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[1] Air temperatures at high latitudes are expected to rise
significantly as anthropogenic carbon builds up in the
atmosphere. There is concern that warming of the ground in
permafrost regions will result in additional release of carbon
to the atmosphere. Recent emphasis has thus been on
predicting the magnitude and spatial distribution of future
warming at high latitudes. Modeling results show that
changes in below ground temperatures can be influenced as
much by temporal variations of snow cover as by changes in
the near-surface air temperature. The recent (1983—1998)
changes in permafrost temperatures on the North Slope of
Alaska are consistent with decadal scale variability in snow
cover. The implication of these results is that a better
understanding of how winter precipitation patterns at high
latitudes will change over the coming decades is needed to
comprehend evolving permafrost temperatures. INDEX
TERMS: 1863 Hydrology: Snow and ice (1827); 1823 Hydrology:
Frozen ground; 4215 Oceanography: General: Climate and
interannual variability (3309). Citation: Stieglitz, M., S. J.
Déry, V. E. Romanovsky, and T. E. Osterkamp, The role of
snow cover in the warming of arctic permafrost, Geophys. Res.
Lett., 30(13), 1721, doi:10.1029/2003GL017337, 2003.

1. Introduction

[2] The magnitude and spatial extent of high latitude
warming in the last century is well documented [Chapman
and Walsh, 1993; IPCC, 2001; Overpeck et al., 1997;
Serreze et al., 2000]. In many arctic regions this warming
is associated with increased precipitation [Dai et al., 1997,
Groisman and Easterling, 1994; Ye et al., 1998], increased
river discharge [Peterson et al., 2002], a longer growing
season [Foster, 1989; Foster et al., 1992; Stone et al.,
2002], and a change in the distribution of plant species
[Sturm et al., 2001]. Borehole temperature measurements
also indicate strong subsurface warming [Lachenbruch and
Marshall, 1986; Oberman and Mazhitova, 2001; Osterkamp
and Romanovsky, 1999; Pavlov, 1994; Romanovsky et al.,
2002; Romanovsky and Osterkamp, 2001]. However, it is
not clear the degree to which increases in near-surface air
temperature (NSAT) alone cause the subsurface warming
[Zhang and Osterkamp, 1993]. Most studies presume no
direct causality and use inversion techniques to reconstruct
the history of temperatures at the permafrost table or at the
ground surface, not NSAT changes, from the borehole data
[Beltrami and Harris, 2001; Beltrami and Mareschal, 1991;
Harris and Chapman, 1997; Huang et al., 2000; Lachen-
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bruch and Marshall, 1986; Smith and Riseborough, 2002;
Sokratov and Barry, 2002]. Still, there is often an implicit
assumption that changes in ground temperatures, as
evidenced by borehole measurements, do reflect decadal-
to century-scale climate warming. In this work, the influ-
ence of temporal changes in snow cover on permafrost
temperature dynamics at Barrow, Alaska, are investigated. It
is demonstrated that this variability needs to be taken into
account when borehole data inversion methods are used for
climate reconstructions or predictions.

[3] Snow is a strong insulator and limits the otherwise
efficient communication of heat between the atmosphere
and the ground. Where there is significant snow cover in the
winter, the mean annual ground surface temperature is
warmer than the mean annual air temperature owing to
the insulating effect of the snow. Changes in the rate of
accumulation, duration, timing, density, and amount of
snow cover during the winter season play an important role
in determining how the air temperature signal propagates
into the ground [Goodrich, 1982; Osterkamp and Roma-
novsky, 1996; 1999; Zhang et al., 1996].

