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Abstract

The theory of the low-energy electron point source (LEEPS) microscope is reformulated in matrix form to readily
account for multiple scattering. An algorithm is developed for the storage of the structure matrix and an iterative
method is used to solve the matrix equation for the structure factor. Examples of small and large clusters of atoms are
given to compare single and multiple scattering. A Kirchhoff—Helmholtz transform is used for the reconstruction. We
find that in some cases the multiple scattering is too strong and reconstruction is not possible. We give examples which
show that, even when multiple scattering is important, one can still obtain reconstructions that reveal the atomic
structure both along and lateral to the optical axis. We also compare our results with those found in

LEED. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

More than 50 years ago, D. Gabor [1] proposed
a new principle of microscopy to overcome the
limitations of lenses. Using a coherent ensemble of
particles with wave nature, the fraction of the
beam elastically scattered by an object is made to
interfere with a coherent reference wave at some
two-dimensional detector creating a hologram that
contains information on both the amplitude and
the phase of the scattered wave. The laser provides
such a coherent source of photons for light
holography. More recently, electron holography
has been demonstrated in electron microscopy
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[2,3], in photoemission electron holography [4],
and in lensless low-energy electron microscopy
[5—9]. Reviews of electron holography have been
collected by Tonomura [10] (see in particular the
article by Fink et al). The breakthrough in low-
energy holography was made by Fink [5,6], who
created an ultrathin metal tip with one or a few
atoms at its apex to serve as a ““point” source for a
coherent electron beam [6—8], with a virtual
source size of atomic dimensions as determined
from interferometric measurements [11] and cap-
able of emitting currents up to milli-Amperes [12].
In the low-energy electron point source (LEEPS)
microscope the electrons are accelerated to en-
ergies in the range of 20—200 eV and scatter off
the atoms of a sample a distance d=0.1—1 pm
away. On a screen a distance D~10 cm away an
image is formed by the unscattered and the

0304-3991/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PII: S0304-3991(00)00031-0



160 M.R.A. Shegelski et al. | Ultramicroscopy 84 (2000) 159170

scattered electrons with a magnification of D/d. If
the object only blocks a small fraction of the
incoming electron beam, most electrons arrive on
the screen unscattered and we have the typical
situation of an in-line hologram.

A scattering theory has been developed to
simulate LEEPS images, and an algorithm has
been devised for the reconstruction of the wave-
front at the object [13]. The theoretical develop-
ment has so far been restricted mainly to single
scattering. We have therefore set ourselves the task
in this paper to explore the implications of
multiple scattering, in particular to discern the
quality of the reconstructed images. To this end we
will elaborate a matrix method [14] to deal with
multiple scattering in clusters. For a cluster of N;
atoms scattering in all partial waves up to L the
square matrix involved is of dimension Ns(L + 1)2,
i.e. much too large to store for any but the smallest
clusters. We have developed an algorithm that
allows the construction of the matrix for a
crystalline cluster from the knowledge of its
distinct elements only. Examples will be given to
assess the importance of multiple scattering and in
particular its effect on the process of reconstruc-
tion. We will show that, even in situations where
multiple scattering is important, our reconstruc-
tion algorithm allows a faithful reconstruction of
the wavefront at the object with atomic resolution.

2. Method

The theory of electron holography uses a
scattering approach based on the Lippmann-
Schwinger equation [13]. One models the electron
source as emitting a wave of spherical symmetry.
The scattering wave function for a spherical
incoming wave can then be written as

Vou (r) = r~" exp (ikr)[1 + 4 (r)], (1)

where
NS
) =3 _exp (—ikri - #/r) Y 1Y () Fim(r),
=1 Im

(2)

1=k sin §; exp (id)), (3)

where the Y}, are spherical harmonics, r; locates
the ith atom, k=2n/l = +v2mE/h is the wave
number of the electrons of wavelength A and
energy E, and O,(E) is the phase shift for the
scattering of an electron with angular momentum /
and energy E off an atom in the solid. (The phase
shifts can be obtained from LEED theory.")
Multiple scattering enters the scattering wave
function (2) via the structure factor. The equation
for the structure factor can be written as an
inhomogeneous matrix equation. Let F denote a
column vector whose transpose is given by

