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Abstract

Fecal pellets can serve as a noninvasive source of DNA for identifying the distribution of individual animals when
conducting population estimates. The quality of fecal DNA, however, can be degraded by wet or warm environmental
conditions. We tested the effect of time of pellet collection (mid-March-mid-June) and temperature on the success of
genotyping microsatellite loci in moose Alces alces by using DNA extracted from moose fecal pellets collected from
north central British Columbia, Canada. Using the number of microsatellite loci genotyped as a measure of genotyping
success clearly indicated that fecal pellets collected in March and April contained DNA that yielded high-confidence
genotypes, whereas those collected in May and June did not. Pellets collected in March and April were more likely to
be collected in cooler (often subzero) temperatures than those collected in May and June. Pellets collected later in the
year were also more likely to be exposed to rain and increased solar radiation, all of which are likely to contribute to
degradation of fecal DNA. Our findings suggest that pellets collected in late winter in the Northern Hemisphere have
sufficient DNA to permit genotyping of moose.

Keywords: Alces; DNA; fecal pellet; genetics; loci; molecular analysis

Received: November 14, 2015; Accepted: September 27, 2016; Published Online Early: September 2016; Published:
December 2016

Citation: Rea RV, Johnson CJ, Murray BW, Hodder DP, Crowley SM. 2016. Timing moose pellet collections to increase
genotyping success of fecal DNA. Journal of Fish and Wildlife Management 7(2):461-466; e1944-687X. doi: 10.3996/
112015-JFWM-115

Copyright: All material appearing in the Journal of Fish and Wildlife Management is in the public domain and may be
reproduced or copied without permission unless specifically noted with the copyright symbol ©. Citation of the
source, as given above, is requested.

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the
U.S. Fish and Wildlife Service.

* Corresponding author: reav@unbc.ca

Introduction

The collection of fecal DNA is an increasingly popular
noninvasive technique for identifying individual animals;
establishing the presence of rare or elusive species;
determining sex (Fernando et al. 2003; Waits and Paetkau
2005); and examining population structure, mating
systems, genetic diversity, and dispersal patterns (Ball
et al. 2006; Brinkman et al. 2011). This technique allows
for the sampling of a large number of animals quickly
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and at a lower cost when high-quality fecal samples are
available (Wehausen et al. 2004; Waits and Paetkau
2005). For species that are rare, elusive, or difficult to
capture, fecal sampling may be the only technique for
collecting DNA (Zhang et al. 2006).

Fecal DNA is extracted and isolated from sloughed
cells of the intestinal mucosa, which coat the outer
surface of the feces. Some investigators consider fecal
DNA to be of inferior quality compared to blood and
other soft tissues because it can be subject to various
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Figure 1. Location of the John Prince Research Forest (boundaries are the gray and white squares) study area in north central British
Columbia, Canada, where moose Alces alces fecal pellets were collected from March to June 2013 for genotyping. Moose pellet

survey lines are delineated with black and white squares.

forms of degradation (Piggot 2004; Ball et al. 2006;
Brinkman et al. 2011), whereas others caution against
contamination and laboratory error (Fernando et al.
2003). Degradation is known to increase with time since
deposition, rainfall, and myriad environmental conditions
(Brinkman et al. 2009, 2010). In some cases, those
processes are not well understood (Mowry et al. 2011).
For these reasons, Maudet et al. (2004) and Wehausen et
al. (2004) suggest that more research be conducted to
clarify the effect of season and environmental moisture
on the genotyping success of fecal DNA collected from
ungulates.

Using a suite of eight microsatellite loci and a sex
determination marker (ZFX/ZFY; Shaw et al. 2003), our
objective was to determine at what time during the late
winter and early spring moose pellets should be
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collected for optimal genotyping success. To this end,
we collected fecal pellets of moose during the middle of
March (6-12), April (17-22), May (13), and June (19) 2013
to test our null hypothesis that genotyping success
would be unaffected by collection date.

