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Abstract

This thesis presents a new theory of information modelling in natural language process-

ing that attempts to resolve anaphoric references, while also addressing the problem of

knowledge complexity. A modular model of semantic representation is introduced that

addresses the deficiencies of existing representations, as well as the drawbacks associated

with expanding these semantic representations. Rather than using a single semantic rep-

resentation to model human knowledge and the knowledge within a sentence, the theory

proposes a modular, multi-level model which is based around a semantic network. The

behaviour of the model uses theories on the nature of working and long-term memory

from cognitive psychology. Two methods of artificial neuron activation and decay were

implemented – the ACT-R model and the Thompson model. Maximum success rates of

54.10% and 83.61% were achieved for The Three Brothers corpus, and maximum success

rates of 56.00% and 86.67% were achieved for the Rumpelstiltskin corpus.
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chapter one

Overview

She had a pretty gift for quotation, which is a serviceable substitute for wit.

- W. Somerset Maugham

1.1 Introduction

It seems ironic that although natural languages are very difficult to model, the languages

themselves are quite effective and efficient for communication. If humans use their native

language with ease, then why is it so hard for computers to understand natural languages?

One of the most obvious answers is that the human brain is so complex. The complexity

of human knowledge, and the medium on which it is stored and processed, cannot be

understated.

This thesis presents a new theory of memory modelling in natural language processing

that attempts to resolve anaphoric references, while also addressing the problem of com-

plexity. Rather than using a single semantic model to represent human knowledge and the

knowledge within a sentence, the theory proposes a more general model where multiple

semantic representations can be used in a system that models the observed behaviour of

working and long-term memory.

1.2 Pronominal Anaphora Resolution

The goal of this thesis was to develop a multi-level model of human memory that is modular

and flexible, processes multiple well-known semantic representations such as semantic

networks, conceptual graphs and quasi-logical form, and uses these models to resolve

2



anaphoric references. In-particular, this thesis focused on the resolution of simple pronouns

such as he, she, they, etc. In the most general of cases, pronoun resolution is quite simply

a matter of searching backwards through a corpus of text until the first noun phrase that

matches such attributes as number and gender is found:

Bright and early the next morning, the shoemaker 1 rose and went to his 1 work bench. To his

amazement, there on the table were two shoes 2, already finished. They 2 were beautifully made,

neat and true, and with not a single false stitch.

The situation can be made slightly more complex by making antecedents separate

entities in the context:

For some time that same thing happened, until the good man 1 and his wife 2 3 were thriving

and prosperous. But they 3 were not satisfied to have so much done for them 3 and not know to

whom they 3 should be grateful.

But of course, this is not always the case. The next example, adapted from [Sidner 1983],

demonstrates where this method of resolution can break down:

My neighbours 1 have a monster Harley 1200 2. They 3 are really huge but gas efficient bikes.

In the second sentence, if an individual was to read just the pronoun they, their initial

preference for the reference may not be a monster Harley 1200 based on number alone.

In this context, a common preference for the pronoun they would be my neighbours. After

reading the remainder of the second sentence, it is apparent that this conclusion was

incorrect. Given the additional context, common knowledge concludes that the neighbours

are not motorcycles1.

.

1.3 Outline of Thesis

Chapter 2 discusses numerous semantic representations that have been introduced over the

past few decades. The general domain of use is covered for each semantic representation
1That is unless your neighbours actually are motorcycles.
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as well as some of the drawbacks for each structure. Chapter 3 will discuss the evolution

of theories of short-term and long-term memory as well as current theories in human

memory. Several modern psychological models of short-term and long-term memory will

be elaborated on, as well as some computational memory models. In Chapter 4, the

discussion on semantic representations will move towards a theory on combining semantic

representations to overcome their individual deficiencies with the intention of creating a

system that is easier to understand and easier to expand. The theory will also model

human behaviour more closely.

Chapter 5 will discuss the current state of understanding in pronominal anaphoric

reference and anaphora resolution. Several theoretical problems will be introduced and

discussed. A number of modern anaphora resolution algorithms will be presented that

attempt to solve anaphoric reference issues. The chapter will conclude with an exami-

nation of what occurs when humans fail to resolve anaphoric references. In Chapter 6,

the combined semantic representation model, memory models, and anaphora resolution

algorithms will be integrated into a system that will attempt to solve anaphoric reference

problems introduced in Chapter 5. Chapters 7 will cover the methodology for testing the

implemented model, the results of testing, and a discussion of those results. Chapter 8

will conclude the thesis by comparing the testing results with the results of other models,

and a discussion on how the model presented in this thesis could be improved.

4



chapter two

Declarative Semantic Structures

Oh, and sir, you’re wrong. We won’t be apart - we just won’t be together.

- Arnold J. Rimmer (Holoship)

Although many types of semantic representations have emerged during the history

of natural language processing research, understanding in the domain of semantics is

still limited. Some models fall short and are intended for a limited knowledge domain.

Others can be expanded but the resulting expansions are often unclear or more difficult

to computationally manage.

In this chapter, a number of semantic representation models are examined. As each

model is investigated, the shortcomings of each model will be shown. The examination

of these shortcomings will lay the initial groundwork for a hypothesis on improving these

models. By integrating each semantic model separately into a larger, multi-level system,

it is hypothesized that the resulting system would be easier to expand than a system with

a single complex semantic model, and would provide a diverse knowledge base from which

an anaphora resolution algorithm, or group of algorithms, could draw from. James Allen

makes a statement in [Allen 1995] to this vain:

...a vigorous debate about knowledge representation is actually the result of
each of the debaters focusing on one of the aspects of representation without
considering the concerns of the other.

Humans apply much implicit knowledge when understanding an utterance. Informa-

tion in long-term memory is not considered in many structures, and even if it is, the

information is stored only at the discourse level. Ignoring the complexity of a human

knowledge base only trivializes the vast learning power of the human mind.
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2.1 Semantic Networks

Some of the earliest research with respect to semantic networks can be found in

[Quillian 1968] and [Collins and Quillian 1969]. Semantic networks were first introduced

as a model of human memory. How semantic networks are realized as models in com-

putation is quite a broad topic. Interpretation varies from graphs with concepts as

nodes and the associations between the nodes as links, to more complex graphs such

as Sowa’s conceptual graphs [Sowa 1984] or conceptual hierarchies [Ma and Isahara 2000]

[Chung and Moldovan 1993] . For the purposes of this thesis, semantic networks will be

restricted to the first definition, graphs with concepts as nodes and associations as links.

Figure 2.1 represents a semantic network that has a strength associated with each link.

The network roughly represents an artificial neural network, which will be discussed further

in Chapter 3. Each node1represents a single topic or concept. Thus, the relationship

between two semantic concepts is based on the strength of the association between the two

semantic concepts. The drawback of this model is that it only models a loose relationship

between topics. It does not identify what the relationship is. The next example illustrates

how drawing the appropriate knowledge from a semantic network would be difficult:

John had a son named Bob. His son is an excellent skier.

In this example, an anaphora resolution algorithm would have a difficult time resolv-

ing the possessive pronoun His without the father-son relationship being modelled more

explicitly.

[Kazuhiro et al 1992] and [Berger et al 2004, Belew 1987] demonstrate examples of se-

mantic networks with weighted links being used in kana-kanji conversion and information

retrieval, respectively. In Chapter 4 we will see that semantic networks will not be used

to model knowledge directly. Rather, they will be used to connect semantic concepts and

their associated semantic representations.
1A node does not necessarily represent a single neuron within the human brain. A node could represent

a group of neurons.

6



S

S

dS

Sc

aS

iS

h

Sb

gS

Sf

e

moneybank

ship

ocean

bank
boat

river

water

Figure 2.1: Probabilistic Semantic Network

2.2 Conceptual Graphs

Some of the earliest work with respect to conceptual graphs can be attributed to Sowa in

[Sowa 1976, Sowa 1979, Sowa 1984]. Conceptual graphs are defined as a directed bipartite

graph with two types of nodes. Each node in the graph can be either a concept or a

conceptual relation. Concepts can be concrete (such as cat), or they can be abstract

(such as sadness). Conceptual relations can have an arity of n ≥ 1. Figure 2.2 illustrates

conceptual relations with various arities.

Conceptual graphs are not limited to the simple relations shown in Figure 2.2. They

can also model simple sentences, as seen in Figure 2.3. Since conceptual graphs are used

extensively in database systems, relational database theory allows us to perform certain

operations to obtain new conceptual graphs, such as copy, restrict, join, and simplify. In

their basic form, conceptual graphs do not model the strength of relationships. Common

knowledge dictates that information stored in long-term memory is not as concrete as the

conceptual graph model it to be. Fuzziness with respect to relations is not accounted

for. Conceptual graphs, as defined by Sowa, do not model temporal information implied

by verb tense and verb aspect. This deficiency is apparent in Figure 2.4 adapted from
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Figure 2.2: Conceptual Relations of Arity (a) 1 (b) 2 and (c) 3

[Sowa 2000]

mary

john recipient

agent give object

book

Figure 2.3: Conceptual Graph for Mary gave John the book.

Person:John Go City:BostonAgnt Dest

Figure 2.4: Conceptual Graph for John is going to Boston

It is apparent that the tense and aspect have been lost for the verb phrase is going.

Tense and aspect could be reflected by adding another relation, as shown in Figure 2.5.

How would we model one event occurring before another event? Another relation would

seem to be a possible answer. This process of adding relations to reflect previous missed

information could lead to quite a rat’s nest. It becomes difficult to separate verbs and

nouns from other semantic information without adding more relations, and it potentially

becomes a model that is more difficult to expand and maintain.
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Person:John Go City:BostonAgnt Dest

Tense

Pres:Prog

Figure 2.5: Another Conceptual Graph for John is going to Boston

2.3 Conceptual Hierarchies

Conceptual hierarchies are a very common structure in object oriented programming.

They allow programmers to show how certain objects inherit the properties of another ob-

ject. Figure 2.6 illustrates an example of how classification and sub-classification have been

observed by biology throughout the world. Subclasses inherit attributes from their super-

class as well as adding their own attributes. Research in cognitive categorization, such as

[Kay 1971, Rosch et al 1976], suggests that the human mind stores and groups informa-

tion based on taxonomy in long-term memory. One of the main advantages of conceptual

hierarchies is that they are very efficient at storing information [Ma and Isahara 2000].