F' = [Foo(r1), Fi_1(r1), Fio(r), Fii(r), (4

SFLp(r), . Fro(rw,)],

consisting of all structure factors for all relevant
partial waves (up to L) at all Ny atomic positions.
The matrix equation for F is

F = ® + MF (5)
or
F=®+MO0+M®+MD+. .., (6)

where @ is a column vector with components
Gy (r;) = 47‘CY< ()" exp (ikr,) (7)

and M is a matrix with zeros along its diagonal
and with off—diagonal components given by

M(ri, I, m; vy, I, m) (8)

=4n Y§m (F5)tr Yo (By)ry Vexp (ikry),

rj=r;—r;and #; = r,-j/|r,j\.
The solution to the multiple scattering problem
1s thus reduced to a matrix inversion, i.e.

F=(1-M)"'®. ©))

The difficulty with this approach is obviously the
size of the matrix: note that the vector F has
dimension N (L + 1)>. However, if the cluster of
atoms has some spatial symmetries then M will
assume block form. We demonstrate this with a
2x2 square cluster of Ng=4 atoms perpendicular
to the optical axis, scattering in s-waves only. The
lengths of the vectors r; from the point source (on

! All phase shifts used in this paper are courtesy of M.A. Van
Hove.



M.R.A. Shegelski et al. | Ultramicroscopy 84 (2000) 159170 161

the optical axis) are then equal. Thus, all
components of F and @ are equal and M has the
simple structure

0 M M M,

M, 0o M, M,
M = 7 (10)
M, M, 0 M,

M, My, M; O

where M| =rtoa ' exp (ika) and M, =1
exp (iv2ka)/(v2a), with a = |r; — r;|, involve first
and second neighbour atoms, respectively. The
four components of F, all equal, are then given by

F(r;) = 2v/a(l —2M; — M3) "'V exp (ikr;).
(11)

For an N x N square array of atoms with electrons
scattering in (L + 1) partial waves the number of
distinct elements in M is only N2(L + 1)* out of a
total of N*(L + 1)*. Storage of all elements of this
matrix will obviously be a problem except for very
small N and L. We have therefore developed an
algorithm for the generation of the matrix M from
the knowledge of its distinct elements only. The
method we describe below is readily extended to be
applicable to any two- or three-dimensional cluster
of atoms with some spatial symmetry, be it a
crystalline structure or spiral symmetry in a
biological molecule. As a demonstration of the
method we look at a planar square cluster,
perpendicular to the optical axis, of N x N atoms
that scatter in s-waves only. We enumerate these
atoms from 1 to N starting in the upper left corner
and proceeding by rows. These are then the labels
of the matrix M. The elements in its first row can
be characterized by the distances between the first
atom and all others. Thus we have

M(r1, 1)) = 10 exp (ikay))/ay;, (12)
where
ai; = al(jo — 1)* + N72(j — jo)’]'? (13)

with «a the lattice constant, j=j,+nN for
n=0,1,...,.N—1land jo=1, 2,...,N. We note

that in the present case M is symmetric with zeroes
along the main diagonal. To obtain the other
elements divide the matrix M into N? submatrices
of size N x N. Each of these is also symmetric with
respect to reflection along the main and also the
second diagonal. For the element M; = M, we
assume i<j and decompose them as

i=naN+i', i"=1,...,N, n=0,....N—1,
(14)
j=mN+j', j'=1,...,N, m=0,...,N—1.
(15)

We then find that for i’ <;’ and n<m:

MnN+iCmN+j’ = M(nfl)N+l",(’nil)N+j/ = ...
= Mi’,(mfn)NJrj’ = %/,(m,n)]\uﬂ-/

— ... = Ml,(mfn)NJrj/*’”Fl' (16)

For more complicated clusters, e.g. three-dimen-
sional clusters or clusters in which scattering
includes higher partial waves, this method can be
generalized accordingly.

After having solved the problem of storing (or
rather calculating) the elements of the matrix M
we can now address the problem of solving Eq. (9).
A straightforward iteration procedure often pro-
duces sufficient convergence which can sometimes
be improved by using the Gauss—Seidel method or
similar algorithms.

