
BIOMETRICS
INFORMATION

HANDBOOK NO. 4 MARCH 1994

Catalog of Curves
for Curve Fitting

Biometrics Information Handbook Series

Province of British Columbia
Ministry of Forests



CATALOGUE OF CURVES
FOR CURVE FITTING

by

Vera Sit
Melanie Poulin-Costello

Series Editors

Wendy Bergerud
Vera Sit

Ministry of Forests
Research Program

1994



Canadian Cataloguing in Publication Data

Sit, Vera.
Catalog of curves for curve fitting

(Biometrics information handbook series, ISSN 1183-
9759 ; no.4)

Includes bibliographical references: p.
ISBN 0-7726-2049-0

1. Forests and forestry - Statistical methods. 2.
Regression analysis. 3. Curves. I. Paulin - Costello,
Melanie. II. British Columbia. Ministry of Forests.
Research Branch. III. Title.

SD387.S73S57 1994 634.9′072 C94-960073-3

 1994 Province of British Columbia
Published by the
Forest Science Research Branch
Ministry of Forests
31 Bastion Square
Victoria, B.C. V8W 3E7

Copies of this and other Ministry of Forests titles
are available from Crown Publications Inc.
546 Yates Street, Victoria, B.C. V8W 1K8.



iii

ACKNOWLEDGEMENTS

The authors would like to thank all the reviewers for their valuable comments. Special thanks go to Jeff Stone,
Jim Goudie, and Gordon Nigh for their suggestions to make this handbook more comprehensive. We also
want to thank Amanda Nemec and Hong Gao for checking all the derivatives and graphs in this handbook.



v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 REGRESSION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3 CURVE FITTING WITH SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Linear Regression using PROC REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Non-linear Regression using PROC REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 Non-linear Regression using PROC NLIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 A CATALOG OF CURVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.1 First degree polynomial: linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Second degree polynomial: quadratic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3 Third degree polynomial: cubic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Inverse Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 First degree inverse polynomial: hyperbola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Second degree inverse polynomial: inverse quadratic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Third degree inverse polynomial: inverse cubic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Rational function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.5 Mixed type function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Type I exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Type II exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Type III exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.4 Type IV exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.5 Type V exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.6 Type VI exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.7 Schumacher’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.8 Modified Weibull equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.9 Chapman-Richard’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.10 Generalized logistic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.11 Logistic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.12 Gompertz function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.13 Schnute’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Power Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Combined Exponential and Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.1 Type I combined exponential and power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 Type II combined exponential and power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.3 Generalized Poisson function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Logarithmic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.1 Cosine function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7.2 Sine function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.3 Arctangent function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Common Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8.2 Student-t  distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



vi

4.8.3 Fisher F distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.8.4 Chi-square distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 CURVE FITTING METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 How to Select Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 How to Choose Starting Values for PROC NLIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 What is Convergence? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Model Comparisons and Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.1 Fitting the model using PROC REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.2 Fitting the model using PROC NLIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.1 Fitting the model using PROC REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.2 Fitting the model using PROC NLIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6.3 Statistical consideration for a ‘‘better’’ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6.4 Subjective consideration for a ‘‘better’’ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 BASIC ATTRIBUTES OF CURVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Increasing and Decreasing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Symmetric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Concavity of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Maximum and Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Point of Inflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

APPENDIX 1 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

TABLES

1. Lima bean yield data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2. San Diego population data from 1860 to 1960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

FIGURES

1. Lima bean yield versus harvest dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2. San Diego population versus decades from first census . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3. Fitted models and the observed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4a. An increasing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4b. A decreasing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5. A symmetric function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6. A function with asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7a. A concave upward function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7b. A concave downward function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8a. A function with a local maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8b. A function with a local minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9. The graph of Y=8X5-5X4-20X3 showing the local extreniums and inflection points . . . . . . . . . . . . . 107



1 INTRODUCTION

This handbook is a collection of linear and non-linear models for fitting experimental data. It is intended to help
researchers fit appropriate curves to their data.

Curve fitting, also known as regression analysis, is a common technique for modelling data. The simplest
use of a regression model is to summarize the observed relationships in a particular set of data. More
importantly, regression models are developed to describe the physical, chemical and biological processes in a
system (Rawlings 1988).

This handbook is organized in the following manner:

• Section 2 defines the terminology and briefly describes the general idea of regression.

• Section 3 discusses the use of the SAS procedures PROC REG and PROC NLIN for linear and non-
linear curve fitting.

• Section 4 presents eight classes of curves frequently used for modelling data. Each class contains
several curves which are described in detail. For each curve, the equation, the derivatives, and the
linearized form of the equation are provided, as well as sample plots and SAS programs for fitting the
curve.

