; Derome et
al. 2005). To explore the AO predictability is thus a
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critical step toward fully understanding the predictabil-
ity of the climate seasonal prediction.

An important issue in predictability studies is the un-
certainty of predictions. Climate seasonal predictions
apply for several months and the decisions made in
response to them often are economically significant.
Therefore estimates of the uncertainty of prediction are
highly desirable. On the other hand, climate seasonal
prediction is still at its early stage compared with the
numerical weather prediction (NWP) and the El Niño–
Southern Oscillation (ENSO) prediction, and its skill is
relatively low. Therefore, a study of uncertainties in
seasonal climate predictions is especially important at
present.

The technique used in predictability studies in NWP
has primarily been ensemble prediction, in which a
priori likely skill (or usefulness) for an individual pre-
diction might be estimated by the ensemble spread
(e.g., Buizza and Palmer 1998). However, little connec-
tion was found between the ensemble spread and the
prediction skill in some dynamical models (Kumar et al.
2000; Tang et al. 2005). Instead, in some studies, an
alternate criterion that has been used as a predictor of
forecast skill is the leading eigenmode amplitude (sig-
nal size) of the forecast initial conditions (Kleeman and
Moore 1999; Tang et al. 2005), which essentially repre-
sents the contribution of persistence to the predictive
skill (von Storch and Xu 1990; von Storch and Baum-
hefner 1991). When climate variability modes are
present with larger amplitudes, they are more likely to
be able to “resist” dissipation by the chaotic or stochas-
tic components of the system, making them more pre-
dictable.

Recently, a new theoretical framework for measuring
the uncertainty of predictions has been developed and
applied to examine ENSO and seasonal climate pre-
dictability (Schneider and Griffies 1999; Kleeman 2002;
Tippett et al. 2004; Tang et al. 2005; DelSole 2004, 2005;
DelSole and Tippett 2007). The approach is built on
information theory (Cover and Thomas 1991). It has
been argued that the relative entropy (R), defined by
the differences between the climatological probability
density functions (PDFs) and the prediction PDF, can
explain well why the two reliability measures discussed
above are central to predictability studies (Kleeman
2002; Tang et al. 2005). In particular, when the PDFs
are Gaussian, R consists of two components: one is the
dispersion component associated with the ensemble
spread and the other one is the signal component re-
lated to the leading eigenmode amplitudes present in
the initial conditions or forced by the boundary condi-
tions.

In this paper, we will apply the relative entropy

method to estimate the degree of confidence of the AO
predictions performed by a reasonably skillful atmo-
spheric general circulation model. Of special interest in
this paper are the appropriate measures of the confi-
dence of AO dynamical predictions and the dominant
precursors that control variations in the measures.

2. Model and ensemble prediction

The model used in this study is the simple global
atmospheric circulation model (SGCM), initially de-
signed by Hoskins and Simmons (1975), and then fur-
ther developed by Hall (2000). It is a primitive equation
dry atmospheric model, and has a global domain with
horizontal resolution of T21 and five levels in the ver-
tical. A detailed description of the model may be found
in Hall (2000) and Hall et al. (2001a,b). An important
feature of this model is that it uses an empirical forcing
calculated from observed daily data. By computing the
dynamical terms of the model, together with a linear
damping, with daily global analyses and averaging in
time, the residual term for each time tendency equation
is obtained as the forcing. The collective effect of these
forcing terms represents all processes that are not re-
solved by the model’s dynamics such as diabatic heating
(including latent heat release related to the transient
eddies) and the deviation of dissipative processes from
linear damping. This atmospheric model has been used
for seasonal predictions, and was found to be similar in
prediction skill to a more complex GCM (Derome et al.
2005).

Global ensemble forecasts were made for the 51 bo-
real winters [December–January–February (DJF)]
from 1948/49 to 1998/99 with an ensemble size of 70.
The initial conditions for the seasonal forecasts were
the 0000 UTC 1 December analyses from the National
Centers for Environmental Prediction–National Center
for Atmospheric Research (NCEP–NCAR; Kalnay et
al. 1996). Each ensemble run was constructed by adding
to the initial conditions a small-amplitude perturbation
pattern, which is the scaled down anomaly (with respect
to the 51-yr winter climatology) of a random winter day
in the 51-yr NCEP–NCAR dataset (excluding the win-
ter being predicted).

For each winter, a time-independent forcing is used,
that is obtained from the daily data of the NCEP–
NCAR reanalysis. The approach of a persistent forcing
anomaly is applied. For a given winter, the forcing was
obtained as the November-mean-forcing anomaly of
that year added to the DJF-mean climatological forc-
ing. The calculation of the climatology was done in the
framework of cross validation (i.e., the winter to be
predicted was excluded). A more detailed description
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of the forcing specification may be found in Derome et
al. (2005).