3. Simulation of images

From the wave function (1) one calculates the
image on a screen a distance L away as

F0) = “rou P = 511+ 30, (17)

where we have assumed a spherical incoming wave
for simplicity. The factor L/r is required because
the image intensity is given by the flux of electrons
arriving at the screen and not by their probability
density. One usually subtracts the background flux
from Eq. (17) to get

1) = 1) ~ 55 = SR (B0) + [0

73 3

2. (18)
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4. Reconstruction

At the time of proposing holography with point
sources Gabor also suggested a scheme to recon-
struct the three-dimensional object wavefront from
a two-dimensional hologram. It is based on the
Kirchhoff—Helmholtz transform,

K) =5 [ ) exp (kg r/2), (19)

where the integration extends over the 2—dimen-
sional surface of the screen with coordinates
E=(X, Y, L), a distance L from the source. It

has been shown previously that this formula works
very well for simulated images calculated for the
LEEPS microscope and also for the reconstruction
of experimental images, both for electron as well
as for optical in-line holography [15].

5. Examples

We now turn to examples to examine the role of
multiple scattering on image formation and on the
quality of reconstruction. In Fig. 1, we show the
simulated LEEPS images originating from a

0 0.5

1 L5 2

Fig. 1. Simulated LEEPS images for a carbon BCC crystal of three layers with 5x35, 4x4 and 5x5 atoms, respectively, with a lattice
constant of 2.5 A, and with a separation between layers of 4.5 A. The electron energy is 95 eV; the distance from source to object is
1000 A, and the source to screen distance is 10 cm. The screen size is 14x14 cm?. The image in part (a) is calculated in the single
scattering approximation, and the image in part (b) is for multiple scattering. In both cases, phase shifts up to five partial waves have
been included in the calculation. Part (c) compares the intensities along the diagonals of the holograms, with solid and dashed lines for

multiple and single scattering, respectively.
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carbon cluster consisting of three layers of 5x35,
4x4, and 5x5 atoms each, arranged on a BCC
lattice, calculated in the single scattering approx-
imation and also taking full account of multiple
scattering. The distance ¢ between neighbouring
atoms within each layer is a=2.5 A, while the
separation d between layers is d=4.5 A. The
electron energy was 95 eV and phase shifts in five
partial waves have been included in the calcula-
tion. The differences arising from the use of the
single scattering approximation as compared with
multiple scattering can best be visualized by
comparing the intensities in the two holograms
along selected cuts, as follows. Two segments from
the centre of the image and half way along its
diagonal are shown in the Fig. 1(c). Note that both
the amplitude and the phase are affected by the
single scattering approximation. Although these
differences are rather small, they nevertheless are
of consequence in the reconstruction, as seen in
Fig. 2. We compare in Fig. 2 the reconstructions
from the images calculated in the single scattering
approximation and for multiple scattering. In Fig.
2(a), the reconstructions are along the optical axis
through the central atoms in the two 5x5 layers,
and in Fig. 2(b) the cut is along the diagonal of the
front 5x5 layer. It is clear that at this energy and
for this cluster there is hardly any difference in the
lateral reconstruction that results from using the
single scattering approximation. The difference
between the single and multiple scattering recon-
structions in depth is noticeable, even though both
clearly reveal the two atomic layers.

Can we conclude from this example that multi-
ple scattering is always unimportant, in the sense
that it will not ruin the reconstruction? In order to
address this question, we present several examples
where cluster size and shape is examined, the
electron energy is varied, and where the strength of
atomic scattering is varied.

We next present results for atomic clusters
exhibiting differences in size and shape. We will
consider cases where the cluster has several atoms
in layers lateral to the optical axis, but is “thin” in
the optical direction, i.e. there are relatively few
layers in the cluster. We compare this to the
opposite extreme, namely where the cluster has
several layers of atoms in the optical direction and

IKI

(a)

IKI

(b) r[A]

Fig. 2. Reconstruction of images in Fig. 1. The cut in (a) is
along the optical axis through the central atoms of the 5x5
layers; in (b) the cut is along the diagonal of the first 5x5 layer;
|K], given by Eq. (19), is plotted vs. distance z along the optical
axis in (a), and vs. distance r along the diagonal in (b). The first
layer in the cluster is located at z=0, while r=0 gives the
location of the central atoms in the 5x5 layers. The solid lines
are for multiple scattering; the dashed lines are for single
scattering.

has relatively few atoms in layers lateral to the
optical axis in each layer. An example of the
former is the cluster described above, which we
denote by 5/4|5. We will refer to this cluster as a
“thin” cluster. An example of a cluster thick in the
optical direction is a 5(4|5/4|5|4|5|4|5|4|5 cluster.
We will refer to such a cluster as a ““thick” cluster.