Study Site

Moose fecal pellets were collected in the John Prince
Research Forest (54°40'10.1"’N, 124°24/52.1"'W; Figure 1).
The John Prince Research Forest is a 16,500-ha portion of
forested land 45 km northwest of Fort St. James, British
Columbia, Canada, and it is co-managed by the
University of Northern British Columbia and Tl'azt'en
Nation. The area around the research forest is character-
ized by rolling terrain with low mountains (700-1,267 m
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above sea level) and is dominated by vegetation
characteristics of the Sub-Boreal Spruce biogeoclimatic
zone (Meidinger and Pojar 1991). The area has experi-
enced a wide variety of logging activities over the past
50 y and contains a mosaic of old and young forest with
interspersed deciduous stands with a rich understory of
deciduous shrubs and regenerating conifers (see Crowley
et al. 2012). We obtained weather records for the area
from the National Climate Data and Information Archive
(Environment Canada 2015).

Methods

Fifteen to 20 moose fecal pellets were collected
opportunistically from fecal pellet groups along the road
and trail network of the study area (Figure 1). Repeated
collections along these routes were possible as snow
melted and pellet groups, which had been deposited
throughout the winter, became exposed. Moose fecal
pellets were easily distinguished from the pellets of elk
Cervus elaphus and mule deer Odocoileus hemionus, both
of which are also found in the research forest, by
experienced collectors via close examination of the
morphological features of the pellets (Hodder et al.
2013). Ten samples of 15-20 pellets each were collected
during the middle of each month from mid-March to
mid-June 2013 and placed in Ziploc® bags; samples were
immediately stored in a —20°C freezer.

Sample bags were removed from the freezer and
individual pellets were separated. As recommended by
Wehausen et al. (2004), duplicate samples of intestinal
mucosal cells were obtained from each sample by gently
rubbing the exterior of pellets with porous wooden
toothpicks, ensuring that no fecal matter was collected.
The toothpicks containing the epithelial cells were then
placed in individual paper envelopes left open to dry for
24 h. Toothpicks containing DNA were sealed in
envelopes and sent to Wildlife Genetics International
(Nelson, British Columbia, Canada) for analysis. There,
DNA was extracted by clipping an ~3-mm piece of each
toothpick and processing the clippings using the
QIAGEN (Toronto, Ontario) DNeasy Blood and Tissue
kit, as per QIAGEN's tissue protocol. Using fragment size
assays to determine genotypes, the lab personnel
amplified and analyzed seven microsatellite loci (BL42,
BM1225, BM4513, BM848, OarFCB193, Rt24, Rt30;
Buchannan and Crawford 1993; Bishop et al. 1994;
Wilson et al. 1997) and a sex (gender) determination
marker (ZFX/ZFY; Shaw et al. 2003).

The resulting fragments from all eight amplified loci
were analyzed using an ABI PRISM® 310 Genetic Analyzer,
and genotypes (i.e., alleles based on fragment size) were
scored using Genotyper software (ABI; Foster City, CA.
94404). A single technician scored all data, denoting an
allele call as high confidence when it met defined signal
intensity thresholds measured using a fluorescent detec-
tion method (>100 relative fluorescent units for hetero-
zygous peaks and >600 relative fluorescent units for
homozygous peaks) and also met subjective visual cues
for strong data (as per Paetkau, 2003). The number of
high-confidence loci (i.e., loci with two high-confidence
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allele calls) was then compared across all samples. Results
for each sample were reported as number of loci with any
genotype information and the number of loci with high-
confidence genotype information.

Statistical analysis. We used Poisson count regression
to test the relationship between the number of loci that
were scored with high confidence and indices of
environmental conditions that may have influenced the
condition of DNA. We conducted two analyses, relating the
total number of loci and the number of high-confidence
loci to average temperature and month in which the fecal
samples were collected. For month, we used deviation
coding to contrast March, April, May, and June. Two
samples collected on February 21 were coded as March.