The skill of the ensemble mean prediction has been
evaluated in detail by Derome et al. (2005). It was
found that the SGCM has a statistically significant skill
in forecasting the AO variability, actually even better
than that of a more complex GCM (e.g., the Canadian
GCM2). In the present study, the AO is defined as the
leading empirical orthogonal function (EOF) mode of
the wintertime (DJF) mean sea level pressure anoma-
lies (MSLPA) north of 20°N from the NCEP–NCAR
reanalysis. The observed and each individual forecast
DJF MSLPA field over the 51 winters are projected
onto the AO pattern to obtain the corresponding ob-
served and SGCM-predicted principal component time
series (i.e., AO indices). These indices are used in the
following discussion.

3. Relative entropy and predictability

Suppose that the AO index is modeled as a random
variable T whose climatological or equilibrium PDF is
q(T). In many practical situations there is considerable
knowledge of the climatological PDF from long-term
historical observations. We will use a perfect model
approach (i.e., we will assume that the “observed” state
of the atmosphere can be any one of the ensemble
members predicted by the SGCM). The climatological
PDF is then obtained from the model forecasts over all
the 51 winters. The ensemble prediction of the SGCM
for a given winter produces a forecast PDF, denoted
p(T). The extent to which the forecast and climatologi-
cal distributions differ is an indication of a potential
predictability. There is, of course, no predictability
when the forecast and climatological distributions are
identical. A useful measure of the difference between
q(T) and p(T) from information theory (Cover and
Thomas 1991) is the relative entropy R or Kullback–
Leibler distance between the two PDFs, defined as

R � �P�T � log
p�T �

q�T �
dT. �1�

The quantity R measures the informational inefficiency
of using the climatological rather than the forecast PDF
and R � 0 with equality if and only if p � q (Cover and
Thomas 1991). The relative entropy can be used as an
indicator of predictability, or prediction utility, in that it
measures the additional utility of the ensemble predic-
tion as compared with a climatological prediction.
Larger values of R indicate that potentially more useful
information is being supplied by a prediction.

The notion that R is a measure of the predictability

can also be interpreted in the Bayesian framework.
From the Bayesian perspective, the climatological dis-
tribution is a prior distribution derived from previous
observations. A prediction augments this prior infor-
mation, and the additional information provided by the
prediction constitutes the prediction PDF, which
should be referred to as a posterior distribution in the
Bayesian terminology. The R quantifies the amount of
information that p provides beyond q. In other words,
in a perfect model framework, the extent to which this
prediction PDF differs from the original prior is a mea-
sure of the usefulness of the prediction. In practice, p
and q can be approximated using kernel density esti-
mation, and the integral in (1) approximated by a dis-
crete sum.1

If the PDFs are Gaussian, the relative entropy R may
be expressed exactly in terms of the prediction variance
� 2

p, the model climatological variance � 2
q (perfect

model framework), and the difference �p � �q of the
ensemble and the climatological means (Kleeman
2002):

R �
1
2 �log

�q
2

�p
2 �

�p
2

�q
2 �

��p � �q�2

�q
2 � 1�. �3�

The first two terms on the rhs of (3) are determined by
the climatological variance and prediction variance,
and represent the contribution of the dispersion or
spread of the ensemble to R. The third term on the rhs
of (3) is governed by the amplitude of the predicted
ensemble mean and measures the contribution of the
predicted signal size to R. The first two terms minus 1
is referred to as the dispersion component (DC) and
the third term as the signal component (SC; Kleeman
2002; Tang et al. 2005). Therefore, for Gaussian distri-
butions R � DC � SC both ensemble spread and signal
size are incorporated into the relative entropy R. The
DC contributes to R when the prediction variance is
different from the climatological variance, and the SC
contributes when the mean of the prediction distribu-
tion differs from that of the climatological distribution.

In this study, we use (3) to calculate R since the
Gaussian assumption holds reasonably well for all pre-
diction cases (see the next section). For a non-Gaussian
system, R should be computed directly from (1). Esti-
mating the PDF for a non-Gaussian system is an inter-

1 If T is divided into n bins, R could be approximated by

R � �
i�1

n

f i
p log

f i
p

f i
q

, �2�

where f p
i and f q

i are the prediction frequency and the climatologi-
cal frequency in bin i.
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esting problem in its own right, especially when the
number of ensemble members is small (Kleeman and
Majda 2005).