The cuts across the diagonal of the first 5x5
layer, and along the optical axis, in Figs. 2(a) and
(b), show that, even though there is a relatively
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large number of atoms (66) in the cluster, the
reconstructions for both single and multiple
scattering clearly reveal atomic resolution.

For clusters that are thicker in the optical
direction, the reconstructions for single and multi-
ple scattering can be noticeably different. In Fig.
3(a) we show reconstructions for a cut along the
optical axis for the 5|4/5|4|5/4|5/4/5/4|5 cluster.
Both single and multiple scattering pick out the 6
central atoms in the 5x5 layers. The plot shown is
for L=4; with increasing L, one expects the
multiple scattering reconstruction to get worse.

IKI

(@)

1K1

(b) r[A]

Fig. 3. Reconstructions for a 5(4|5/4/5/4/5|4/5/4|5 carbon
cluster. The cuts are (a) along the optical axis, through the
central atoms of the 5x5 layers, (b) diagonally across the third
5x5 layer. Single scattering (dashed lines) clearly shows atomic
resolution both laterally and in depth. Multiple scattering (solid
lines) also reveals the atomic structure, albeit not quite as
clearly. In these plots, the electron energy is £=150 eV, and
L=4.

That multiple scattering still reveals the atomic
positions is not restricted to the optical direction,
as is clear from Fig. 3(b), which shows a diagonal
cut across the third 5x5 layer. Single scattering
again clearly indicates 5 atoms, as does the
reconstruction for multiple scattering, although
not quite as clearly.

The principal difference between the cases of
Figs. 2 and 3 is the thickness of the cluster in the
optical direction.

In Figs. 4 and 5, we show reconstructions for
gold, a stronger scatterer than carbon. Compared

1Kl

(a)

IKI

(b) r[A]

Fig. 4. Reconstructions for a 5(4(5/4|5|4|5/4|5/4|5 gold cluster.
The cuts are (a) along the optical axis, through the central
atoms of the 5x5 layers, (b) diagonally across the third 5x5
layer. Again, both single scattering (dashed lines) and multiple
scattering (solid lines) show atomic resolution both laterally
and in depth, although the clarity is slightly better for single
scattering. In these plots, the electron energy is E=95 eV, and
L=4.
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Fig. 5. As in Fig. 5 but for E=150 eV.

with the figures for carbon clusters, we see clearly
that, even though we have stronger scattering, the
reconstructions still manage to reveal much of the
true atomic structure. This is true both in depth
and lateral to the optical axis.

We also point out that, in Figs. 3(a) and 4(a),
the locations of the peaks for multiple and single
scattering are slightly different and that the multi-
ple scattering peaks are actually located noticeably
closer to the positions of the atoms than are the
single scattering peaks. For completeness, we note
that in some of the figures there are some
“spurious peaks”, i.e. peaks in the reconstructions
that occur at positions where there are no atoms.
Such spurious peaks are by no means unexpected
(see, e.g. Ref. [13]). Methods for eliminating such
spurious peaks have been investigated in previous
works (see below).