• Section 5 explains how to use this handbook for curve fitting. Some strategies for selecting starting
values and the concept of convergence are also discussed. Two examples are given to illustrate the
curve-fitting procedures.

• Section 6 provides a brief introduction to various basic attributes of curves. Also included are the
corresponding algebra and calculus for identifying these attributes.

A strong statistical or calculus background is not required to use this handbook. Although the discussions
and examples are based on SAS programs and assume some knowledge of programming, they should be of
general interest for anyone fitting curves.

This handbook does not provide an in-depth discussion of regression analysis. Rather, it should be used
in conjunction with a reliable text on linear and non-linear regression such as Ratkowsky (1983) or Rawlings
(1988).

2 REGRESSION ANALYSIS

In regression, a model or a mathematical equation is developed to describe the behaviour of a variable of
interest. The variable may be the growth rate of a tree, body weight of a grizzly bear, abundance of fish, or
percent cover of vegetation. This is called the dependent variable and is denoted by Y. Other variables that
are thought to provide information on the behaviour of the dependent variable are incorporated into the
equation as explanatory variables. These variables (e.g., seedling diameter, chest size of a grizzly bear,
volume of cover provided by large woody debris in streams, or light intensity) are called independent
variables and are denoted by X. They are assumed to be known without error.

In addition to the independent variables, a regression equation also involves unknown coefficients called
parameters that define the behaviour of the model. Parameters are denoted by lowercase letters (a, b, c, etc).
A response curve (or ‘‘response surface’’, when many independent variables are involved) represents the
true relationship between the dependent and independent variables. In regression analysis, a model is
developed to approximate this response curve — a process that estimates parameters from the available data.
A regression model has the general form:

Y = ƒ (X) + E

where ƒ (X) is the expected model and E is the error term. For simplicity, the error term E is omitted in
subsequent sections.
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A linear model is one that is linear in the parameters — that is, each term in the model contains only one
parameter which is a multiplicative constant of the independent variable (Rawlings 1988, p. 374). All other
models are non-linear. For example:

Y = a X + b

and Y = c X2 + d X + g

are linear models with parameters a and b, and c, d, and g, respectively. But:

Y = a Xb

and Y = a sin(bX)

are non-linear models.

Some non-linear models are intrinsically linear. This means they can be made linear with an appropriate
transformation. For example, the model:

Y = a ebx

is intrinsically linear. It can be converted to linear form with the natural logarithm (ln) transform:

ln(Y) = ln(a) + b X

However, some non-linear models cannot be linearized. The model:

Y = sin(bX)

is an example.

Linear models are very restrictive and are usually used for first-order approximations to true relationships.
On the other hand, non-linear models such as the inverse polynomial models, exponential growth models,
logistic model and Gompertz model, are often more realistic and flexible. In some cases, non-linear models will
have fewer parameters to be estimated and are therefore simpler than linear models.

Once a curve or model has been fitted (i.e., the parameters are estimated) to a set of data, it can be used
to estimate Y for each value of X. The deviation or difference of the observed Y from its estimate is called a
residual. It is a measure of the agreement between the model and the data.

The parameters in a model can be estimated by the least squares method or the maximum likelihood
method. With the least squares method the fitted model should have the smallest possible sum of squared
residuals, while with the maximum likelihood method the estimated parameters should maximize the likelihood
of obtaining the particular sample. Under the usual assumptions that the residuals are independent with zero
mean and common variance σ2, the least squares estimators will be the best (minimum variance) among all
possible linear unbiased estimators. When the normality assumption is satisfied, least squares estimators are
also maximum likelihood estimators.

3 CURVE FITTING WITH SAS

Two SAS procedures are available for curve fitting — PROC REG and PROC NLIN. PROC REG is suitable for
fitting linear models whereas PROC NLIN is used for fitting non-linear models. Intrinsically linear models can
also be fitted with PROC REG provided that the appropriate transformations are known. Both SAS procedures
use the least squares method for estimating the model parameters.
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3.1 Linear Regression Using PROC REG

The following is an example of the PROC REG procedure:

PROC REG DATA = one;
MODEL Y = X;

RUN;

The keywords PROC REG invoke the SAS procedure for linear regression. The option:

DATA = SASdataset;

names the SAS data set to be analyzed by PROC REG. The most recently created SAS data set is used if the
DATA = option is omitted.