Information common to many concepts is only stored once.

Dog Cat

Carnivore

Mammal

LadyBuddy Malakyte Scat

Figure 2.6: Conceptual Hierarchy
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One the main disadvantages of conceptual hierarchies is their intended use: modelling

concepts and the inheritance of characteristics between concepts. They are not intended

to model entire sentences or any kind of temporal information.

2.4 Event Timeline Models

The Bull Framework

In [Culce-Murcia and Larsen-Freeman 1999], Celce-Murcia and Larsen-Freeman adapted

the The Bull Framework [Bull 1960] (originally created for Spanish) for teaching ESL

students English. The Bull Framework proposes four axes of time: past, present future,

and hypothetical. The first three axes contain a point of reference in the centre and the

times occurring before and after the time of reference to the left and right, respectively.

Figure 2.7 demonstrates an example using the verb ski. The fourth axis, hypothetical, is

used to model hypothetical events, for example, events created using constructions like

if..then.

ski:1

PresentPast Future

Past

PresentPast Future

Future
ski:1

PresentPast Perfect Simple Past Simple Future

ski:1
Future Perfect

Present

"I skied in the Whistler−Blackcomb backcountry."

Figure 2.7: Timeline Model

Since the Bull Framework was only intended for explaining verb tenses, it does not

suitably model many aspects of natural languages such as nouns, adjectives, and adverbs.

10



The Reichenbach Theory

In [Allen 1995], Allen presents Reichenbach’s theory on timeline representation from

[Reichenbach 1947]. Reichenbach theorized that each verb embeds information about

three points in time: time of speech (S), time of the event/state(E), and time of refer-

ence(R). In the simple aspect2, the time of the event/state and the time of reference are

always equivalent. This equivalency does not exist for the perfect and posterior aspects3.

Figure 2.8 gives a table outlining the various timelines for different tense and aspect com-

binations. Table 2.1 shows some example sentences and their tense/aspect. Reichenbach

methodology is very similar to that of Bull’s in that they both attempt to model a type

of temporal ordering , which is implied by varying tense and aspect combinations in sen-

tences. Naturally, Reichenbach’s theory does not attempt to account for the nature of

nouns, adjectives, and adverbs.

Tense Example Sentence
Simple Present Jack sings

Simple Past Jack sang
Simple Future Jack will sing
Perfect Present Jack has sung

Perfect Past Jack had sung
Perfect Future Jack will have sung

Posterior Present Jack is going to sing
Posterior Past Jack was going to sing

Posterior Future Jack will be going sing

Table 2.1: Example Sentences Taken from [Allen 1995]

2.5 Thematic Roles

Thematic roles are linguistic entities (embodied in the form of noun phrases) that satisfy

certain semantic constraints implied by the main verb phrase of a sentence. The idea of
2It must be noted that the progressive aspect and perfect progressive aspect are missing from Allen’s

listings.
3Allen refers to simple as being a tense, not an aspect.
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Figure 2.8: Reichenbach Timeline Model

thematic roles draws a close parallel to the morphological case systems found in languages

such as German and Latin, but expands on the case system by adding a much larger

number of cases.

Verb phrases require that these thematic roles are present before a sentence can make

sense semantically. Altmann demonstrated in [Altmann 1999] that even if all thematic

roles are met for a verb phrase, if the antecedent of a thematic role is not plausible, the

sentence will not make sense. Figure 2.9 gives an example of (a) an implausible antecedent

to a thematic role, and (b) a plausible antecedent to a thematic role. A major drawback

of the Thematic Role model is that it only considers concepts at the sentence level. It

does not attempt to address how concepts can be inter-related throughout are large body

of text.

The structure of English allows thematic roles to be located at different syntactic

positions within a sentence. The result is a sentence with a different syntactic structure

and more emphasis can be placed on certain roles. Although the syntactic structure is

different, when constructed properly, the new sentence should describe the same event.

Figure 2.10 gives an example. It is apparent that the antecedents of thematic roles can be

extracted from a sentence based on their semantic contribution to that sentence, rather

than the syntactic contribution. Table 2.2 outlines some of the thematic roles proposed

by Sowa in [Sowa 2000].
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before.

empty except for some chairs in one corner and some pet
A young toddler was running around his playroom. It was(b)

cats in the other. He bumped a chair that he had run into

cats in the other. He chased a chair that he had run into
empty except for some chairs in one corner and some pet
A young toddler was running around his playroom. It was(a)

before.

Figure 2.9: [Altmann 1999] Thematic Implausibility:

(b)

(a) Bart threw a chicken at the house.

A chicken was thrown at the house by Bart.

Figure 2.10: Sentences Implying The Same Event

2.6 Logical Form and Quasi Logical Form

The Core Language Engine was developed at the Stanford Research Institute and The

Center for the Study of Language and Information at Stanford University. The meth-

ods of anaphora resolution in the Core Language Engine [Alshawi et al 1989] are heavily

motivated by its internal semantic representation, logical form and quasi-logical form.

Quasi-logical form is based on first order logic, which has been used widely in the fields

of philosophy and linguistics. The structure of logical forms is motivated by the desire to

use and extend first order logic, which is well suited for modelling quantifier scoping and

anaphora.

This section will discuss the Core Language Engine’s fully scoped logical form, and a

logical form where scoping rules are relaxed for reference resolution, quasi-logical form.

Although logical form and quasi-logical form were designed to handle many types of ref-

erence phenomena such as unscoped quantifiers, unscoped descriptions, and unresolved

relations, the phenomenon that will be focused on is unresolved reference. Resolution in
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Agent
Beneficiary
Completion
Destination
Duration
Effector

Experiencer
Instrument
Location
Matter
Medium
Origin
Path

Patient
Point In Time

Recipient
Result
Start

Theme

Table 2.2: Thematic Roles

the Core Language Engine uses a set of reference resolution rules that propose possible log-

ical forms that can transform a quasi-logical form statement into a logical form statement.

Fully resolved logical forms must conform to the following set of properties:

• should be expressions in a disambiguated language.

• should be suitable for representing the meanings of natural language expressions.

• should provide a suitable medium for the representation of knowledge expressed in natural

language, and they should be a suitable vehicle for reasoning.

Figure 2.11 lists some of the grammar rules used in the Core Language Engine to

model the logical form language, and Figure 2.12 shows an example of logical form for the

sentence Every doctor visited Mary.

Not all references can be resolved immediately using logical form. Sentences such as

(1) Most doctors read every article, and (2) the bishops arrived contain references where

the scope of quantification is not exactly clear. In sentence (1), does each doctor in
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〈lf formula〉 → quant(〈quantifier〉, 〈variable〉, 〈restriction〉, 〈body〉)
〈lf formula → [〈functor〉, 〈argument1〉, 〈argument2〉, · · · , 〈argumentn〉]

〈functor〉 → 〈atom〉
〈quantifier〉 → forall|exists| · · ·
〈restriction〉 → 〈lf formula〉

〈body〉 → 〈lf formula〉
〈argument〉 → 〈lf formula〉

Figure 2.11: Logical Form Rules from the Core Language Engine [Alshawi et al 1989]
quant(forall,D,[doctor1,D],

[past,
quant(exists,E,[event,E],

[visit,E,D,mary1])])

Figure 2.12: Logical Form for Every doctor visited Mary

the most doctors set read all articles or does the most doctors set collectively read all

articles. This question can also be considered for sentence (2). Is the arrival of each

bishop from the the bishops a separate event (the distributive reading), or does a single

arrival event encompass all the bishops (the collective reading). The quasi-logical form

language extends the grammar of the logical form language to include rules that handle

unscoped quantifiers, as in sentence (1), under-specified relations, as in sentence (2), as

well as many other reference phenomena.

The logical form semantic representation is very well suited for modelling reference

information where quantification is of key importance, and the discourse contains utter-

ances where the exact scope of a quantifier is not clear. One of the biggest advantages

to using logical form is that it allows us to use a large body of knowledge relating to

first order logic. Although the Core Language Engine models some verb-structures4using

logical form and quasi-logical form, it does not attempt to perform any temporal ordering

on the verb structures (as in the case of the timeline models from Section 2.4). Another

slight deficiency in logical form is how it handles “fuzzy” quantifiers such as some, many,
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and few. In the Core Language Engine, the threshold defining the boundaries of these

quantifiers is given a definite value. Common sense dictates that certain quantifiers, such

as some, are fuzzy, and subject to contextual factors and personal preference.

2.7 Conclusion

This chapter has examined a number of semantic representations that are used in the fields

of natural language processing and knowledge management, such as semantic networks,

conceptual hierarchies, logical form and quasi-logical form. The benefits and potential

drawbacks were outlined for each representation. Chapter 3 will examine models of human

knowledge from the perspective of cognitive science. Chapter 4 will present a new model

of semantic representation that attempts to address the shortcomings mentioned in this

chapter by combining the representations into a modular multi-level system. This modular

system is easier to maintain and allows multiple anaphora resolution algorithms to operate

on a corpus simultaneously.

4Using first-order logic to model a verb phrase, intuitively, does not seem the most natural method to
model that knowledge.
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chapter three

Working & Long-Term Memory

Although there is still great debate about the exact nature and structure of working

memory and long-term memory, the majority of cognitive psychologists agree that the two

forms of memory are distinct in their behaviour and capacity [Logie 1996]. The human

mind does not have infinite time and infinite working memory capacity. If a natural

language processing system is to more closely model how humans process language, it

would make sense for that system to be constrained by the limitations and behaviour of

human memory. It is the intent of this thesis to stimulate more interest in memory model

approaches.

This chapter will outline some of the various views on working memory and long-

term memory. It will briefly discuss the evolution of theories of short-term and long-

term memory as well as current theories in human memory. Several modern psychological

models of short-term and long-term memory will be elaborated on, as well as some memory

models with a computational approach.

3.1 Working Memory Models

Some of the earliest work with respect to working memory can be found in the works of

William James (1905) [Richardson 1996]. James described working memory, then termed

primary memory, as being limited in capacity and volatile in nature. Primary memory was

considered to be a distinct system from long-term memory (called secondary memory at

the time). Information was retained in primary memory by rehearsal. Rehearsal was also

used to move information to and from secondary memory. Within this model, primary

memory did not control the flow or manipulation of the information, it only provided a

medium of storage.
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Richardson continues by describing that during the 1960’s, the theory of working

memory, then termed short-term memory, was extended to include a control mechanism.