[4] One dramatic indicator of change on the North Slope
of Alaska is borehole temperatures [Lachenbruch and
Marshall, 1986; Lachenbruch et al., 1982; Osterkamp,
2003]. Measurements made over the last two decades in
shallow boreholes show that, at the 20 m depth, there is a
recent warming that ranges from 0.6°C at inland sites
(1987-1998) to 1.5°C at coastal sites (1988—1998) (Figure
la and 1b) [Osterkamp, 1999]. This measured warming is
consistent with repeated borehole temperature logs taken by
United States Geological Survey throughout the North
Slope of Alaska [Clow and Urban, 2002]. This paper
investigates how observed changes in North Slope perma-
frost temperatures resulted from NSAT and snow depth
changes by driving a one-dimensional thermodynamic snow
and ground model with observed air temperature and snow
depth data from Barrow, Alaska, which is the only active
meteorological site on the North Slope with long term
climate records. Barrow is situated at 71.3°N, 156.8°W, in
northwestern Alaska on the coast of the Arctic Ocean. It is
one degree of latitude further north than the Prudhoe Bay
area (Deadhorse and West Dock) and lies approximately
340 km further west (Figure 1a). It has a cold, dry climate
dominated by the long winter season with a mean annual
air temperature of —12.2°C (1949-2003; NOAA, 2002),
slightly cooler than that observed at Deadhorse and West
Dock. Barrow experiences an annual snowfall of 74.5 cm
w (water equivalent), an amount 10% less than observed in
the vicinity of Deadhorse and West Dock [NOAA, available
online http://www.wrcc.dri.edu/summary/climsmak.html,
2002; Zhang et al., 1996]. A snowpack is maintained at
Barrow on average for 270 days each year, a week longer
than its eastern counterparts [Zhang et al., 1996]. Air
temperature measurements at Barrow show a 1°C warming
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Figure 1. (a) Map of North Slope of Alaska depicting
locations of interest. (b) Observed temperature at 20 m
depth on a N-S transect on the North Slope of Alaska.
Deadhorse and West Dock are located in the Prudhoe Bay
area. Franklin Bluffs is located approximately 60 km south
of Deadhorse. (c) Simulated evolution of the 20 m ground
temperature at Barrow for the years 1983 through 1998.

over the last 60 years and approximately 3°C warming over
the last 30 years (Figure 2a). The smaller warming trend for
the 60-year period results from a cooling observed in the
1960s and 1970s at Barrow, as well as a notable reduction
of snow depth in the second half of the record (Figure 2b).
While there is concern about the urbanization effect at
Barrow (the station is located near the village center), daily
averaged winter air temperature measurements at Barrow
are practically indistinguishable from those measured at the
nearby (8 km east of Barrow) CMDL (Climate Monitoring
and Diagnostics Laboratory; available since 1977) station.
The reduction of snow depth after the early 1960s is also not
an artifact of urbanization but a tendency that is observed
throughout the Western Arctic [Curtis et al., 1998; Brown
and Braaten, 1998].

2. Methods

[s] NASA’s Seasonal-to-Interannual Prediction Project
(NSIPP) Catchment-based Land Surface Model (CLSM)
[Ducharne et al., 2000; Koster et al., 2000] was used to
simulate snow-ground thermodynamics. Previously, the
model has been applied at high latitudes to accurately
simulate the southern boundary of the North American
permafrost as well as to explore snow cover heterogeneity
issues [Dery, S. J.,, W. T. Crow, M. Stieglitz, and E. F.
Wood, Modeling Snowcover Heterogeneity Over Complex
Arctic Terrain for Regional and Global Climate Models,
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J. Hydrometeorology, submitted., 2003; Stieglitz et al.,
2001]. The version of the model used here employs three
dynamic snow layers [Lynch-Stieglitz, 1994; Stieglitz et al.,
2001] and 200 ground layers. The ground is discretized in
25 cm intervals and extends to a depth of 50 m where a zero
heat flux boundary is assumed [Osterkamp and Romanov-
sky, 1996]. Ground temperatures evolve in time through
heat conduction. Input for the model consisted of Barrow
NSATs and snow depths. It was assumed that the first
ground layer, or the first snowpack layer, when snow is
present, is equal to the NSAT.

[6] To explore the impact of snow depth changes inde-
pendently of NSAT changes, several forcing data sets were
constructed. Forcing input data for each day from 1940 to
1998 were generated using the observations of daily mean
NSAT and snow depth (Figure 2a and 2b). Solid precipita-
tion data were reconstructed such that the modeler snow
depth matched the observed daily snow depth. Meteorolog-
ical field measurements are linearly interpolated in time to
provide forcing data at each model timestep of 20 minutes.

[7] Next, we constructed the annual mean cycle of NSAT
and snow depth at Barrow by averaging measured data from
all of the years for each day of the year. This provided a
365-day data set of forcing variables for Barrow based on
59 years (1940—-1998) of observational data. While the
precipitation data set was constructed using the measured
snow depths, no snow is assumed for a given day if the
mean depth is less than 2 cm. This yielded a mean 95-day
snow free summer period, consistent with Zhang et al.

1940 1950 1960 1970 1980 1990
Year

2000

Figure 2. (a) The observed mean annual air temperature
(T,), (b) the observed daily snow depth (SD), and (c) the
simulated 20-m ground temperature (T,o) at Barrow,
Alaska for the period 1940—-1998. Results from three
simulations are illustrated in Figure 2c: one that employs
the mean daily surface air temperature and the observa-
tional precipitation dataset (TC-P); another that employs the
mean daily precipitation and the observational surface air
temperature data set (T-PC); and finally, the observational
surface air temperature and precipitation data sets (T-P).
Model results in the grey area may be impacted by initial
conditions.
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[1996]. This data set (hereafter referred to as TC-PC)
provides a complete year of forcing data that is used
recursively to spin up the model to equilibrium, providing
initial conditions for the subsequent simulations.