The model to be fitted is specified in the MODEL statement which has the form:

MODEL dependent variables = independent variables/options;

The explanatory variables are listed on the right-hand side of the equal sign. In the above example,

MODEL Y = X;

specifies the model Y = a + b X

If more than one dependent variable is listed on the left-hand side of the equal sign, then separate models will
be fitted for each one. For example, the statement:

MODEL Y Z = X1 X2;

requests two models to be fitted. These models are:

Y = a + b X1 + c X2

and Z = m + n X1 + k X2

The variables specified in the MODEL statement must be numeric; functions of variables are not allowed.
Therefore, to fit the model:

Y = a + b X + c X2

one must first create a new variable (X2 = X*X) in a data step, then issue the MODEL statement:

MODEL Y = X X2;

The estimated parameters and the fitted values can be saved in SAS data sets for later use. See Chapter 28 of
the SAS/STAT User’s Guide (SAS Institute Inc.1988a) for a complete description of this procedure.

3.2 Non-linear Regression Using PROC REG

Intrinsically linear models can be fitted with PROC REG if the appropriate transformations are known. For
example, the model:

Y = a Xb

can be converted to linear form using the natural log (ln) transformation:

ln(Y) = ln(a) + b ln(X)
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or Z = c + b U

where Z = ln(Y), c = ln(a), and U = ln(X). Before using PROC REG, the natural log transformation of Y and X
must be performed in a data step. If the variables Y and X were stored in a SAS data set called OLD, then the
following SAS code1 could be used to do the regression:

DATA NEW;
SET OLD;
Z = LOG(Y); U = LOG(X);

PROC REG DATA = NEW;
MODEL Z = U;

RUN;

Once the regression is completed, the fitted parameters can be transformed to the parameters in the non-
linear model. Continuing with the example, the parameter a in the non-linear model can be obtained from the
intercept of the fitted linear model with the exponential function:

a = ec

Parameter b has the same value in both the linear and non-linear model.

When a linearized model is fitted with PROC REG, the error term is also transformed. In this example, the
fitted regression model is:

ln(Y) = ln(a) + b ln(X) + E (1)

The error term E in this model is additive. When the model is transformed back to its non-linear form, it
becomes:

Y = a Xb ⋅ eE (2)

That is, the actual model fitted has a multiplicative error term. The SAS procedure PROC NLIN, however, fits
the model:

Y = a Xb + E (3)

If E in the linear model (1) is normally distributed, then eE in the non-linear model (2) is log-normal distributed,
which is different from the normal distribution assumed in the non-linear model (3). Because of the different
error structures in models (2) and (3), different parameter estimates may result. An example is given in
Section 5.6.

In this handbook, the linearized forms, the relationships between parameters in the linear and non-linear
forms, and the SAS programs for fitting the linearized models are provided for all intrinsically linear models.

3.3 Non-linear Regression Using PROC NLIN

Non-linear models are more difficult to specify and estimate than linear models. In SAS, they can be fitted with
the procedure NLIN. To use PROC NLIN, one must write the regression expression, declare parameter
names, guess the starting values of the parameters, and possibly specify the derivatives of the model with
respect to the parameters. PROC NLIN is an iterative procedure with five methods available as options:

• gradient method

• Newton method

1 In SAS, the function LOG is the natural logarithm (ln). Logarithm to the base 10 can be requested by the SAS function LOG10.
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• modified Gauss-Newton method

• Marquardt method

• multivariate secant or false position (DUD) method

All methods except DUD (Does not Use Derivatives) require a partial derivative of the model with respect
to each parameter (i.e., ∂Y/∂a, ∂Y/∂b, etc.) The Newton method also requires the second derivatives of the
model with respect to each parameter (i.e., ∂2Y/∂a2, ∂2Y/∂b2, etc.).

When derivatives are provided, the Gauss-Newton is the default method of estimation; otherwise, DUD is
the default method. Of the two default methods, the Gauss-Newton method is fastest.

To demonstrate the structure of a PROC NLIN step, let us suppose that the model Y = a Xb is to be fitted to
a set of data. The following is an example to carry out the regression:

PROC NLIN DATA = POINT;
PARAMETER A = 1.0 B = 0.5;
MODEL Y = A * X ** B;
DER.A = X ** B;
DER.B = A * LOG(X) * X ** B;

RUN;

The PROC NLIN statement invokes the SAS procedure. It has several options.

DATA = SASdataset;

names the SAS data set to be analyzed by PROC NLIN. If the DATA = option is omitted then the most recently
created SAS data set is used.

METHOD = iteration method;

specifies the iterative method NLIN uses. If the METHOD = option is omitted and the DER statement is
specified, then METHOD = GAUSS is used. If the METHOD = option is not specified and the DER statement is
absent, then METHOD = DUD is used.

Other options are available to control the iteration process. See Chapter 23 of the SAS/STAT User’s
Guide (SAS Institute Inc. 1988a) for more detail.