This mechanism was responsible for the flow of information as well as processing. Instead

of being used only for the storage of information, the space in short-term memory was

shared with the processing of the control mechanism. Thus, in this model, there was a

trade-off in working memory between processing power (in the control mechanism) and

storage capacity.

The work of Baddeley on working memory is some of the most prominent. Gathercole

and Baddeley outline in [Gathercole and Baddeley 1993] the structure and behaviour of

Baddeley and Hitch’s working memory model. Figure 3.1 gives a visual representation

of their model. Gathercole and Baddeley state that the central executive is the most im-

portant component of the model. The central executive is responsible for controlling the

flow of data within working memory, the retrieval of data from long-term memory and

other memory systems, and the processing and storage of data. Baddeley expanded the

model to include an episodic buffer in [Baddeley 2000]. In addition to the central execu-

tive, an additional two slave systems are also included in the working memory model, the

phonological loop and the visuo-spatial sketch-pad. The phonological loop is responsible

for verbal information while the visuo-spatial sketch-pad handles visuo-spatial information.

Baddeley and Hitch used dual-task experiments in [Baddeley and Hitch 1974] to justify

the separation of the two slave systems. They discovered that when a subject performed a

verbal and a visual task concurrently, the individual could perform the tasks as efficiently

as if the task were performed serially. When the number of tasks for a single slave sys-

tem was increased to two tasks, the subject could not perform the tasks as efficiently as

performing them one at a time.

Limits of Working Memory

The limits of working memory are as intensely debated as the structure of working memory.

Early theories, such as Miller [Miller 1956], place specific limits on working memory. In
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Phonological LoopCentral ExecutiveVisuo−Spatial Sketch Pad

Figure 3.1: Baddeley and Hitch’s Working Memory Model

Miller’s view, working memory was seen as a short-term storage without any processing

ability. More recent work, such as that found in [Baddeley 1986, Haarmann et al 2003],

assumes that working memory is a multi-component system with processing capacity being

inversely proportional to storage capacity. In [Baddeley 1990], Baddeley hypothesized that

the span of working memory could partially be the result of the refresh-rate of items within

the current memory span :

If we assume that memory fades, then the memory span will be determined
by the number of items that can be refreshed before they fade away. That
number, of course, will depend on how rapidly the trace fades and on how long
it takes to articulate each item and hence refresh each memory trace.

3.2 Long-Term Memory Models and Associativity

Federmeier and Kutas mention in [Federmeier and Kutas 1999] that although long-term

memory is an integral component of sentence processing, the exact nature of how working-

memory interacts with long-term memory information is still largely unknown. Just as

there exists a debate as to the exact nature of working memory, differences in opinion

also exist on how pieces of information are associated within long-term memory. Feder-

meier and Kutas outline two hypotheses, the independent association hypothesis and the

associative symmetry hypothesis. The independent association hypothesis states that asso-

ciations in memory are not bidirectional. That is, given that the recall of item A triggers
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the recall of B, A → B, does not necessarily imply that the converse, B → A, is true.

In the associative symmetry hypothesis, given A → B implies that B → A. Using the

independent association and associative symmetry hypotheses in the context of reading,

when a word corresponding to a semantic concept is accessed through the reading of a

sentence, the activation levels of neighbouring concepts may also increase.

3.3 ACT-R

The ACT-R theory of human cognition is rooted in ACT-E theory and ACT* theory

which were introduced by John Anderson in [Anderson 1976, Anderson 1983], respectively.

ACT-R models the interaction between two types of knowledge: procedural knowledge and

declarative. Procedural knowledge involves rules that define human cognitive behaviour.

Anderson formally calls these rules productions in [Anderson et al 2001]. Declarative

knowledge encompasses factual information that defines behaviour of cognition, defined

by Anderson as chunks. Examples of declarative knowledge are the sky is blue or snow

is white. One of the major factors that influences cognitive performance in the ACT-R

system is the granularity at which processing occurs. Production rules take at least 50ms

and at most 500ms to fire.

Procedural Long-Term Memory

ACT-R is a goal-oriented system that uses productions to define the cognitive behaviour

that acts upon declarative memory. Productions define actions such as retrieving infor-

mation to be processed, as well as actions that define the manipulation of the retrieved

information.

Declarative Long-Term Memory

In addition to the procedural memory, the ACT-R system also models declarative knowl-

edge, that is, knowledge that is defined as being not factual and does not control the

behaviour of cognition. Declarative memory is composed of chunks that are differentiated
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using a unique identifier. Each chuck has a type and may contain multiple slots, with

each slot linking to additional chunks. A good example can be taken from [Group 2004].

Using the sentence the dog chased the cat, we can derive the following chunk of declarative

memory:

Action023:

isa chase

agent dog

object cat

In this example, the type of the outer chunk is isa chase, and the two slots of the

chunk are filled with the chunks agent dog and object cat.

Declarative Memory Activation

In the ACT-R system, the retrieval of declarative chunks in memory is governed by the

speed at which they can be accessed. In [Anderson and Matessa 1997], Anderson defines

activation equations that predict the power law of learning and the power law of forgetting.

The activation level, Ai, of a declarative memory chunk1is define as follows:

Ai = Bi +
∑

j

AjSji (3.1)

where Bi is the base level activation of the chunk i, Aj is the activation of a chunk j

within the current focus of attention, and Sji is the strength of the association between

chunk j and chunk i. The base level activation, Bi, models the recency and frequency of

activation of the chunk i, and thus has a factor of decay associated with it. Bi is defined

by ACT-R as:
1Anderson notes that the definition of chunks should not be confused with the definition from

[Miller 1956]
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Bi = ln

(
n∑

k=1

t−ω
k

)
(3.2)

where tk is the time since the kth2use of the chunk i, and ω is the activation decay. In

[Anderson and Matessa 1997, Anderson et al 1998],the value of ω is fixed at 0.5. In order

for a chunk of declarative memory to be retieved and brought into the current focus, the

threshold of activation, σ, must be met.

3.4 Computational Models of Memory

A survey of memory would not be complete without examining those models created

from a computational perspective. In particular, this section will examine the models of

memory presented by Schank in [Schank 1986] and Hunt in [Hunt 1973]. Although the

types of memory described by Schank and Hunt may have much information overlap with

previously described models, it is still relevant to examine computational models along

with psychological approaches. To some respect, the idea of memory modelling has been

largely ignored in the field of computational linguistics.

Event Memory and Generalized Event Memory

Event memory contains semantic knowledge for particular events experienced in a person’s

life. Schank states that events can be such things as going to Dr. Smith’s dental office last

Tuesday, and getting your tooth pulled or forgetting your dental appointment and having

them call you up and charge you for it. As a specific event remains in memory longer,

the exact details of the event begin to become less salient, and eventually, the event may

become a more generalized event or it may disappear entirely.

Generalized event memory, as the name describes, is a more generalized version of the
2In [Anderson and Matessa 1997], the index k is actually j. This was changed to prevent confusion

with the index j in the equation for Ai. In addition, d is used as the decay rate, instead of ω and Aj is
used for the activation of node j instead of Wj
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event memory described earlier. Generalized event memory is modelled as a portion of

memory that contains abstract events, i.e. events that have occurred numerous times and

thus have a template associated with them. As events from event memory are brought into

short term memory the associated generalized event is also brought in to aid in cognitive

processing. One of the results from this behaviour is that events from event memory will

become less and less salient and the more generalized event will only remain.

A Distributed Memory Model

In [Hunt 1973], Hunt describes a model of memory that builds upon the basic memory

model containing only short-term memory and long-term memory. As shown in Figure

3.2, Hunt adds an intermediate term memory structure that resides between short-term

and long-term memory, and buffer memory which is analogous to sensory memory in

other literature. Intermediate-term memory stores information about the current situa-

tion or episode, and thus intermediate-term memory is volatile like short-term memory.

The buffer memory is the most volatile of the structures, storing stimulus from sensory

input, such as auditory input, for only brief periods of time. In contrast to Baddeley’s

model of working memory where information flow within working-memory is controlled

by the central executive, Hunt’s model places control within the respective memory sub-

structures, Hunt notes that in his distributed memory model each memory component is

likely to be associated with varying anatomical areas of the human brain, but does not

provide evidence.

3.5 Neural Network Models of Associative Memory

Neural Networks, or more correctly artificial neural networks, attempt to model the be-

haviour of neurons within the human brain. Some of the earliest work on the modelling of

artificial neurons can be attributed to McCulloch and Pitts in [McCulloch and Pitts 1943]

and Hebb in [Hebb 1949]. Since the early work of McCulloch and Pitts, the field of arti-

ficial neural networks has developed into a mature field with large amounts of research in
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Figure 3.2: Hunt’s Distributed Memory Model

areas such as network topology and neuron structure.

Artificial neurons are modelled after biological neurons. Axons send out signals to

another neuron’s dendrite. If the sum of the signals received by a neuron is greater than

some threshold, then the neuron fires, sending signals along its axons to other neurons.

Figure 3.3, adapted from [Russel and Norvig 1995], is an example of a typical biological

neuron. Artificial neurons attempt to model neurons at the level of a single biological

neuron. An artificial neuron does not attempt to model the actual physical chemical

reactions occurring, rather, they model neurons at more of a cause and effect level.