At this point, it is important that we address the
issue of convergence of the series in Eq. (6). We
have examined the convergence properties of this
equation for a large number of examples. In
general, we find that the series converges, and to
the correct solution (see below) for “thick” clusters
only if L=0. The reason we cannot be satisfied
with just the L=0 results is clearly conveyed in
Fig. 6, where we show reconstructions for various
carbon clusters with L=0. The clusters are: (a) a
(312)—type cluster, with 20 3x3 layers; (b) a
(5|4)—type cluster, with 20 5x5 layers; and (c) a
(918)—type cluster, with 20 9x9 layers. In all three
cases, multiple and single scattering show very
similar reconstructions along the optical axis. The
same is true for lateral reconstructions. Given that
the exact solutions for L=0 give negligible
difference between multiple and single scattering,
while the exact solution for L=35 for the 5/4|5
cluster gives a distinct difference along the optical
axis [as is evident from Fig. 2(b)], we have no
choice but to examine L>0. We must therefore
obtain the best possible results for L >0, even if
they are not exact results. In doing so, we find that,
for thick clusters, the series approach limiting
values as successive terms are added in; i.e. the
series for a given cluster and a given value of L will
approach a limiting, or “best” value, provided we
sum an “‘optimal” number of terms. Proceeding
beyond this optimal number results in a departure
from the limiting value, with the sum diverging as
more and more terms are added. This type of
limited summation is by no means particular to the
problem studied in this paper, and is indeed often
seen in mathematical situations; a good example is
the case of series often referred to as “asymptotic
series”’. For such series, one can obtain approx-
imate, but not arbitrarily accurate, solutions to the
problem at hand. The best approximation is
obtained by summing an optimal number of
terms, just as in the case investigated here. That
is, the series in Eq. (6) exhibits behaviour like that
of these asymptotic series. As such, in order to
capture the essential physics, we must content
ourselves with the best solution possible, and
terminate the power series at the optimal point.
We emphasize that the results shown in Figs. 3—5
are the best that can be obtained, and these results
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have the following limitation. Although the series
“converges” for an optimal number of terms, the
ratio of a given element in ®f = (1 — M)F, to the
corresponding element in ® is not necessarily close
to unity, even though F is the best solution one can
obtain (recall Eq. (9): 1—M)F=®). The conse-
quence of this is that further work, beyond the
scope of this paper, may be needed to establish
definitively where multiple and single scattering
present different pictures of the atomic structure of
the cluster. For completeness, we also point out
that the cluster size and L-values we have used are
the largest that can be examined within our
computational limitations.

Evidence supporting our view that the results
presented in this work convey the correct physical

IKI

0 50 100 150 200

(a) Z[A]

IKI

behaviour is given in Fig. 7, where we present
exact reconstructions for a (3|2)—type cluster with
20 3x3 layers, with E=122 eV and L=4. For-
tuitously, for this cluster and this electron energy,
the convergence of the series is exact
(®p = (1 — M)F = ®). That atomic resolution is
obtained along the optical axis in this case, even
for multiple scattering including partial waves up
to L=4, strongly supports the claim that the
correct physical behaviour has been captured by
the procedure we have chosen to employ.
Further evidence that there is good reason to
believe that the figures in this paper do indeed
convey the actual physical features of the clusters
studied for multiple scattering, we present Fig. 8.
Fig. 8 shows reconstructions along the optical axis,
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Fig. 6. Reconstructions for various carbon clusters with L=0. The clusters are: (a) a (3|2)—type cluster, with 20 3x3 layers; (b) a
(514)—type cluster, with 20 5x5 layers; and (c) a (9|8)—type cluster, with 20 9x9 layers. In all cases, the cuts are along the optical axis
through the geometrical center of the cluster, and the electron energy is £=95 eV.
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IKI
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Z[A]
Fig. 7. Reconstructions for a (3|2)—type carbon cluster, with
20 3x3 layers; L=4 and E=122 eV. The cut is along the optical
axis through the geometrical centre of the cluster. For this
cluster and this electron energy, even with L>0, the conver-
gence is exact. See text for full discussion.

n3
A

IKI
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r[A]

Fig. 8. Reconstructions along the optical axis, through the
central atoms of the 5x5 layers, of a sequence of (5/4)—type
carbon clusters. Each curve is labeled by the number of 5x5
layers in the cluster. L=4 and E=150 eV for each cluster. The
curves reveal a systematic trend, which supports the idea that
these curves, while not exact solutions, are nevertheless
conveying the principal physical effects involved. See text for
further discussion.

through the central atoms of the 5x5 layers, of a
sequence of (5/4)—type carbon clusters. In the
figure are curves for 5|4|5, 5/4|5|4|5, 5|4/5|4|5/4|5,
5|4|5/4(5|4|5|4]5, and 5/4|5|4|5|4|5|4|5|4|5 clusters.
We note that these curves reveal a systematic
trend. Each of the curves was obtained by finding
the best convergence for L=4 for each cluster.