4. The relationship between prediction utility and
prediction skill

The Gaussian assumption is first examined in order
to use (3). Figure 1 is an estimate of the PDF for two
ensemble predictions of the AO index, from randomly
chosen winters. Figure 1 indicates that the Gaussian
assumption roughly holds for both cases. An examina-
tion of all ensemble predictions produced similar re-
sults (not shown). The Kolmogorov–Smirnov normality
test (DeGroot 1991) shows that all ensemble predic-
tions pass the test at the significance level of 0.1.

Displayed in Fig. 2a are the variations of the AO
prediction utility R for 51 winters during 1948–98, as a
function of time. The climatological mean �q and vari-
ance �2

q are estimated from all ensemble members and
years (sample size is 3570) as in Tippett et al. (2004).2

The prediction mean �p and variance �2
p are estimated

each winter from the 70-member ensemble. As can be
seen, it is apparent that a large prediction utility R is
found in a few predictions such as those of 1955, 1959,
1975, 1983, and 1994. For many other predictions, R is
small.

When prediction and climatology distributions are
identical, the relative entropy R is zero from (1). In
theory, a nonzero value of R indicates predictability.
However, in practice, a finite sample size introduces
sampling errors that lead to a nonzero R even though
there is no extra information supplied by the predic-
tion. Therefore the statistical significance level should
exceed the extent of uncertainty due to the finite
sample size. We quantify the extent of uncertainty us-
ing a Monte Carlo method as in Tippett et al. (2004). A
sample with 70 members is randomly drawn from the
climatology distribution and its relative entropy R is
computed with respect to the climatology distribution.
This process is repeated 10 000 times, and the value
above 95% of 10 000 R is considered to be the signifi-
cant level as shown in Fig. 2a (solid line). During the 51
winter AO predictions, 44 predictions have a significant
relative entropy, accounting for 86% of all predictions.

Figure 2b shows the absolute error of each ensemble
mean prediction. A comparison of Fig. 2b with 2a re-
veals that a large R is often associated with a good
prediction skill (i.e., small absolute error) whereas
when R is small, the skill tends to be lower. This is very
similar to a so-called triangular relation that was used
to characterize the relationship between ensemble
spread and skill in ensemble NWP (e.g., Buizza and
Palmer 1998) and in ENSO models (e.g., Xue et al.
1997; Moore and Kleeman 1998); namely, when the
ensemble spread is small, the skill is good whereas
when it is large, the skill is much more variable. Thus,
we also use the “triangular relation” to describe the

2 Alternatively they were also estimated from the observation,
leading to similar results.

FIG. 1. (a), (c) Two arbitrarily chosen ensemble prediction cases, each with 70 members.
(b), (d) The estimated probability distribution of the two ensemble predictions.

4736 J O U R N A L O F C L I M A T E VOLUME 20



relationship between R and the predictive skill. It
should be noticed that we examined the ensemble
spread and the absolute error for this SGCM, and did
not find a significant relationship between them as
shown in Fig. 3. In fact, Fig. 3 shows a sometime inverse
relationship between the ensemble spread and the ab-
solute error (i.e., when the ensemble spread is large the
absolute error might be small, and vice versa, indicating
that the ensemble spread is not a good indicator of the
AO prediction skill for the SGCM).

From Figs. 2a,b, one can find that some small Rs are
associated with small absolute errors. This is interesting
since a small R suggests little extra information to be
provided by the prediction. To explore this, we exam-
ined all predictions with absolute errors smaller than
1.0 and with R smaller than 1.0 (16 cases altogether). It
was found that all of these cases have relatively weak
AO anomalies in the observations and ensemble mean,
as shown in Fig. 4, leading to small absolute errors. On
the other hand, a weak ensemble mean AO anomaly

suggests its status approaching its climatology, leading
to a small R based on (2).

To further explore the relation between R and the
prediction skill, we examine the contribution of each
prediction to the correlation skill r, traditionally de-
fined as

r �
1
N �

i

T i
pTi

o, �4�

where T denotes the normalized AO index with zero
mean, i is for year, p is for predictions, o is for obser-
vations, and N is the number of samples used to calcu-
late r. In the case of the predictions, Tp refers to the
ensemble mean.