A typical artificial neuron can be found in Figure 3.4. The input values for neuron i,

Aj , can be thought of as the dendrites. The output value, Ai, is an axon. The strength

of the link between node i and some node j 6= i is modelled using the Sji term. The bias
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Dendrite
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Figure 3.3: Biological Neuron

value, Bi, is often used to influence base-level activation, allowing Ai to be non-zero. The

activation function of a neuron takes into consideration the input values, Aj , and their

associated link strengths, Sji, and generates a result f . Typically, the neuron activation

function f for a node i is defined as follows:

f = Bi +
k∑

j=0

AjSji (3.3)

The final portion of an artificial neuron is the threshold unit. If the total signal received

by the neuron is greater than some threshold, the neuron will fire. The actual value of the

threshold is defined by a threshold function, g(f). The resulting output from the neuron,

is represented as Ai. In general, g can be any single-variable function, but the Equations

3.4-3.7 are some of the more commonly used.
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hardlim(n) =


1 if n ≥ 0

0 if n < 0
(3.4)

satlins(n) =


1 if n > 1

−1 if n < −1

n if −1 < n < 1

(3.5)

logsig(n) =
1

1 + e−n
(3.6)

tansig(n) =
en − e−n

en + e−n
(3.7)

Neural Network Topology

A single set of inputs to a neuron is not very useful, or realistic. Of the 1011 neurons in the

brain, each neuron is connected to 104 other neurons. One of the most common configu-

rations of neural network topology is shown in Figure 3.53. This three-layer configuration

allows arbitrary functions to be represented, and is the most commonly used in pattern

matching applications.
3Each circle in the diagram represents a multi-input artificial neuron.
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Figure 3.5: Multi-Layered Artificial Neural Network

Hebbian Unsupervised Learning

An artificial neuron by itself does not learn to perform complex tasks or match complex

patterns. A learning strategy must also be applied. Two strategies of artificial neuron

learning are supervised and unsupervised learning. This thesis will concentrate on the

latter of the two learning strategies. Within the human brain, neurons are connected to

many neighbouring neurons. The neuron must be capable of creating implicit associations

without direct intervention. Before outlining how an artificial neuron can learn to make

associations, it’s important that neuron association be properly defined. Hebb’s postulate

from [Hebb 1949] states:

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased.

Using Hebb’s observation, the strength of the association between a neuron i and a

neuron j can be realized using Equation 3.8 adapted from [Luger and Stubblefield 1998]:

Sij = Sij + αAiAj (3.8)
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Sij is the strength of the association between neuron i and neuron j, α is the learning

rate of the semantic link, and Ai and Aj are the current activation levels of neuron i and

neuron j, respectively.

3.6 Conclusion

This chapter examined numerous theories on the structure and behaviour of human mem-

ory. The evolution of working memory and long-term memory was examined from the per-

spective of cognitive psychology. Modern theories on human memory were also examined.

Models of human memory from computation, such as neural networks, event memory,

generalized event memory, and the distributed memory model were discussed. Baddeley’s

work with respect to working memory has demonstrated that there is a trade-off of ca-

pacity versus processing power in working memory. The ACT-R model established how

associations between concepts can be modelled as well as the activation of those concepts.

The discussion on neural network demonstrated how human memory can be modelled by

using the behaviour of biological neurons as its basis. In Chapter 6, the work of Badde-

ley, the ACT-R model of activation, and neural network theory will provide a basis for

the behaviour and structure of a memory model. A second model of activation, called

Thompson’s model, will also be introduced in Chapter 6. The results of testing using the

ACT-R and Thompson model will be discussed in Chapter 7.
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chapter four

Theory on Combining Semantic Structures

In Chapter 2, numerous semantic structures were outlined, as well as some of their

shortcomings in their purest forms. A common thread was that each structure needed to be

expanded in order to accommodate additional types of semantic information. The result

is a structure that is possibly more complex, without the guarantee that the new structure

can adapt to the dynamic nature of human knowledge and language. A structure that

works today may not necessarily work tomorrow. From a software engineering perspective,

modularizing the semantic structures makes the system easier to understand and easier

to expand. As deficiencies are found in the semantic structures, new structures can be

incorporated, and deficient structures can be removed.

4.1 Linking Semantic Structures

Intuitively, having completely disjoint semantic representations would not effectively model

the nature of human knowledge. Research in human memory has shown that when con-

cepts are activated in memory, related information may also be activated if the link be-

tween them is strong enough. Information from one semantic representation must somehow

be linked to related information in another semantic representation. Semantic networks,

which were introduced in Chapter 2, can be used to model the links between the semantic

representations. Figure 4.1 expands on Figure 2.1 by connecting the semantic concept

ship to various semantic representations such as quasi-logical form, conceptual graphs,

conceptual hierarchy, and a timeline model. The information from a semantic represen-

tation could also be connected to other concepts nodes within the semantic network. In

addition to the bare links, the strength of the links between concept nodes can also be

considered by adding weights to each link. In theory, the more often the concept node in

the semantic network is activated, the stronger the link will be to other concept nodes.
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This is similar to the behaviour of synapses originally theorized by Hebb in [Hebb 1949].

In addition, activation levels for the concept nodes can be modelled using activation level

models from artificial neural networks and ACT-R theory. The topology of the resulting

network differs from the traditional artificial neural network topology in that there is no

distinct input, hidden, or output layers. Rather, the concept nodes are connected in a

non-specific fashion. The resulting network is commonly called a localist network in other

literature. Single concepts are represented as a single node within the network. This

representation differs from networks like artificial neural networks, where a single concept

is represented as activations across a set of nodes, and nodes can represent more than one

concept.
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Figure 4.1: Semantic Network Linking Semantic Representations

Implicit Semantic Links

It is plausible that knowledge which is represented using one semantic representation is

often intertwined with the knowledge within another. Figure 4.2 shows a good example

of how multiple semantic representations collectively model the sentence Once there was

a shoemaker who worked hard and was very honest. Notice that certain information such
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as shoemaker:1 and work:1 occur in more than one structure. We would like to some

how connect this information together, and a semantic network would be a good method

to achieve these connections. Concepts in the semantic network would be automatically

linked due to the information within their semantic representations.

Linear
exists:1

PresentPast Perfect Simple Past Simple Future

Future Perfect

exists:1
Past

Past
work:1

Linear

PresentPast Perfect Simple Past Simple Future

Future Perfect
work:1

quant(exists:1,B,[shoemaker:1,B])

Past

Linear

PresentPast Perfect Simple Past Simple Future

Future Perfect

honest:1

honest:1

work:1

hard:1

shoemaker:1

honest:1

Figure 4.2: Multiple Semantic Representations
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4.2 Modularization and The Human Mind

Creating a modularized model of semantic structures is not only a good engineering tech-

nique, it is also supported as model of the behaviour of the human mind by such psycho-

logical literature as [Foder 1983]. Modularity of mind theorizes that parts of the human

mind are modular in nature and act autonomously with respect to other modules in the

mind. To some degree, the modularity is thought to be genetically determined. Foder’s

model of human mind requires that modules be specialized in their domain, encapsulate

their information from other modules, and have limited outputs to other modules. These

requirements are a natural result of the model described in this chapter.

4.3 Conclusion

This chapter has introduced a modular model of semantic representation that addresses

the drawbacks of existing semantic representations by connecting them using a semantic

network. This model allows new semantic representations to be added and removed from

a system without impacting the existing ones. It also addresses the desire to expand

a semantic representation to deal with new forms of knowledge. Instead of expanding

to a current semantic representation, a new semantic representation can be created and

plugged into an existing system. This modular separation of semantic representations also

permits the development of anaphora resolution algorithms for each semantic representa-

tion independently. It is apparent that in order to combine the semantic structures from

Chapter 2 using a semantic network, a theory of the exact nature of the network must

be considered. The link strength between concepts needs to be modelled, as well as the

activation levels for each node. Chapter 3 discussed theories on how link strengths and

activation levels are determined in the ACT-R system [Anderson et al 2001] and using

traditional artificial neural network theory. Chapter 6 will outline how activation theories

will be used in conjunction with a semantic network to define the behaviour of the model

proposed in this chapter.
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chapter five

Anaphoric Reference and Reference Resolution

Anaphoric reference is a linguistic mechanism with which reference can be made to

objects that have been introduced at an earlier point. References are typically made

with pronouns or different variations of definite/indefinite articles within a noun phrase.

Anaphoric references are also used to reference verb phrase structures. Anaphora, es-

pecially in the case of pronouns, often can be resolved by scanning backwards through a

corpus of text until the first noun phrase that matches such features as number and gender

is found, although Barbara Grosz demonstrated in [Grosz 1977] that this technique can

break down.

5.1 Types of Anaphoric Reference

Traditionally, anaphoric reference is observed in the use of pronouns such as he, she, or it.

But within recent decades, there have been numerous proposals to extend the definition

of anaphoric reference to include other linguistic phenomena such as verb phrase ellip-

sis [Grosz 1977, Hardt 1997, Nash-Webber and Reiter 1977, Ginzburg and Cooper 2001],

presupposition [Piwek and Krahmer 2000, Geurts 1999], and temporal anaphora

[Partee 1984]. In the context of this thesis, the domain of anaphoric references will be

restricted to pronominal references of noun phrases.

5.2 Problems in Anaphora Resolution

As stated before, in many cases resolving the antecedent for a pronoun is as simple as

searching backwards in a body for the first noun phrase that matches based on such

attributes as gender or number. But in some cases, a more complex model discourse must

be modelled in order to resolve a pronoun reference:
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John had a son named Bob. His son is an excellent skier.

In this example, a knowledge base about parent-child relationships must be known in

order to resolve the reference implied the possessive pronoun his. Even trivial references

can be more complex by introducing existential quantifiers, as illustrated by Partee in

[Partee 1984]:

Every farmer who owns a donkey beats it.

The pronoun it does not just reference a single donkey, the pronoun references multiple

instances of a donkey. The next example, adapted from [Sidner 1983], demonstrates where

this method of resolution can break down:

My neighbours 1 have a monster Harley 1200 2. They 3 are really huge but gas efficient bikes.

In the second sentence, if an individual was to read just the pronoun they, their initial

preference for the reference may not be a monster Harley 1200 based on number alone.

In this context, a common preference for the pronoun they would be my neighbours. After

reading the remainder of the second sentence, it is apparent that this conclusion was

incorrect. Given the additional context, common knowledge concludes that the neighbours

are not motorcycles

5.3 Anaphora Resolution Algorithms

Determining the antecedent of an anaphor is central to the study of anaphoric reference.

Over the past few decades much research has involved creating computational meth-

ods to resolve these references. Works such as [Sidner 1979, Sidner 1983], [Grosz 1977,

Grosz and Sidner 1986], and [Carter 1985, Carter 1990] have concentrated on the study of

discourse and the theory of anaphora within a discourse, while [Hobbs 1986, Brown 2003,

Mitkov 1998] have focused more specifically on pronominal anaphora resolution. The next
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few sections will outline Carter, Hobbs, Brown, and Mitkov’s approaches to pronominal

anaphora resolution.