That there is a systematic trend in the curves, and
no indication of swings in the behaviour from one
cluster to the next, supports the idea that, even
though exact solutions cannot be obtained, these
“best” solutions are nevertheless conveying the
principal physical effects involved.

There are of course cases where there is no
convergence at all. In such cases, one cannot
obtain any meaningful reconstruction from Eq.
(6). It would seem that such cases correspond to
multiple scattering in higher partial waves as being
too strong. The results we have given are for
situations where the multiple scattering, although
important, still gives meaningful reconstructions.

We note that the physical reason for the
sensitivity in the power series is that not all of
the physical processes involved in multiple scatter-
ing are captured in the power series. The terms that
have been discarded are complicated enough to
render their inclusion as impractical. Thus, an
alternative to the manner in which we have decided
to address this situation is to include other terms in
the multiple scattering, an alternative which
necessitates an enormous amount of work. We
thus have no choice but to forego this alternative
route and are thus left with the series in Eq. (6).

As a result of this issue of convergence, we have
examined a large number of cases, varying the
geometry of the cluster and the following length
scales: the interatomic spacing within each layer, «,
the spacing between successive layers, d, and the
electron wavelength, / (i.e. the electron energy F).
We have studied many examples, enough to be
convinced that the principal physical effects have
been captured by our approach. The results we
have presented in this paper should be viewed with
this issue of convergence in mind.

6. Multiple scattering in LEED vs. LEEPS

Multiple scattering is also important in the
study of low-energy electron diffraction (LEED).
We next compare multiple scattering in LEED
with our work on multiple scattering in LEEPS.

The methods used in the interpretation of point-
source electron-scattering hologram intensities in
LEEPS microscopy are very similar to those
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employed in LEED theory. The main differences
between the two are the methods of reconstruction
of the holograms, and the distances between the
source of the electron waves and the atomic sites
under study. In LEEPS microscopy, the point-
source electron waves are emitted at large dis-
tances from the object, relative to the atomic
distances within the object, while in the hologra-
phies employed in LEED, the electrons are emitted
within atomic distances from the object. The
holographies in LEED are primarily distinguished
from one another by their source of electrons, ¢.g.
photoelectron diffraction, Auger decay, etc. The
primary difference in the equations governing the
holographies of LEED and LEEPS is that, in
LEEPS the point-source of spherical electron
waves is at a large distance from the object. This
allows considerable simplification in the analytic
equations [13]; multiple scattering in LEED is even
more complicated than in LEEPS.

With this in mind, the discussion of our results is
incomplete without a comparison of our results to
those previously obtained in LEED. We begin
with a discussion of the methods used to account
for multiple scattering and then consider the
results that have been observed in LEED calcula-
tions. The methods used to take account of
multiple scattering in LEED applications can be
classified into two groups: cluster methods and
perturbative methods. The perturbative method
[16,17], referred to as a ““path” approach, takes the
analytical expressions for the amplitude of a
scattered electron wave and derives a new, separ-
able, representation for the Green’s function
matrix. This representation allows approximations
that result in computationally efficient equations.
In this approach, it is implicitly assumed that the
multiple scattering expansion will converge. As
such, it is necessary to complement these calcula-
tions with exact calculations which can be time
consuming unless convergence is a priori known.
Further, in order to evaluate the intensity of
scattered electron waves, it is necessary to deter-
mine the scattering paths to be used, and a
sufficiently large number of scattering paths must
be included to attain accurate results. This is a
much faster approach than a full matrix inversion.
In our algorithm, we exploit the symmetry of the

structure matrix, and use a series representation
for the inverse, which, when convergent, converges
rapidly, and is orders of magnitude faster than a
full numerical matrix inversion. Moreover, our
method for computing the hologram taking full
account of multiple scattering is equivalent to
summing the path formalism to infinite order, and
is therefore very accurate.