We used Akaike’s Information Criterion for small
samples to identify the most parsimonious model
(Anderson et al. 2000). To assess the predictive accuracy
of the final models, we used a Wilcoxon signed-rank test
to determine whether the distribution of observed loci
differed from the number predicted by the count
models. We used a jackknifing procedure to sequentially
withhold each record during model fitting and then
predicted the count for that withheld record. This
allowed for an out-of-sample test, with sufficient data
to fit the models (i.e.,, n = 39).

Results and Discussion

Very few of the fecal samples collected resulted in
high-confidence genotype information. Of the 40 sam-
ples, only eight provided high-confidence data for more
than one of the eight microsatellite markers (Table ST,
Supplemental Material). Samples collected in March
yielded the most complete genotype information, with
an average of seven loci showing genotype information
(four with high-confidence data). Genotyping success
was much lower for samples collected during April from
snow and bare ground, but not as low as those collected
after April from bare ground (Figure 2).

The most parsimonious Poisson models representing
the count of total loci and high-confidence loci consisted
of the categorical variable month, representing the day
of the year that the sample was collected (Table 1). The
Wilcoxon signed-rank test revealed that the most
predictive models were those constructed from the data
representing the number of high-confidence loci. The
number of loci (both those with some genotype
information and those with high-confidence information)
was positively correlated with earlier sample collection
months (especially those at or below freezing temper-
atures with snow). That relationship decreased in
strength through April and May and was strongly
negative in June. Overall, genotyping success decreased
for pellets collected after April (Table 2) when weather
records indicate warmer and wetter conditions.

Because DNA degrades with time (Fernando et al.
2003; Piggot 2004), knowing when pellets were depos-
ited and the amount of time that passed between
deposition and collection would have helped us separate
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Figure 2. Mean (%=1 SE) number of (eight possible) microsat-
ellite loci obtained from fecal samples containing genotype
information and of the number of loci containing high-
confidence genotype information for both alleles (i.e., high-
confidence loci) obtained from moose Alces alces fecal samples
collected during mid-March, April, May, and June 2013 from the
John Prince Research Forest in north central British Columbia,
Canada. Note that numbers above the error bars indicate the
number of samples from each month (n =10 samples collected
per month) that contained loci with some genotype informa-
tion (above black bars) and with high-confidence loci (above
gray bars).

the confounding effects of pellet age from collection
season (Piggot 2004). Unfortunately, there was no way
for us to age the pellets we collected. We are confident,
however, that pellets were relatively recent (being
deposited in those months before our collections and
not from the previous summer or fall) based on their
condition and content (Rea et al. 2010). Also, our
objective was not to age pellets, but to assess
genotyping success (a measure of fragment size, purity
and/or template numbers) as a factor of warmer and
wetter environmental conditions. Ultimately, genotyping
success is directly related to the quality (usually
measured in terms of state of DNA degradation [i.e.,

Table 1. Number of model parameters (k), differences in Akaike
Information Criterion for small samples (AIC,) scores (A), and
AIC, weights (w) for Poisson count models representing the
high-confidence microsatellite loci and total number of loci
with genotype information from moose Alces alces fecal pellets
collected in north central British Columbia, Canada, from March
to June 2013. Predictive ability of each model was tested
through a comparison of observed and predicted number of
loci using the Wilcoxon signed-rank test.

Model k AICA AIC.w Wilcoxon P (z)
High-confidence loci
Average temperature 2 8.9 0.012 0.010 (—2.590)
Month 4 0 0.988 0312 (—1.012)
Total loci
Average temperature 2 15.2 0.001 <0.001 (—4.887)
Month 4 0 0.999 <0.001 (—5.514)
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Table 2. Model coefficients, standard errors (SE), and 95%
confidence intervals for Poisson count models representing the
high-confidence microsatellite loci and total number of loci
with genotype information from moose Alces alces fecal pellets
collected in north central British Columbia, Canada, from March
to June 2013. Covariates represent two models, temperature
and month, for each set of data.