Hobbs’ Approach and Brown’s Algorithm

In [Hobbs 1986], Hobbs outlines a simple algorithm for the resolution of pronouns, and

although näıve, it provides goods results. The algorithm works by starting at the location

of the pronoun and working back through the parse tree in a breadth-first manner until

a suitable antecedent match based on gender and plurality is found. When tested on 300

occurrences of references in selected corpora, the algorithm had a success rate of 88.7%

in resolving the anaphoric reference. Hobbs notes though that in over half of the cases,

there was only one plausible antecedent.

Hobbs analyzed the results further and went on to consider the results for the cases

when there was more than one plausible antecedent. Of the 132 cases where an antecedent

conflict existed, 98 were resolved by the algorithm, thus a 74.4% success rate. Hobbs goes

on to improve the näıve algorithm by adding simple restrictions for resolving pronouns,

such as dates can’t move, places can’t move, and large fixed objects can’t move. Without

these restrictions, the success of the resolution algorithm was, 81.8%, overall. When the

selectional restrictions were used, a 91.7% success rate was achieved.

In [Brown 2003], Brown outlines an algorithm for resolving noun phrase references that

is a variation on Hobbs algorithm. Figure 5.1 illustrates the algorithm in pseudo-code1.

Brown’s algorithm has the benefit of not specifying how a reference is resolved when

there are multiple antecedents for a single noun phrase, which consequently, allows the

implementor to choose how the antecedent can be resolved.

Carter’s Approach

In his PhD thesis, [Carter 1985], Carter describes in [Carter 1990] the approach used in

the SPAR system . The SPAR system initially starts by resolving semantic and syntactic
1In Figure 5.1, NP is an abbreviation for noun phrase.
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IF the NP is a proper name THEN
ATTEMPT to identify the reference in the knowledge base
IF no antecedent is found THEN

CREATE a new reference in the knowledge base
ELSE IF the NP is an indefinite NP THEN

CREATE a new reference in the knowledge base
ELSE IF the NP is a reflexive pronoun then

SET the reference to the subject of the clause
ELSE IF the NP is a pronoun THEN

CHECK NPs that precede for number/gender/person agreement
check NPs in previous sentences in the same manner

ELSE IF the NP is a definite NP THEN
CHECK NPs that precede for number/gender/person agreement
CHECK NPs in previous sentence in the same manner
IF no is antecedent is found THEN

CREATE a new reference in the knowledge base

Figure 5.1: Brown’s Anaphora Resolution Algorithm

issues without concerning itself with potential anaphoric references. Multiple structures

can result from this process depending upon the word-sense of the words within a sentence.

Given the sentence He picked up a jack, Carter theorizes two possible structures. One

structure where jack is interpreted as a playing card, and the second where it is a tool

used to raise an automobile. According to Carter’s algorithm, the pronoun he is left

unbound, and will be dealt with in further stages.

After the initial structures are generated, they are reprocessed and given scores based

on factors such as repeated relevant information and its influence on syntactic structure.

For example, in Figure 5.2, (b) would be given a higher score than (a) because a telescope

is used for seeing things, thus it is more highly related to the verb saw than the noun

phrase a man. After assigning scores, the algorithm proceeds to use anaphora resolution

rules which Carter describes as being similar to those found in [Sidner 1979].
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I a mansaw with a telescope

PREPVERB NP NP

PP

NP

VP

S

NP

a mansawI

S

VP

with a telescope

PP

NPPREPVERB NPNP

(b)(a)

Figure 5.2: Two Parsings of I saw a man with a telescope

Mitkov’s Work

In [Mitkov 1998], Mitkov outlines an anaphora resolution algorithm that uses scoring fac-

tors to determine a plausible antecedent to a reference. The scoring factors are based

on the analysis of what Mitkov terms indicators. Indicators can be such things as the

definiteness of the possible antecedent, the givenness, indicating verbs, lexical reitera-

tion, prepositional position, and referential distance. The domain of possible scores is

{−1, 0, 1, 2}, with varying values being chosen for each indicator class. Figure 5.3 outlines

Mitkov’s algorithm in pseudo-code format. Mitkov claims a success rate of 89.7% with

this algorithm.

5.4 Resolution Failure

Many resolution algorithms make the assumption that the antecedent of an anaphora must

be resolved. Levine hypothesizes in [Levine et al 2000] that there are conditions under

which readers fail to resolve the anaphoric reference, yet are still able to comprehend the

text. Levine showed that if the antecedent was salient and distant enough from the point

of reference, readers were content with not resolving the reference if it was not disruptive

to the comprehension of the text. Although this finding could have a big impact on how
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EXAMINE the current sentence and the two preceding sentences
SELECT the noun phrases which agree in gender and number
APPLY the antecedent indicators to each candidate and assign scores
IF two candidates have an equal score THEN

SELECT candidate with the higher score for immediate reference
IF immediate reference does not hold THEN

SELECT the candidate with higher score for a collocational pattern
IF collocational pattern suggests a tie or does not hold THEN

SELECT the candidate with higher score for indicating verbs
IF this indicator does not hold THEN

SELECT the most recent candidate

Figure 5.3: Mitkov’s Anaphora Resolution Algorithm

anaphora resolution algorithms will work in the future, it does not begin to explain what

a comprehensible piece of text is.

5.5 Conclusion

This chapter has given an overview of the problem of anaphoric reference with respect

to pronouns, as well as algorithms that address reference resolutions. Chapter 6 will

describe an anaphora resolution algorithm that uses the theories on working memory and

activation, introduced in Chapter 3, to create a list of possible antecedents for a pronoun.

The algorithm will then use the idea of feature set scoring from Carter to form a basis

for resolving conflicts when multiple plausible antecedents exist. Chapter 7 will outline

the results of the algorithm when tested on The Three Brothers and the Rumpelstiltskin

corpora using the ACT-R model and the Thompson model of activation.
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chapter six

System Modelling

If you don’t gosub a program loop, you’ll never get a subroutine.

- Kryten (Justice)

Throughout Chapters 2, 3, and 4, varying theories on semantics representation, the

structure of human memory, and its behaviour have been discussed. This chapter will focus

on combining parts of these various theories to solve the problems of anaphora resolution

outline in Chapter 5. The model of long-term memory and working memory will be

outlined as well as the grammar rules and their interaction with the memory models. The

algorithm for anaphora resolution will also be discussed. For the purposes of this thesis,

the semantic network will be the only semantic representation that is implemented. The

implementation of other semantic representations, such quasi-logical form and concept

graphs, will be deferred to future work. The implementation and subsequent testing of

the semantic network will provide baseline results from which this future work can be

compared to.

6.1 Modelling Long-Term Memory

In this thesis, long-term memory will be modelled using a combination of the semantic

network theory described in Chapter 2 and the neural network theory described in Chapter

3.

Semantic Networks for Long-Term Memory

Semantic networks are undirected graphs with strengths associated with the links between

nodes. Within the context of this thesis, as was described in Chapter 4, semantic networks
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will not be used directly to store semantic information, rather, they are used to link the

other existing semantic structures (i.e. conceptual graphs, classification hierarchies, event

timelines, and quasi-logical form). This decision is intended to achieve a behaviour similar

to that observed in neural network theory. As the activation levels of a node within the

network increase, the activation of neighbouring nodes will also increase. Semantic markers

will be used to uniquely identify semantic structures and concepts.

Table 6.1 outlines the Prolog predicates. In the nn semNode predicate, SemMarker

signifies the semantic marker for the node, Activation holds the current activation, and

ActHistory contains the activation history of the node. In the nn semLink predicate,

SemMarker:1 and SemMarker:2 identify the two structures or concepts being linked,

and Strength is, of course, the strength of the link. The nn semNode and nn semLink

predicates provide all that is required to build and modify a semantic network.

Predicate Description
nn semNode(+SemMarker,+Bias,+Activation,+ActHistory) Semantic Node

nn semLink(+SemMarker:1,+SemMarker:2,+Strength) Semantic Link

Table 6.1: Semantic Network Predicates

Activation Level Models

The two different models of semantic node activation levels will be used and tested in

this thesis: (1) The ACT-R model for activations of declarative memory, and (2) a model

derived empirically, called Thompson’s model. From the ACT-R model, Anderson’s model

for the activation level and activation decay for declarative memory will be used, and will

be based on Equations 3.1 and 3.2, as described in Chapter 3. Since the activation level

of the ACT-R equation is unbound, the satlins threshold equation, Equation 3.5, will be

applied to bound the resulting activations to the range −1 ≥ Ai ≤ 1.

Thompson’s model will be based on Equation 3.3 for the activation function of a

semantic node, Equation 3.7 for threshold function, and the following equation for the

fading the activation:
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Ai = ωAi (6.1)

where ω is the decay rate of node i’s activation. The base level activation of node i will be

set to Bi = 0.0. It must be noted that the decay equation for Thompson’s model is not

applied during node activation, as in the case of the ACT-R model. Rather, decay will

occur, due to mental processing in working, which will be described in more detail later

in this chapter.

6.2 Working Memory

If the activation level of node i is greater than some activation threshold, σ, node i will

be brought from long-term memory into working memory. Working memory acts as a

repository for concepts that are easily accessible for mental processing.

Working Memory Structure

In this thesis, working memory does not contain the actual structures that represent the

currently active concepts, rather, working memory is conceptualized as a list containing

semantic markers. The semantic markers act as links to the concepts within long-term

memory. As semantic concepts are activated, they are placed within the list representing

working memory, and as they decay, they are removed from the list.

Semantic Node Behaviour

The working memory model that was modelled is based on the model described by Bad-

deley in [Baddeley 1986, Baddeley 1990, Gathercole and Baddeley 1993]. From Baddeley,

the theory on working memory capacity was used. The limits of working memory will

be based on the contention between storage capacity and processing time. Storage and

processing are inversely proportional to each other, and thus, processing will affect how
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quickly active concepts in working memory will fade. In this thesis, processing will be re-

stricted to the application of grammar rules only. As grammar rules are used (i.e. mental

processing), the activation levels of concepts in working memory will fade. This fading

effect of grammar rules gives the storage versus processing behaviour described in Bad-

deley’s model. When the activation level of node i falls below σ, node i will be removed

from working memory.