The contribution of each prediction to r, denoted as
C, can be measured by

Ci �

1
N

Ti
pTi

o

r
	 100%. �5�

FIG. 2. (a) Relative entropy R as a function of time for the 51 winters from 1948 to 1998; (b)
same as (a), but for absolute error; (c) same as (a), but for the contribution of each prediction
C to the correlation skill. Solid line in (a) shows the Monte Carlo test at 95% confidence level.
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Figure 2c shows variations of C with time. A feature
shown in Fig. 2c is that there is a large variation of C
among the predictions. While some winters have good
predictions that account for significant contributions to

r, others have a very small C. A comparison of Fig. 2c
with 2a reveals that a large C generally corresponds to
a large R except the 1988 case. The year 1988 has the
strongest AO activity during the 51 winters with an AO
index [i.e., To in (5)] of 2.85, leading to a very large C
but only a moderate R. The correlation coefficient be-
tween C and R over the 51 predictions is 0.61, which is
statistically significant at a confidence level of 1%. Such
a good relation between C and R is especially obvious
for large R. We calculated an accumulated C over pre-
dictions with the five largest Rs (i.e., R 
 5.0), and
found that 44% of the correlation skill r came from the
contribution of the five predictions. Table 1 shows cor-
relation skills between predicted and observed AO in-
dices, obtained using different samples classified by R.
As can be seen, the predictions with a larger R lead to
better skill than those with a smaller R, with a correla-
tion of 0.8 and 0.7 for R greater than 3 and 2.5, respec-
tively. It should be pointed out that it may be mislead-
ing to compute the correlation from subsets of data, in
particular when the subset is made up of high-
amplitude cases (von Storch and Zwiers 1999). Also as
there are fewer samples used as R increases, it is pos-
sible that the change in sample size is responsible for
this increase in skill with R. To evaluate this, we used a
bootstrap method to measure the extent of the uncer-
tainty in the computed correlation due to the finite

FIG. 4. (a) The bars with the asterisks are the predicted ensemble mean AO index with
absolute error smaller than 1.0 and R smaller than 1.0. The circles denote the predicted AO
for the remaining cases; (b) Same as (a), but for observed AO index.

FIG. 3. Scatterplot of ensemble spread and the absolute error of
the ensemble mean prediction.
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sample size.3 The results show that the increase in the
correlation skill in Table 1 results from the contribution
of more skillful predictions with larger R, rather than
from the uncertainty of the finite sample size (Fig. 5).

5. The dominant component controlling R

We have explored the relationship between the pre-
diction utility and the model prediction skill. Our re-
sults show that the prediction utility R is a good indi-
cator for the AO prediction skill. A “triangular” rela-
tionship can be suggested between R and the model
skill. When R is large, the prediction is typically good,
whereas when R is small, the prediction skill is much
more variable. A small R is often accompanied with a
relatively weak AO. Next, we will examine what deter-
mines the variations in R.

As discussed in section 3, R is the sum of a DC and
an SC. Figures 6a,b depict the scatterplots of R with SC
and DC for the period of 51 winters. The figures show
that SC is significantly larger than DC, and dominates
R. As can be seen, R and SC vary linearly with a slope
of unity. The correlation coefficient between R and SC
is 0.99. In contrast to the good relation between SC and
R, however, the relation between DC and R is much
less significant.

A further examination of SC and DC reveals that SC
and DC are highly related with two widely used vari-
ables in ensemble prediction: the ensemble mean and
the ensemble spread (i.e., ensemble variance). Shown
in Figs. 6c,d are the scatterplots of SC with the en-
semble mean squared, and of DC with the ensemble
spread. Figure 6c shows a near-perfect relationship be-
tween SC and the square of the ensemble mean, with
the correlation of 0.99. A significant negative correla-
tion also exists between DC and ensemble spread in

Fig. 6d. Here DC is composed of two terms on the rhs
of (3), that is, log(�2

q /�2
p) and �2

p /�2
q; DC is inversely

proportional to the ensemble spread in the first term
but positively proportional to it in the second term.
Thus, a negative correlation between DC and the en-
semble spread is mainly due to much more contribution
of the first term to DC. This can typically occur when
the ensemble spread is very small. An examination of
all ensemble predictions showed that out of the 51 en-
semble predictions, 50 have the ensemble spread
smaller than 1, and 43 smaller than 0.4. There are most
likely two factors to cause such small ensemble spreads
here: 1) the nonlinearity of the SGCM is relatively
weaker compared with observation and more complex
GCMs, especially since all ensemble members (for a
given winter) use the same forcing; and 2) the pertur-
bation patterns used to construct the ensemble predic-
tions are not optimal like singular vectors or breeding
vectors that can lead to the fastest growth of model
errors.