Work has been done to improve the efficiency of
the cluster method [18—20] for calculating the
diffraction patterns in LEED. In these works, the
analytical expressions are cast in a form such that
the numerical evaluation of multiple scattering
terms can be done in an efficient manner. For
example, by appropriate rotations of the coordi-
nate system, and expanding the electron wave
about a new origin (the center of a scattering
potential), Fritzshe [18] expresses the coefficients
of the free electron propagator in an angular
momentum representation in an alternate form,
deriving computationally efficient recurrence rela-
tions for the appropriate quantities involved. This
significantly improves the speed of the calcula-
tions. Saldin et al. find computationally efficient
equations by considering the atoms surrounding
an emitter atom in concentric shells, allowing the
classification of processes into “intershell” and
“intrashell” processes, and employing the separ-
able Green’s functions of Rehr [17] along with a
Taylor series magnetic quantum number expan-
sion and a reduced angular momentum expansion.
The equations become much more computation-
ally feasible in these cases. It is nevertheless still
necessary to include multiple scattering term-by-
term, i.e. single scattering, then double scattering,
and so on. In our method, we account for all
possible multiple scattering simultaneously. It is
also worth noting that in the cases where only
nearest-neighbor scattering is important, our
algorithm is extremely efficient in the sense that
the structure matrix retains its high degree of
symmetry while it also becomes a sparse matrix.
The computations outlined in this paper, when
dealing with a sparse structure matrix having a
high degree of symmetry, are extremely efficient
for including multiple scattering terms.

We have seen in this paper that multiple
scattering does not significantly degrade the
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quality of the images obtained. This has also been
seen in LEED theory [20] where the reconstructed
images of an Auger emission reconstruction of an
O atom on a Ni(1 0 0) surface gave results for
single and multiple scattering that were very
similar. Saldin et al. did show, however, that there
were very noticeable differences in the calculated
diffraction patterns, in contrast to our findings
that the holograms for single and multiple
scattering are very similar. This can be attributed
to the geometry of the emission of the probing
electron wave. As mentioned previously, in Auger
emission applications, the electron source is within
atomic distances of the object, while in LEEPS
microscopy the electron source is at a large
distance from the atomic cluster. It has also been
shown that multiple scattering does tend to
obscure images in some LEED applications, and
that improvements can be made in reconstructing
the holograms [21,22]. Images in some LEED
applications are also obscured by “twin’ images,
which are virtually not present in LEEPS images
due to the large distances from source to object. It
was shown that by energy averaging [21], and
averaging over the angle of collection [22] the
effects of multiple scattering on reconstructed
images could be significantly reduced. That is,
the quality of the images were improved by
averaging holograms of different energies and
screen positions, respectively. This was also shown
to work in LEEPS [23,24].

7. Outlook

In this paper we have reviewed the theory to
calculate electron holograms for the point source
electron microscope including multiple scattering.
Holographic diffraction and single scattering are
dominant for small carbon clusters. We have given
examples which show that, even when multiple
scattering is important, one can still obtain
reconstructions that reveal the atomic structure
both along and lateral to the optical axis. This is
encouraging in the sense that we can be confident
in using the single scattering approximation in
many cases of physical interest. Our result that
good reconstructions can still be obtained even

when multiple scattering is important, has sig-
nificant implications for experimental work in
LEEPS, i.e. in cases where multiple scattering will
be appreciable. We have also found, however, that
in some cases the multiple scattering is too strong
and reconstruction is not possible.

Multiple scattering will become appreciable for
large enough clusters, especially for clusters that
are thick enough in the optical direction. Multiple
scattering will also be appreciable in stronger
scatterers, such as metallic films, for which
classical diffraction also starts to play a role, and
eventually becomes dominant for films of more
than just a few atomic layers.

As shown in previous investigations [23,24], one
expects that the multiple scattering reconstructions
can be improved by taking images at various
electron energies and/or at different tilt angles of
the screen. Alternatively, by combining a few
holograms in the manner described in Ref. [25],
improved reconstructions would be obtained for
multiple scattering.

The consequence of the issue of convergence
described above is that further work is required in
order to definitively establish the effect of multiple
scattering. We regard the work in this paper as a
first step.
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