Semantic Link Behaviour

As will also be described in Chapter 7, the semantic links between semantic nodes do

not exist when the system is initialized. Semantic links are created between the nodes in

working memory after each sentence is parsed and are given an initial link weight, Sij and

Sji (a semantic link for each direction). If the links already exists between nodes, new

links will not be created.

Although the strengths of links between the nodes are created with the same initial

value, they are updated independently after this creation. When a semantic node i is

activated into working memory, the new strength of the link to node j is updated. The

equation for Hebbian learning, Equation 3.8, will be used for calculating the new semantic

link strength:

Sij = Sij + αAiAj

6.3 Prolog Model of Working Memory

The Prolog model of working memory will be a functor, wm workingMemory/1, with a

single list as an argument. The list will contain the semantic markers of the concepts that

are currently active in working memory. The current activation level of a concept will

not be contained within the list, rather, the semantic marker will be used to look-up the

activation in the semantic network described earlier. For example, given that concepts

rimmer:1, lister:1, and kryton:1 are active in working memory, the following functor would
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result:

wm workingMemory([rimmer : 1, lister : 1, kryton : 1])

6.4 English Grammar Rules

One of the major advantages of using Prolog as an implementation language, is that it

allows the use of a Definite Clause Grammar to specify grammar rules. Definite Clause

Grammars also reduces the amount time required to code grammar rules by eliminating

the need to specify mechanism for consuming words from a sentence while parsing. For

example, rather that using the rule

adj([long | B], B).

to process the adjective long, we can use the Definite Clause Grammar rule

adj→ [long].

Definite Clause Grammars are much more elegant because, notationally, they are very

similar to context-free grammars.The result being that the source code will be more read-

able, easier to maintain, and less prone to errors.

The cost associated with using a Prolog grammar rule will be explicitly modelled within

the grammar rules. Prolog allows us to add goals to Definite Clause Grammar rules that,

when expanded into regular Prolog predicates and clauses, do not consume words from

the input string while parsing. As an example, consider the following grammar rule:

sent(sent(NP, VP)) → np(NP), vp(VP)

Adding a processing cost, the resulting rule would be something similar to the following:

sent(sent(NP, VP)) → {nn fadeNodes}, np(NP), vp(VP)
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Here, the predicate nn fadeNodes is a predicate that updates the activation levels of

concepts in working memory.

The placement of the cost predicate within the grammar rule is important. By placing

nn fadeNodes at the front of the rule, the cost is incurred as soon as the rule is used. This

placement creates the behaviour that as more backtracking is performed on grammar rules,

the more complex the processing. Concepts will fade much more quickly from working

memory when backtracking occurs, as opposed to no backtracking. If nn fadeNodes was

placed at the end of the grammar rule, the cost would only be incurred after the successful

completion of a grammar rule.

6.5 Annotated Parse Tree Model

In this thesis, the modelling of parse trees will be an extension to the model found in

[Sterling and Shapiro 1999], where parse trees are stored in an embedded-functor form.

For example, given the following Definite Clause Grammar rule

sent→ np, vp.

the equivalent Definite Clause Grammar rule with parse trees embedded would be

sent(sent(NP, VP)) → np(NP), vp(VP)

Sterling and Shapiro’s parse tree model will be extended to also include the antecedent

for pronoun references. Parse trees of the form

noun(N)

would take the following form for pronouns, where “Ant” is bound a plausible antecedent

for the pronoun or “null” if no antecedent exists.

noun(N, ant(Ant))

Since this extension to the parse tree model still adheres to the syntax of the original

model, existing pretty printers can be used on the model without any modifications. Figure

6.1 shows two example parse trees with an unresolved and a resolved antecedent.
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sent

vp

verbnoun ant

np
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pp
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np

antnoun verb

vp

sent

(a)

Figure 6.1: Annotated Parse Trees with (a) Unresolved and (b) Resolved Antecedents

6.6 Lexical Feature Sets

Lexical feature sets have been used in various theories of natural language processing such

as Generalize Phrase Structure Grammars [Bennet 1995], in the Core Language Engine

[Alshawi et al 1989], and the LangEng project [Brown et al 2001]. Features sets allow

parsers to restrict parsing based on set of semantic attributes inherent to certain words.

For example, in addition to semantic meaning, nouns also have attributes that imply the

gender, person perspective, and plurality of the noun. The feature set syntax used in this

thesis will be an extension on feature set syntax of the LangEng Project.

Each noun entry will contain two feature sets. The first feature set, the lexical feature

set, will contain lexical entries such as the noun’s case, category, and so forth, The second

feature, called the semantic feature set, will contain semantic features such as the gender,

number, and person perspective. The following is an example of a noun entry with the

above features sets:

noun([case : nom, cat : np], [gender : masc, num : sing, person : 3]) → [he]

Feature sets are used by anaphora resolution algorithms to resolve references when

multiple antecedents exist. Section 6.7 will discuss how the feature sets are used with an

anaphora resolution algorithm. Tables 6.2 and 6.3 illustrate the noun feature sets that
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were used in this thesis.

Feature Value Set Description
sem prolog atom semantic marker
cat {np} marks lexical category
case {nom, acc, gen, dat, abl, loc, tmp} morphological case

sound {soft, hard} first consonant sound
type {common, proper, gerund, pronoun, rlfx pronoun} noun type

Table 6.2: Lexical Feature Set

Feature Value Set Description
gender {masc, femn, neut} gender of a noun
num {sing, plur,mass} plurality of a noun

person {1, 2, 3} person perspective

Table 6.3: Semantic Feature Set

6.7 Anaphora Resolution Algorithm

In Chapter 5, various anaphora resolution algorithms were discussed. A common thread

between all the algorithms is that in the absence of multiple antecedents for a refer-

ence, the correct antecedent is identified, with the exception of those cases outlined in

[Levine et al 2000].

The algorithm that was implemented is combination of the ideas outlined by Brown in

[Brown 2003], Carter in [Carter 1985, Carter 1990], and the results from Koh and Clifton

in [Koh and Clifton 2002]. Brown’s algorithm will provide resolution for references that

only have one antecedent. From Carter, the idea of scoring factors to influence how

conflicts between lexically identical words are resolved was used.

The scoring factor for a semantic concept i will be a combination of the current ac-

tivation of node i within working memory and relative similarity of the semantic feature

set of concept i to the semantic feature set of a pronoun j:
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Scorei = Ai + Fij (6.2)

where Fij a score based upon the relative similarity of the feature sets of concept i

and pronoun j. The value of Fij is computed by starting with an initial score of 1.0. Each

entry in the semantic feature set of concept i that matches an entry in pronoun j increases

Fij by a factor of φ, and each entry that does not match decreases Fij by a factor of ψ = 1
φ .

The current activation of node i will influence whether it is compared to pronoun j in

the anaphora resolution algorithm. The algorithm will ignore concepts with an activation

of less than σ. Figure 6.2

FIND the semantic concepts currently in working memory
IF (at least one concept was found) THEN

FOR ( each concept i found) DO
SET Scorei = 1.0
FOR (each feature in the feature set of concept i) DO

COMPARE the feature value to the feature of the pronoun
IF (the values match) THEN

SET Scorei = Scorei ∗ φ
ELSE

SET Scorei = Scorei ∗ ψ
ADD the activation level(Ai) of node i to Scorei

FIND the concept with the highest value for Scorei
SET the antecedent of the pronoun to that concept

ELSE
SET the antecedent of the pronoun to NULL

Figure 6.2: Pronoun Reference Resolution Algorithm Pseudo-code

6.8 Summary of Chapter

This chapter has examined models for long-term and working memory and how they were

realized in Prolog. It has also given a general overview of the format of the grammar rules

that are used as well as the feature sets and annotated parse trees that accompany the
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rules.

In Chapter 7, the model described in this chapter will be tested against a number of

corpora with varying decay rates for the semantic nodes.
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chapter seven

System Testing

This chapter will cover the methodology and procedures used for testing the anaphora

resolution algorithm described in Chapter 6 using the activation model from ACT-R and

the Thompson activation model. Various activation decay rates will be tested for each

model. The results will be compared to human-based resolution.

7.1 Overview of Testing Methodology

The anaphora resolution algorithm will be tested against a corpus selected from the Grim

Brothers library found at [Ockerbloom 2006]. The selected body of text was slighted

modified from their original form to facilitate ease of parsing while retaining the spirit of

reference placement. The modified text can be found in Appendix 8.3.

Each corpus will be tested independently and not have influence on the tests of the

other two corpora. That is to say, the working memory, and long-term memory will be

reset to a default configuration for each test phase. The bodies of text will be tested a

number of times each with different decay rates, ω, for the semantic nodes within long-term

memory.

7.2 Testing Platform

The testing was performed on a 1.8GHz PowerPC G5 1.25 GB RAM under Mac OS X

v10.4.4 using SWI-Prolog v5.4.7.

7.3 Decay Rates

Since the decay rate, ω, affects the activation levels in the ACT-R model differently than

those in the Thompson model, different sets of decay rates were chosen. The sets of decay
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rates were chosen in such a way that they presented a broad spectrum of the behaviour

for each model. The value of ω ranged from values that caused short activation times, i.e.

fast activation decay, to values that caused low activation, and thus caused the contents

of working memory to be quite high.

In the ACT-R model, the values of ω ranged from 0.05 to 0.30. The decay rate of

ω = 0.5, which is used in ACT-R, was not chosen because preliminary testing showed

that the value caused an extremely high level of decay, which resulted in a large number

of pronouns being unresolved. This extreme decay is most likely due to the fact that the

ACT-R model may not be 100% compatible with a neural network-type model.

The decay rates in the Thompson model ranged from 9.90999×10−1 to 1.0. Although,

a decay rate of ω = 1.0 would imply no decay, that is not actually the case. Since the

current activation is also based on neighbouring semantic nodes and the weight between

the nodes, a certain amount of decay will still occur.