95% Confidence

Covariate Coefficient SE interval
High-confidence loci
Temperature model
Constant 0.085 0.248 —0.400 0.571
Average daily temperature ~ —0.164 0.018 —0.198 —0.129
Month model
Constant —4.705 0.281 —5256 —4.155
March 6.116 0.305 5518 6.714
April 3.502 0.445 2.629 4.375
May 2403 0.735 0.962 3.843
June —12.020 0.271 —12.550 —11.490
Total loci
Temperature model
Constant 1.227 0.131 0.971 1.483
Average daily temperature  —0.100 0.013 —0.126 —0.074
Month model
Constant 0.219 0.273 —-0.317 0.754
March 1.741  0.278 1.196 2.286
April 0.737 0.340 0.070 1.404
May 0.044 0.407 —0.755 0.842
June —2.521 0.732 -3.957 -1.086

average fragment size] and purity [i.e., lack of inhibitors])
and quantity (i.e., concentration of intact templates) of
the recovered DNA. However, whether changes in DNA
fragment size, purity, or the number of template
molecules present in feces were due to seasonal effects
or pellet age or a combination of the two is irrelevant
relative to our objectives. Pellets collected earlier in the
spring provided higher genotyping success (Figure 2).

Although Piggot (2004) reported that DNA collected
from summer-deposited scats of red fox Vulpes vulpes
and brush-tailed rock wallaby Petrogale penicillata had
better quality DNA than winter-deposited scats, Harris
et al. (2010) suggested that Afghanistan Argali sheep
Ovis ammon fecal materials yielded better quality DNA
when collected in winter. Maudet et al. (2004) also
obtained better DNA from Alpine ibex Capra ibex and
Corsican mouflon Ovis musimon pellets collected during
winter (November-February) compared to collections
from the spring (April-May). Maudet et al. (2004)
postulated that the low-quality, high-fiber diets in
winter are more likely to increase the amount of time
digesta spend in contact with the gastrointestinal tract,
thereby allowing intestinal mucosal cells to accumulate
on fecal materials and increase the quantity of DNA
recovered per pellet.

Wehausen et al. (2004) suggested that pellets collect-
ed from herbivores foraging on plants high in secondary
compounds may be hard to assess for fecal DNA because
of inhibitory effects of plant secondary compounds on
polymerase chain reactions (Kreader 1996). Plant sec-
ondary compounds consumed by moose eating new
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shoots and leaves may have potentially influenced the
purity of DNA from pellets we collected in June, but they
would be negligible in the winter twigs eaten by moose
in our study area from March to May before leaf flush
(Palo 1984). Mucosal DNA collected from carnivores was
also of higher quality when collected in winter compared
to summer (Lucchini et al. 2002; Mowry et al. 2011),
suggesting something other than plant secondary
compounds (such as cooler conditions) may be influenc-
ing DNA recovery.

In summary, our findings suggest that if noninvasive
collection of DNA is to be used as a tool to identify or
track the movements of individual moose, fecal pellets
should be collected during late winter and very early
spring before temperatures warm. For many locations
across the circumpolar range of moose, this is the time of
year when winter-deposited pellets are being uncovered
as snow melts, making sample collection relatively
efficient. Our data suggest that pellets collected from
snow or from bare ground shortly after snow melt are
more likely to have DNA of sufficient quantity and quality
for microsatellite genotyping than those pellets collected
during the warmer spring and summer months. As such,
pellets collected in late winter and early spring are more
likely to help us understand the biology and ecology of
moose (e.g., Ebert et al. 2012; Goode et al. 2014).

Supplemental Material

Please note: The Journal of Fish and Wildlife Management
is not responsible for the content or functionality of any
supplemental material. Queries should be directed to the
corresponding author for the article.

Table S1. Genotype information for loci typed from
moose Alces alces fecal pellets collected in March (MR),
April (AP), May (MA), and June (JU) 2013 in the John
Prince Research Forest, British Columbia, Canada. Sample
identification is coded as month and sample number.
Only samples with loci with genetic information (LGI) are
shown. High-confidence loci calls are shown in bold. A
summary of LGl and high-confidence loci (HCL: loci with
two high-confidence allele calls) are shown for each
sample.

Found at DOI: http://dx.doi.org/10.3996/112015-
JFWM-115.51 (15 KB DOC).
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