Since R is mainly controlled by SC, Fig. 6c suggests
that the prediction utility R contains information from
both the ensemble mean and ensemble spread, but is
dominated by the prediction ensemble mean. There-
fore, the prediction skill is highly associated with the
predicted ensemble mean amplitude of the AO index.
When the predictive mean signals are large (due to

3 A 1000-member ensemble correlation was computed. Each
correlation was obtained using randomly taken sample pairs of
predicted and observed AO indices with the same sample size as
that used in Table 1. The standard deviation of ensemble corre-
lation was used to represent the extent of the uncertainty.

FIG. 5. The circles denote the correlation between the predicted
and observed AO indices for the predictions classified by R (see
Table 1); the asterisks denote the 1000-member ensemble corre-
lation mean (see text); and the vertical lines are the uncertainty
extent of the correlation estimate (std dev) due to the finite
sample size estimated by the bootstrap method.

TABLE 1. Correlation skill between predicted ensemble mean
and observed AO indices as a function of R (the number shown in
parentheses is the number of samples used).

R0 R 
 R0 R � R0

0.1 0.41 (51) —
1.0 0.55 (30) �0.30 (21)
1.5 0.60 (25) �0.35 (26)
2.0 0.66 (18) �0.42 (33)
2.5 0.70 (13) 0.16 (38)
3.0 0.80 (10) 0.24 (41)
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large-amplitude forcings), R is also large, suggesting
that such predictions are more reliable than for small
mean signals (weak forcing). Note that this result might
be model dependent, and related to the fact that the
SGCM has a small ensemble spread. Whitaker and
Loughe (1998) found that the relation between spread
and skill is strong when the variability of the ensemble
variance is large. However the strong relation between
the ensemble mean and the model skill was also found
in some complex GCMs (Kumar et al. 2000; Tippett et
al. 2004; Tang et al. 2005). The results are also consis-
tent with the fact that mean winter forecasts over North
America tend to be better for winters with strong
ENSO forcing (e.g., Derome et al. 2005).

When variations in R are mainly due to variations in
the ensemble mean, the correlation r between the en-
semble mean and the observation is related to the ex-
pected correlation �c between the correlation contribu-
tion C and the relative entropy R for normally distrib-
uted variables with constant variance. A theoretical
relationship between r and �c is (see the appendix)

�c �� 2r2

1 � r2 . �6�

For the AO index, r � 0.41 and the value of �c pre-
dicted by (6) is 0.53, which is reasonably close to the
observed correlation between the contribution C and
relative entropy R of 0.61. Since the expected correla-
tion is built on the assumptions that the variables follow
a Gaussian distribution and R is proportional to the
square of ensemble mean, the consistency between the
expected correlation and the actual value supports the
assumptions and the above analyses of relative entropy.

As discussed above, R, dominated by the signal com-
ponent, is a good indicator of prediction reliability for
strong AO events. This suggests that some possible re-
lationship exists between R and the persistence of the
AO index, since strong AO modes in the initial condi-
tion are more likely to be able to resist dissipation by
the chaotic or stochastic components of the system,
leading to better persistence and prediction skill. Thus,
it is of interest to compare R with a simpler measure of
predictability related to persistence. For simplicity, we
define the square of the amplitude of the November
AO index as a simple measure (SM) to quantify the
reliability of a winter AO prediction. Figure 7a shows
the variation of SM as a function of each prediction
during the 51 winters from 1948 to 1998. Comparing

FIG. 6. Scatterplots of relative entropy R with (a) signal component SC and (b) dispersion
component DC. Scatterplot of (c) SC with the square of ensemble mean and (d) DC with
ensemble spread (standard deviation).
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FIG. 7. (a) Same as Fig. 2a, but for the simple measure SM (i.e., the amplitude of November AO index). (b), (c) Same as
in Figs. 2b,c, respectively, but for persistence prediction using the November AO index as the predicted value.
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Fig. 7a with Figs. 2b,c reveals that SM is unable to well
quantify the reliability of winter AO prediction. The
correlation between SM and C is only �0.06.

Figures 7b,c are skill scores of the persistence pre-
diction using the November AO index. As can been
seen, SM is not an effective measure of reliability for

persistence prediction. This is probably because the sig-
nal component dominating R is more related to the
strength of the persisted model forcings than to the
November AO itself. For example, Tang et al. (2005)
found that the amplitude of subsurface ocean heat con-
tent, rather than the SST itself, is the best substitute of

FIG. 8. (a) Correlation between prediction utility R and the October SST over all predictions. (b) Same as (a), but using the
predictions with R 
 2.0. (c) Same as (a), but R � 1.0. The shaded area is the correlation over 0.3.
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R to measure the reliability of ENSO predictions. Also,
SM may be too simple to properly represent the per-
sistence of the AO index. A more refined definition
might be needed to quantify the persistence capability,
such as the time series of leading Principal Oscillation
Pattern (POP) modes (von Storch and Xu 1990; von
Storch and Baumhefner 1991).