7.4 Default Memory Configuration

Initially, the contents of working memory were empty. This initial state of working memory

was represented in Prolog by an empty list as the argument of the wm workingMemory

functor:

wm workingMemory([])

Long-term memory, was represented as a neural network, initially contained nodes for all

possible nouns that can be parsed by the system. Each node, i, had an initial activation

Ai = 0.0, and bias Bi = 0.0. The links between nodes did not exist, rather, they were

created as describe in Chapter 6.

7.5 Testing Procedure

The ACT-R and Thompson activation models of system were tested against all of the

sentences from the The Three Brothers corpus in sequence using various rates of decay.
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The following items were tabulated during testing:

• results of the anaphora resolution algorithm were tabulated against the expected results

outlined in the tagged corpora of Appendix B

• the maximum capacity of working memory across all decay rates for each activation model

• the growth of working memory capacity over the course of parsing the corpus.

7.6 Anaphora Resolution Results

The results of the anaphora resolution algorithm are outlined in Figures 7.1 and 7.2 for

the ACT-R model and Figures 7.3 and 7.4 for the Thompson model.
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Figure 7.1: The ACT-R Model Resolution Results - 3 Brothers
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Figure 7.2: The ACT-R Model Resolution Results - Rumpelstiltskin

7.7 Working Memory Capacity Results

In addition to the results of the anaphora resolution algorithm, the behaviour of working

memory was also observed for each decay rate. The working memory max capacity was

the largest number of nouns that were observed to be in working memory at the end of

each parsed sentence. Figures 7.5, 7.6, 7.7, and 7.8 outlined the maximal working memory

contents for the ACT-R model and the Thompson model, respectively. A comparison of

the growth rate of working memory capacity using the optimal decay rate is outlined in

Figures 7.9 and 7.10.

7.8 Discussion of Results

A baseline comparison between the ACT-R model and the Thompson model can be made

by considering the decay rates that give an equivalent, non-zero, number of unresolved

pronouns. For The Three Brothers corpus, given the decay rate of 0.09, the ACT-R model
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Figure 7.3: The Thompson Model Resolution Results - 3 Brothers

resolved 39.34% of the pronouns correctly. The Thompson model, given the decay rate of

0.995999, was able to resolved 54.10% of the pronouns correctly. Thus, in this comparison,

the Thompson model achieved a higher success rate.

When the Rumpelstiltskin corpus is considered, the ACT-R model was able to correctly

resolve 54.67% of the pronouns, given the decay rate of 0.17. The Thompson model, given

the decay rate of 0.995999, was able to correctly resolve 42.67% of the pronouns. So, in

this comparison, the ACT-R model achieved a higher success rate than the Thompson

model.

When the overall range of results is examined, the Thompson model of activation

achieved maximum success rates of 83.61% (The Three Brothers) and 86.67% (Rumpel-

stiltskin), while the ACT-R model of activation fell short with maximum success rates of

54.10% (The Three Brothers) and 56.00% (Rumpelstiltskin). In general, the Thompson

model was able to resolve a higher number of pronouns over a larger range of decay rates.

Although the Thompson model achieved a higher overall success rate, a unresolved rate
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Figure 7.4: The Thompson Model Resolution Results - Rumpelstiltskin

of 0.0% is psychologically implausible based on the findings in [Levine et al 2000].

Examining Figures 7.9 and 7.10, it appears that the ACT-R model of activation had

difficulty with concepts begin activated into working memory at the start of each corpus

and then problems with getting those concepts out of working memory at the end of the

corpus. This difficulty can be attributed to the fact that the ACT-R model of activation is

based on the activation history. Concepts appear to move in and out of working memory

more fluidly using the Thompson model of activation.

7.9 Classification of Observed Error Types

Throughout the testing of the implemented system, two types, or classes, of errors were

observed. The first class of errors involved the incorrect resolution of a pronoun due to

lack of information. The following sentence illustrates this error:

The son 1 that builds the best masterpiece will inherit his 1 house.
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Figure 7.5: The ACT-R Model Working Memory Max Capacity - 3 Brothers

In this example, the system resolved the pronoun his with the noun son, which was

incorrect. The pronoun actually references the noun father, which was mentioned earlier in

the corpus. This incorrect resolution occurred because the noun son was the concept that

had the highest antecedent score, and the accompanying noun house was not considered by

the anaphora resolution algorithm. The second class of errors that was observed involved

the incorrect resolution of pronouns that reference events. The next example illustrates

this error:

The father 1 thought that this 7 was wonderful.

In this example, the pronoun this was incorrectly resolved to reference the noun horse

from a previous sentence, which was not correct. The pronoun this actually references an

event from earlier in the corpus. Since resolution of events was not within the scope of

this thesis, occurrences of this type of error were not included as results.
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Figure 7.6: The ACT-R Model Working Memory Max Capacity - Rumpelstiltskin
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Figure 7.7: The Thompson Model Working Memory Max Capacity - 3 Brothers
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Figure 7.8: The Thompson Model Working Memory Max Capacity - Rumpelstiltskin
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Figure 7.9: Working Memory Contents Comparison - 3 Brothers
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chapter eight

Conclusions and Future Work

It will be happened; It shall be going to be happening; It will be

was an event that could will have been taken place in the future.

- Arnold J. Rimmer (Future Echos)

8.1 Comparison with Related Work

Anaphora Resolution

Two of the biggest difficulties with making comparisons between anaphora resolution

algorithms are the forthcomingness of authors to publish the results of their algorithms,

and obtaining the corpora used for testing their algorithms. Over time, many corpora

become difficult to obtain, thus making direct comparisons difficult. Early work such as

[Sidner 1979], [Hirst 1981], and [Grosz and Sidner 1986], although popular in the fields of

anaphora resolution and discourse analysis, fail to provide comprehensive results for their

models. Table 8.1 shows the results obtained in this thesis compared to the work of other

authors1.

Capacity of Working Memory

Figures 7.9 and 7.10 illustrated the results of the dynamic capacity of working memory

when an optimal2 decay rate was used. If a single concept is considered to be a chunk, the

maximum capacity of the working memory model in this thesis appears to be much higher
1Mitkov, Callway, Hobbs, and Ferrández all give results for pronominal references. It is unknown

whether these results included pronominal references to events or just nouns.
2Optimal decay rate was defined as the value that gave the highest anaphora resolution results.
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Algorithm Accuracy Corpus
[Mitkov 1998] 89.70% Minolta Photocopier Manual and StyleWriter User’s Guide

[Hobbs 1986] 91.70% Early Civilization in China, Wheels, and Newsweek

[Callaway and Lester 2002] 97.80% Little Red Riding Hood

[Ferrández et al 1998] 83.00% TTU CCITT Handbook

ACT-R 55.05% The Three Brothers and Rumpelstiltskin

Thompson 85.14% The Three Brothers and Rumpelstiltskin

Table 8.1: Algorithm Comparison

than the capacity proposed in [Miller 1956], for short-term memory. These differences are

possibly an artifact of the differences between what is considered a chunk in the human

mind and what is considered a chunk in the model presented in this thesis.

8.2 Future Work

Inclusion of Additional Semantic Structures

Linking multiple semantic structures in the manner described in Chapter 4 could po-

tentially increase the level of accuracy of anaphora resolution by providing additional

contextual information. An excellent example is from The Three Brothers, where both

the ACT-R model of activation and the Thompson model failed to resolve the antecedent

for the sentence The son that builds the best masterpiece will inherit his house. Both

models resolved the possessive pronoun his with the noun son, since son had the highest

activation within working memory and highest feature set scoring. Unfortunately, this

resolution is incorrect. The pronoun his should resolve to the noun father described in

an earlier sentence. If an anaphora algorithm had information relating to the father-son

relationship available, and information relating to the fact that the father owned a house,

the algorithm could use this information to give a higher score to father, and resolve the

antecedent correctly. Semantic representations, such as conceptual graphs, are effective

in modelling this type of information. This modularization of modelling the behaviour of

the human mind is supported by psychological literature.
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Noun Instances in Working Memory and Long-Term Memory

The models of long-term memory and working memory presented in this thesis only inter-

act with single, generalized instances of nouns. For example, within the model of long-term

memory, there exists only a single occurrence of the noun man. The existence of only one

occurrence of a noun is problematic when defining the correctness of an anaphora resolu-

tion algorithm when a corpus contains multiple men. A possible solution to this problem

is the introduction of an additional memory model that is a hybrid of working memory

and long-term memory. Event memory, which was introduced in Chapter 3, is a model

that could be adapted to handle nouns in addition to handling events. Event memory

could contain instances of concepts that are generated as a corpus is read. The instance

of a concept would gradually decay until only the most general concept exists. Long-term

memory would act as a repository for generalized concepts, analogous to generalize event

memory. The hierarchy of generalized concepts and instances of concepts could be realized

by using the conceptual hierarchies introduced in Chapter 2.

Chart Parsing

Chart parsing is a technique for bottom up parsing that avoids parsing the same structure

more than once. Parsed sub-phrases are stored in a database called a chart, which is

consulted when any type of backtracking occurs. A chart parser can be used to increase

the speed of parsing while also creating a parser that is more tolerant to ungrammatical

sentences [Allen 1995], [Russel and Norvig 1995], [Brown 2000], and [Thompson 2001a].

Potentially, a complete parse of a sentence would not be required for anaphora resolution.

Parsing could be limited to just the noun phrase and verb phrase levels, and anaphora

resolution could proceed from there.
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8.3 Conclusion

This thesis demonstrated the viability of using a modular, two-level memory model to

perform anaphora resolution. Two models of human memory were used in conjunc-

tion with an anaphora resolution algorithm to solve the problem of pronominal refer-

ences. Two models of concept activation and decay were implemented and subsequently

tested on corpora of text with varying decay rates. The two-level memory model and

anaphora resolution algorithm achieved resolution accuracy rates of up to 54.10%(ACT-

R) and 83.61%(Thompson) for a modified version of The Three Brothers corpus, and

56.00%(ACT-R) and 86.67%(Thompson) for a modified version of the Rumpelstiltskin

corpus. Although the results fall a bit short of the results from other works(with the

exception of [Ferrández et al 1998]), these results are only a baseline for additional work.

The model is intended to be an expansive model of human memory. It is theorized that

adding additional semantic representations, and anaphora resolution algorithms, would

increase the accuracy of the two-level memory model.
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appendix a

Corpora

The Three Brothers3

There was a man who had three sons. He had nothing in the world. Each son wanted the

house after his death. The Father loved them. He did not know what he should do. He

did not wish to sell the house. It had belonged to his forefathers. He conceived a plan

and told his sons that they must learn a trade. The son that builds the best masterpiece

will inherit his house.