[8] Following this, three other combinations of NSAT and
precipitation forcing data are used to simulate the 1940 to
1998 ground temperatures at Barrow: one that employs the
daily mean NSAT data set and the observational precipita-
tion data set (TC-P); another that employs the daily mean
precipitation data set and the observational air temperature
data set (T-PC); and finally, the observational NSAT and
precipitation data sets (T-P). Independent use of these three
data sets determines the effects of precipitation, temperature,
and temperature and precipitation, respectively.

3. Discussion

[o] Except for small differences in magnitude and timing
of the changes, the T-P simulation shows an evolution in the
temperature at 20 m depth at Barrow similar to that which is
observed in the Prudhoe Bay area (Deadhorse and West
Dock) for the period 1983—-1998 (Figure 1c). It should be
noted that, for these simulations, the T-P 20 m temperature
at Barrow in 1998 (—8.6°C) is only slightly warmer than
that in the early 1960s (—9.0°C), which is consistent with
Romanovsky et al. [2002]. As such, the recent rise in the
20 m permafrost temperature at Barrow might be interpreted
as a recovery from a depression in ground temperatures in
the early and mid 1970s, driven by both the preceding snow
depth and air temperature history.

[10] The simulations shown in Figure 2¢ explicitly dem-
onstrate the relative role that NSAT and snow cover changes
play in determining the evolution of deep ground tempera-
tures. To avoid the impact that the spin up (TC-PC) may have
on the evolution of the simulated 20 m permafrost temper-
atures during the early years of the T-P, T-PC, and TC-P
simulations, our analysis begins in 1952; for decadal forcing,
the thermal damping depth is approximately 7 m and the
surface-20 m depth signal offset is approximately 4 years.
When only observed air temperatures are accounted for
(T-PC), permafrost temperatures at 20 m roughly track a
diminishing NSAT with a lag of approximately 4 years,
ultimately cooling to —9.9°C in 1977. Thereafter, temper-
atures increase 0.64°C in response to the late century warm-
ing. Snow cover increases from the mid 1950s, remains high
through 1970, falls off significantly in the early 1970s, and
finally increases somewhat through the remainder of the
century, albeit at lower levels than in the period 1940 to
1970. It should be noted that snow cover displays a near
decadal modulation throughout the period of record. In
response, the 20 m temperature in the TC-P simulation
increases significantly through the early 1960s, remains high
until 1970, and then falls to its trough in 1980. Temperatures
thereafter recover 0.65°C, but in this case in response to the
late century increase in snow cover. For comparison with the
T-PC simulation, the TC-P 20 m permafrost temperature
change from 1977 to 1998 is 0.51°C. From the T-P trough
in 1977 to its peak in 1998 (an increase of 1.19°C in 20 m
ground temperature), we can see that approximately half of
the rise is due to increasing NSAT that began in the mid 1970s
while the other half can be attributed to increasing snow
cover in the latter part of the century.
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4. Conclusions

[11] This study demonstrates that in snow dominated
regions borehole data cannot simply be used to infer air
temperature warming due to the ability of snow cover to
impact ground temperatures independently of the NSAT.
This is true when the temporal evolution of snow cover has
significant variability that is not necessarily correlated with
temperature variability. Using a state-of-the-art land surface
model forced by a long-term record of snow depth and
NSAT, the effects of air temperature changes can be
separated from changes in snow depth and demonstrate
that, while some of the subsurface temperature change
observed over the last decade can be explained by climate
warming, the observed borehole temperature records are
influenced to a similar degree by snow cover variability.

[12] Future changes in the snow cover will have the
potential to either amplify or dampen the expression of
climate warming below the ground surface. The balance of
these factors will control the fate of ground temperatures
and the subsequent impact on carbon sequestration, and the
evolution of the local landscape. For example, near-surface
ground warming in permafrost regions can result in the loss
of terrestrial carbon due to increased rates of near surface
organic decomposition [McKane et al., 1997; Oechel et al.,
1993; Stieglitz et al., 2000]. Offsetting this, nitrogen min-
eralization increases and the higher nutrient availability may
lead to increased biomass [Shaver et al., 1998]. This study
demonstrates the need to better understand how the associ-
ated changes in winter precipitation/snow at high latitudes
will be altered in a warmer world.
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