It should be noticed that persistence produces a sig-
nificant (but low) prediction skill with a correlation of
0.37 between the predicted and observed AO index for
the period 1948–98. In the next section, we will see that
part of model prediction skill is likely due to this per-
sistence.

6. The relationship between R and SST forcing

As discussed in the preceding section, the prediction
utility R is a good indicator of the AO prediction skill
through quantitatively measuring the extra information
of predictions. It is of interest to further explore the
possible source of the extra information on the predic-
tions in this SGCM. We thus turn to analyze the forcing
that is related to the AO signal. As mentioned in sec-
tion 2, the model forcing is expressed not only in the
model’s thermal equation, but also in vorticity, diver-
gence, and surface pressure equations. To avoid the
complexity, we look at the SST anomaly instead. The
SST anomaly constitutes the most important signal in
the atmospheric boundary conditions, and its variability
is likely well associated with the model forcing that is
empirically calculated using the observed data under
such a boundary condition.

We calculated the correlation between R and the SST
anomaly (SSTA) of each grid point for each month,
from January to November before the prediction, over
a global domain for the period during 1950–98. The
observed SST from the Comprehensive Ocean–
Atmosphere Data Set (COADS) dataset (Smith et al.
1996) was used. The prediction utility R in Eq. (2) is
dominated by the square of the ensemble prediction
mean, so that R is independent of the sign of the en-
semble prediction mean. So, the square of SSTA
(SSTA2) was used instead of the SST anomaly itself for
computing the correlation to address the strength of the
SST signal in influencing the reliability of the AO pre-
diction. The results show that significant correlations
appear in the tropical central Pacific and the North
Pacific (NP), with the maximum in October, as shown
in Fig. 8a. As can be seen, a large region of significant
correlation coefficients resides in the tropical central
Pacific. In the North Pacific around 40°N, there is an-
other smaller but stronger region of significant correla-
tions, appearing to the west of the date line. The cor-

relation of R to the Niño-4 SSTA2 index (averaged
SSTA2 over 5°–5°N, 160°E–150°W) and to NP SSTA2

index (averaged SSTA2 over 35°–45°N, 150°E–180°)
during 1950–98 is 0.41 and 0.56, respectively, both being
statistically significant at a confidence level of 0.01. Fig-
ure 9 compares the variations of R and NP SSTA2 in-
dex, showing a good agreement between them.

Figures 8b,c are similar to Fig. 8a but with two dif-
ferent sample groups classified by R in calculating the
correlation: one for R 
 2.0 and the other for R � 1.0.
They indicate that the correlation coefficients depend
on the prediction utility R. When R is large, the corre-
lation is high whereas when R is small, the correlation
is less significant. This suggests that a large prediction
utility R that is likely to lead to a reliable prediction is
well linked to a strong SST forcing in the tropical cen-
tral and the North Pacific Ocean, whereas a poor pre-
diction with a small R might often accompany a weak
SST forcing in the two regions.

A composite of the square of the October SSTA of
the 51 winters is shown in Figs. 10a,b, for R 
 2.0 and
R � 1.0, respectively. Apparently a large (small) R cor-
responds to strong (weak) SST forcing in the tropical
central Pacific Ocean and in the NP, which is consistent
with the above correlation analysis. From these results,
it can be suggested that the R is well linked to the signal
of SST forcing in the tropical Pacific and in the NP.

It is of interest to directly correlate the global SSTA

FIG. 9. Variation of SSTA2 index in the NP region (solid line)
and prediction utility R (dashed line).
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in October with the model AO index. The result shows
that there is no statistically significant correlation be-
tween them for the period of 1950–98, suggesting that if
the source of model skill for the winter AO comes from

a lagged response to an SST forcing, such a response is
likely nonlinear. Wu and Hsieh (2004) found a qua-
dratic response of 500-mb atmospheric variability to
the tropical Pacific SSTA by a neural network analysis.

FIG. 10. Composite of mean SSTA2 of October for years of (a) R 
 2.0, (b) R � 1.0, and (c)
same as (a), but for November.
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Figure 11 shows the correlation between the square of
the October SSTA with the square of the model AO
index for DJF, indicating that such a nonlinear re-
sponse exists. It is hardly surprising to find a good
agreement between Figs. 11 and 8a since the relative
entropy R is dominated by the amplitude of the pre-
dicted AO index.