The sons were content with this. The first son was determined to be a blacksmith.

The second son wanted to be a barber. The third son desired to be a fencing master.

They set a time when they should come home.

The brothers found skillful masters who taught them their trades. The blacksmith had

to shoe horses that belonged to the king. He believed that he would inherit the house.

The barber shaved only distinguished people. He believed that his father would give the

house to him. The fencing master suffered many blows to his body but he grit his teeth.

He thought that he would win the house.

The brothers returned home to their father. They did not know when they would

demonstrate their skills to their father. The brothers sat and contemplated what they

could do. A hare ran across the field. The barber took his basin and soap. He lathered

until the hare drew near. He soaped and saved the hare’s whiskers while he was running

at his top speed. He did not cut his skin or a hair on his body. The father was delighted.

A nobleman can in his coach and at full speed. The blacksmith ran towards the coach.

He took four horseshoes off the horse while it was galloping and put new shoes on him.

The father thought that this was wonderful.
3Adapted from http://www.cs.cmu.edu/~spok/grimmtmp/094.txt

71

http://www.cs.cmu.edu/~spok/grimmtmp/094.txt


The third son asked to demonstrate his skills. It began to rain an the son drew sword.

The sword flourished backwards and forwards above his head. No raindrops fell upon him.

The rain fell harder and harder. He flourished his sword and remained dry. His father

was amazed at this and gave his house to the third son.

His brothers were satisfied with this. They decided to line together since they loved

eachother. The brothers continued their trades and earned a good living. They lived

happily until they grew old. One brother became sick and died. The brothers grieved

intensely and they became ill and died. They were laid in the same grave because they

loved eachother.
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Rumpelstiltskin4

There was a miller who was poor but had a beautiful daughter. The miller visited the

king and told him that his daughter could spin straw into gold. The king said that this

was an art and pleased him. He requested that the miller bring his daughter to the palace.

The girl was brought to the king. He took her into a room that was filled with straw.

She was given a spinning wheel and a reel. The king demanded that she complete the

work by tomorrow or die. He locked the room and left the daughter. The poor daughter

sat there and wept. She knew that she could not spin straw into gold.

The door opened and a little man entered the room. He asked the girl why she was

crying. She told him that she must spin straw into gold. The little man told her that

he could spin the straw for a price. He asked the girl what she could give to him. The

daughter offered a necklace to him. The man took the necklace and sat at the spinning

wheel. He spun the straw into gold.

The king returned in the morning and saw the gold. He was astonished and delighted.

His heart filled with greed. The daughter was taken to a larger room that was filled with

straw. He demanded that she complete the work by tomorrow.

The girl sat in the large room and cried. The little man returned and told her that

he could spin the straw into gold. He asked her what she could give for the task. The

daughter gave a ring to the small man. He grabbed the ring and spun the straw into gold.

The king returned and was amazed by the feat. He demanded that she spin more gold.

The daughter was placed in a larger room. The king asked that she complete the task by

the morning. He thought that she would be his wife when the task was completed. The

manikin returned when the girl was alone. He asked what she would give for the task.

She answered that she had nothing. The girl promised to give her first child when she

becomes queen. She did not think that this would happen. The little man spun the straw

into gold.
4Adapted from http://www.cs.cmu.edu/~spok/grimmtmp/044.txt
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The king returned in the morning. He found what he wished. The king took the girl

in marriage and she became queen. She brought a beautiful child into the world. The

queen gave no thought to the manikin. He entered her room and asked for her child. She

was surprised and offered riches to him. The manikin refused the offer. The queen began

to cry and the little man felt pity. He said that she could keep her child but she must

guess his name in three days. She sent a messenger across the country. He searched for

any name that might exist.

The manikin returned the next day. The queen guessed Casper and Melchior and

Balthazar and other names that she knew. He said that she was incorrect. She sent

a messenger on the second day. The queen asked for uncommon names. She guessed

Shortribs and Sheepshanks and Laceleg but was incorrect.

The messenger found the manikin’s house and overheard his name. The queen was

delighted. The manikin returned on the final day and ask for a name. She guessed Conrad

and Harry. He said that she was incorrect. She guessed Rumpelstiltskin. The manikin

became angry and was pulled into the earth.
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appendix b

Tagged Corpora

The Three Brothers

There was a man 1 who had three sons 2. He 1 had nothing in the world. Each son

wanted the house after his 1 death. The father 1 loved them 2. He 1 did not know

what he 1 should do. He 1 did not wish to sell the house 3. It 3 had belonged to his 1

forefathers. He 1 conceived a plan and told his 1 sons 2 that they 2 must learn a trade.

The son 2abc that builds the best masterpiece will inherit his 1 house.

The sons 2 were content with this. The first son 2a was determined to be a blacksmith 2a.

The second son 2b wanted to be a barber 2b. The third son 2c desired to be a fencing master 2c.

They 2 set a time when they 2 should come home.

The brothers 2 found skillful masters 4 who taught them 2 their 4 trades. The

blacksmith 2a had to shoe horses that belonged to the king. He 2a believed that he 2a

would inherit the house. The barber 2b shaved only distinguished people. He 2b believed

that his 2b father would give the house to him 2b. The fencing master 2c suffered many

blows to his 2c body but he 2c grit his 2c teeth. He 2c thought that he 2c would win the

house.

The brothers 2 returned home to their 2 father. They 2 did not know when they 2

would demonstrate their 2 skills to their 2 father 1. The brothers 2 sat and contem-

plated what they 2 could do. A hare 5 ran across the field. The barber 2b took his 2b

basin and soap. He 2b lathered until the hare 5 drew near. He 2b soaped and saved the

hare’s 5 whiskers while he 2b was running at his 2b top speed. He 2b did not cut his 5

skin or a hair on his 5 body. The father 1 was delighted.

A nobleman 6 can in his 6 coach and at full speed. The blacksmith 2a ran towards

the coach. He 2a took four horseshoes off the horse 7 while it 7 was galloping and put

new shoes on him 7. The father 1 thought that this was wonderful.
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The third son 2c asked to demonstrate his 2c skills. It began to rain and the son 2c

drew his 2c sword. The sword flourished backwards and forwards above his 2c head. No

raindrops fell upon him 2c. The rain fell harder and harder. He 2c flourished his 2c

sword and remained dry. His 2c father 1 was amazed at this and gave his 1 house 3 to

the third son 2c.

His 2c brothers 2 were satisfied with this. They 2 decided to line together since

they 2 loved eachother. The brothers 2 continued their 2 trades and earned a good

living. They 2 lived happily until they 2 grew old. One brother became sick and died.

The brothers 2 grieved intensely and they 2 became ill and died. They 2 were laid in

the same grave because they 2 loved eachother.
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Rumpelstiltskin

There was a miller 1 who was poor but had a beautiful daughter 2. The miller 1 visited

the king 3 and told him 3 that his 1 daughter 2 could spin straw into gold. The king 3

said that this was an art and pleased him 3. He 3 requested that the miller 1 bring his 1

daughter 2 to the palace.

The girl 2 was brought to the king 3. He 3 took her 2 into a room that was filled

with straw. She 2 was given a spinning wheel and a reel. The king 3 demanded that she 2

complete the work by tomorrow or die. He 3 locked the room 6 and left the daughter 2.

The poor daughter 2 sat there 6 and wept. She 2 knew that she 2 could not spin straw

into gold.

The door opened and a little man 4 entered the room. He 4 asked the girl 2 why

she 2 was crying. She 2 told him 4 that she 2 must spin straw into gold. The little

man 4 told her 2 that he 4 could spin the straw for a price. He 4 asked the girl 2 what

she 2 could give to him 4. The daughter 2 offered a necklace to him 4. The man 4 took

the necklace and sat at the spinning wheel. He 4 spun the straw into gold.

The king 3 returned in the morning and saw the gold. He 3 was astonished and

delighted. His 3 heart filled with greed. The daughter 2 was taken to a larger room that

was filled with straw. He 3 demanded that she 2 complete the work by tomorrow.

The girl 2 sat in the large room and cried. The little man 4 returned and told her 2

that he 4 could spin the straw into gold. He 4 asked her 2 what she 2 could give for the

task. The daughter 2 gave a ring to the small man 4. He 4 grabbed the ring and spun

the straw into gold.

The king 3 returned and was amazed by the feat. He 3 demanded that she 2 spin

more gold. The daughter 2 was placed in the largest room. The king 3 asked that she 2

complete the task by the morning. He 3 thought that she 2 would be his 3 wife 2 when

the task was completed. The manikin 4 returned when the girl 2 was alone. He 4 asked

what she 2 would give for the task. She 2 answered that she 2 had nothing. The girl 2

promised to give her 2 first child when she 2 becomes queen 2. She 2 did not think that
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this would happen. The little man 4 spun the straw into gold.

The king 3 returned in the morning. He 3 found what he 3 wished. The king 3 took

the girl 2 in marriage and she 2 became queen 2. She 2 brought a beautiful child into

the world. The queen 2 gave no thought to the manikin 4. He 4 entered her 2 room and

asked for her 2 child. She 2 was surprised and offered riches to him 4. The manikin 4

refused the offer. The queen 2 began to cry and the little man 4 felt pity. He 4 said that

she 2 could keep her 2 child but she 2 must guess his 4 name in three days. She 2 sent

a messenger 5 across the country. He 5 searched for any name that might exist.

The manikin 4 returned the next day. The queen 2 guessed Casper and Melchior and

Balthazar and other names that she 2 knew. He 4 said that she 2 was incorrect. She 2

sent a messenger 5 on the second day. The queen 2 asked for uncommon names. She 2

guessed Shortribs and Sheepshanks and Laceleg but was incorrect.

The messenger 5 found the manikin’s 4 house and overheard his 4 name. The queen 2

was delighted. The manikin 4 returned on the final day and ask for a name. She 2 guessed

Conrad and Harry. He 4 said that she 2 was incorrect. She 2 guessed Rumpelstiltskin.

The manikin 4 became angry and was pulled into the earth.
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