The link between the AO and tropical forcing has
been suggested in previous studies (e.g., Lin et al. 2002;
Greatbatch et al. 2003; Lin et al. 2005a,b). Derome et
al. (2005) found that the predicted ensemble mean AO
index is significantly correlated with the time series of
an EOF pattern of diabatic heating that is characterized
by larger variances in the equatorial central Pacific and
the Indonesian region. Our analyses presented above
further explore the link of the AO to Pacific SST forc-
ing in terms of the R. In particular, we found that the
SST forcing in the NP region also remarkably correlates
with AO predictability. It was observed in previous
studies that the SSTA in the tropical Pacific often co-
varies with that in the North Pacific. For example, in an
El Niño event, a warm tropical Pacific SST is accom-
panied by a cold SST anomaly in the North Pacific. Lau
and Nath (1996) attributed the link between the SSTA
in these two regions to the “atmospheric bridge”
mechanism.

An interesting result found here is that the R is highly
related to the October tropical SST signal, rather than
to the SST signal in November, which appears to be the
most relevant to the initial conditions and model forc-
ing. This is most probably because 1) the October SST
anomaly is much stronger than the November SST

anomaly, as shown in Fig. 10c. As discussed above, the
strength of the SSTA signal plays an important role in
influencing the R. 2) We used the observed atmo-
spheric circulation data in November to calculate the
model forcing. It has been found that the mid–high-
latitude atmospheric circulation has a lagged response
to the tropical SST anomaly by around 1 month (Jin
and Hoskins 1995; Hall and Derome 2000). The nature
and cause of the delayed atmospheric response to El
Niño was investigated in Kumar and Hoerling (2003).
The October SST anomaly is therefore likely to be the
best representation of the November forcing that we
used in the seasonal predictions. By a simple correla-
tion analysis, Mo et al. (1998) also found that the major
modes of interannual variability in the Northern Hemi-
sphere mean-winter 500-hPa field [such as the PNA and
Western Pacific (WP)] in December–March are corre-
lated most significantly with the Pacific SST anomalies
in the previous October.

Thus, the source of the model skill appears to be
attributable to the forcing of the tropical SSTA in Oc-
tober. This could be interpreted in two aspects: 1) the
tropical SSTA in October has a significant impact on
the model atmospheric forcings in November due to
their around 1-month lag relationship. As the initial
conditions, the November forcing plays an important
role in model predictions. 2) The SSTA in October
impacts the November AO itself, leading to some pre-
diction skill through persistence as mentioned in sec-
tion 3. To explore the possible response of the Novem-
ber AO to the October SSTA, we first correlated the
November AO with the October SSTA over the global

FIG. 11. Correlation between the square of the model DJF AO index and the square of the October SSTA over all predictions.
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domain, and found very small correlation coefficients
everywhere between them, suggesting that the lag re-
sponse, if it exists, should be nonlinear. To examine this
possibility, we performed an EOF analysis on the Oc-
tober SSTA over the Pacific domain of 20°S–60°N and
120°E–90°W. The first three modes are plotted in Fig.
12, which explain 60% of the total variance. The three

EOF modes have relatively much larger variances in
the tropical Pacific and in the NP, similar to Figs. 8a,b.
A nonlinear response of the November AO to the Oc-
tober SSTA was identified using a nonlinear regression
by the neural network (Tang et al. 2001) with the time
series of the three EOF modes as the inputs and the
November AO index as the output. The cross-

FIG. 12. The first three EOF modes of the tropical SSTA in the October, derived from 1950–98: EOF (a) 1, (b) 2, and (c) 3.
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validation correlation of the simulated AO index from
the constructed nonlinear regression against the ob-
served counterpart is 0.65 for the period of 1948–98,
which is statistically significant at the confidence level
of 99%. Figure 13 illustrates the simulated and ob-
served AO indices, indicating that most of the variance
of the November AO variability can be explained by
the October SSTA forcing via a nonlinear regression of
the neural network.

7. Discussion and summary

An important task of predictability studies is to mea-
sure the reliability of the prediction, and to determine
dominant factors that affect the prediction accuracy. By
applying the information theory, we have explored the
AO predictability using a simple global atmospheric
general circulation model. It was found that the R, de-
fined by the relative entropy, can measure reasonably
well the reliability of the AO predictions of the SGCM.
In general, when R is large, the corresponding AO pre-
diction is found to be more reliable than when R is
small. Such a “triangular” relationship between the R
and model skill is different from the ENSO predictabil-
ity where the ENSO prediction skill is more likely to be
a monotonic function of R (Tang et al. 2005). Like the
ENSO predictability, the R of AO prediction also has
the following property that it is dominated by the pre-
dictive ensemble mean (i.e., the signal component has a
much more important contribution to R than the en-
semble spread). We also examined the model skill and
ensemble spread, and did not find any significant rela-
tionship between them. This indicates that the en-
semble spread is not an effective indication of predic-

tion skill in this SGCM. This is most probably due to
the weak ensemble spread in the SGCM. A weak en-
semble spread might be related to model dynamics, the
ensemble perturbation method, and the lack of vari-
ability of the model forcing from member to member. It
should be noted that while this result may be model
dependent, some more complex GCM models also dis-
played a strong relationship between the ensemble
mean and the model skill (e.g., Kumar et al. 2000; Tip-
pett et al. 2004; Tang et al. 2005).

A practical significance of the above conclusion re-
lates to the possible use of the SGCM to issue proba-
bilistic forecasts operationally. Since only the ensemble
mean is responsible for the R and the skill, and the
ensemble spread is weak, a large size of ensemble does
not seem required to generate a prediction and mea-
sure the reliability of predictions. Usually one can esti-
mate well the mean of the distribution with a few
samples if the distribution has a very small variance. To
explore the impact of the ensemble size on the model
skill and R, we repeated all calculations performed in
section 3 using different ensemble sizes, as shown in
Fig. 14. The correlation skills of the predicted AO index
against the observed AO index are all 0.41 when the
ensemble size is changed to 50, 30, and 10, respectively,
which is same as the original skill with the ensemble
size of 70. The correlation coefficients between the R
and correlation contribution C are 0.61, 0.60, and 0.59,
respectively, almost unchanged compared with original
value of 0.61. These results suggest that as few as 6–10
members may be appropriate to approach probabilistic
forecasts operationally using the particular SGCM.

Using global SST observations, we found that the R
of the winter AO prediction is significantly correlated
with the amplitude of the SST anomaly in the tropical
central Pacific and the North Pacific in the previous
October. A large R that is likely to lead to a reliable
prediction is usually linked to a strong SST forcing in
the two regions whereas a poor prediction with small R
is associated with a weak SST forcing in the two re-
gions. The primary contributor is likely the tropical Pa-
cific SSTA, while the SST anomaly in the North Pacific
is probably a result of the “atmospheric bridge” mecha-
nism. The tropical link of the AO is in agreement with
previous studies (Lin et al. 2002; Greatbatch et al. 2003;
Lin et al. 2005a). Using the tropical Pacific SST signal,
Lin et al. (2005b) developed a correction scheme for
seasonal predictions. It was found that this scheme sig-
nificantly increases the predictive skill of the NAO in
the seasonal predictions of two GCMs.

It has been recognized that model initial conditions
exert a strong influence on ENSO model prediction
skill (e.g., Kleeman and Moore 1997; Tang et al. 2005).

FIG. 13. Variation of the November AO index from 1950–98.
The dashed line is the observed values, and the solid line is the
modeled values using the Pacific October SSTA and a nonlinear
regression via a Neural Network method.
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In contrast to the ENSO predictability, the SST anomaly
in the previous October is most significantly correlated
with the winter AO prediction skill. This is probably
due to the fact that the November model forcing
anomaly that is persisted throughout the prediction pe-
riod and that determines the forecast skill is signifi-
cantly related to the October SST anomaly.
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APPENDIX

A Theoretical Relationship between Predictability
and Prediction Skill

The relation in (6) builds an important connection
between the measure of prediction uncertainty using
the relative entropy R and the prediction skill. It is

obtained by noting that for normally distributed vari-
ables with constant variance, the R is proportional to
�2 � const., and C is proportional to �(� � ) where �
is the ensemble mean and the quantity � �  is the
observation. The observation is the ensemble mean
plus a noise term with mean zero, �� � 0. The variance
�2� of the noise term determines the correlation be-
tween observation and ensemble mean. The square of
the correlation between the R and correlation contri-
bution C is

�c2 �
��R � �R���C � �C���2

��R � �R��2���C � �C��2�

�
���2 � ��2������ � �� � ��2���2
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FIG. 14. Same as Fig. 2, but for different ensemble sizes.
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where � . . . � denotes the expectation, and we use the
fact that ��4� � 3��2�2 for normally distributed vari-
ables. A similar calculation shows that the correlation r
is related to the signal-to-noise ratio ��2�/�2� by Klee-
man and Moore (1999):

r2 �
1

1 �
��2�

��2�

since

��2�

��2�
�

1

r2 � 1,

�c2 �
1

1 �
1
2 � 1

r2 � 1� �
2r2

2r2 � 1 � r2 �
2r2

r2 � 1
.
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