The PARAMETER statement defines the parameters and their starting values. It has the form:

PARAMETER parameter = starting values . . . ;

A range of starting values may also be specified with this statement. For example:

PARAMETER A = 0 TO 15 BY 5;

specifies four starting values (0, 5, 10, and 15) for A.

PARAMETER A = 1, 7, 9;

specifies three starting values (1, 7, and 9).

The PARAMETER statement must follow the PROC NLIN statement. See chapter 23 of the SAS/STAT User’s
Guide (SAS Institute Inc. 1988a) for more details.

The MODEL statement defines the equation to be fitted. It has the form:

MODEL dependent variable = expression;

The expression can be any valid SAS expression.
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The DER statement specifies partial derivatives with respect to the parameters. It has the form:

DER.parameter = expression;

DER.parameter.parameter = expression;

Use the first statement for specifying first derivatives, and the second for second derivatives.

A special feature of PROC NLIN is that it allows the creation of new variables within the procedure. This is
particularly useful when a certain expression is to be evaluated many times. In the regression example above,
the expression Xb appears in the MODEL statement, the DER.A statement, and the DER.B statement. To
simplify the program (and reduce computation time), we can add the statement

XB = X ** B;

to the program as follows:

PROC NLIN DATA = POINT;
PARAMETER A = 1.0 B = 0.5;
XB = X ** B;
MODEL Y = A * XB;
DER.A = XB;
DER.B = A * LOG(X) * XB;

RUN;

The PROC NLIN codes for fitting the curves are provided in Section 4. Readers need only to rename the
X and Y variables and choose the starting values for the parameters. The starting values can be determined
by comparing a scatter plot of the experimental data with the sample plots shown throughout the handbook,
and matching the description of the parameters in the handbook with the corresponding features shown in the
scatter plot. This is further explained in the Section 5.2 and demonstrated in the examples.

4 A CATALOG OF CURVES

Curves for both linear and non-linear models are presented in this section. They are grouped into eight
classes:

1. polynomials

2. inverse polynomials

3 exponential functions

4. power functions

5. combined exponential and power functions

6. logarithmic functions

7. trigonometric functions

8. common distributions

Each class contains several functions and each function is treated separately. The following information is
provided:
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The functional form is the equation of the model. It is stated as:

Y = ƒ(X)

Standard functional names are used if possible. Otherwise, the functions are named sequentially as Type I or
Type II. The first derivative of Y with respect to X ( i.e. dY )dX is provided for determining special features of
a curve such as the maximum, minimum, and point of inflection. These features and the technique to identify
them are discussed in Section 6. The partial derivatives of Y with respect to model parameters (e.g. ∂Y ∂Y ),

∂a ∂b
are also given as they are required for PROC NLIN (but not for the derivative-free [DUD] method).

For intrinsically linear models, the linearized form and the relationship between the parameters in the
linear and non-linear forms are supplied. Also included is a short description of the curve and the roles the
parameters play in determining the behaviour of the curve. Sample SAS programs for doing linear or non-
linear regression are provided for readers’ convenience. To use these programs, the X’s and Y’s should be
replaced by the appropriate variable names. In addition, appropriate starting values must be substituted if
PROC NLIN is to be used (the values in the sample programs are arbitrary).

Finally, a number of graphs are presented for each curve. Each graph shows the impact of changing a
parameter on the curve when other parameters are kept constant. These graphs are helpful for selecting
models and parameter starting values.

The domain of a function is the set of X-values for which the function is defined. For most of the models
presented in this section, the domain is the set of real numbers: − ∞ < X < ∞.

4.1 Polynomials

A polynomial of degree n has the form:

Y = c
0

+ c
1
X + c

2
X2 + … + c

n − 1
Xn − 1 + c

n
Xn

where the c
i
’s are real numbers. They are the parameters, or coefficients, of the X terms. For example:

Y = 1 + 5X + 2X2 (1)

is a polynomial of degree 2 with parameters c
0

= 1, c
1

= 5, and c
2

= 2. The equation:

Y = 4X3 (2)

is a polynomial of degree 3 with parameters c
0

= c
1

= c
2

= 0 and c
3

= 4.

Polynomials are unbounded — that is, as X increases indefinitely, the function Y increases or decreases
without limit.

A criterion for selecting a functional form is the number of extremums (i.e., maximum or minimum or both).
A polynomial of degree n has at most n-1 extremums. For example, equation (1) is a polynomial of degree 2
with one minimum; equation (2) is a polynomial of degree 3 with no extremum. A polynomial of degree 1 is a
straight line with no extremum.
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A polynomial is linear with respect to its parameters, and therefore can be fitted with PROC REG.
Polynomials are a common choice for curve fitting because they are simple to use. Lower degree polynomials
are easier to interpret than higher degree polynomials. For this reason, only polynomials of degree one, two,
and three are included here. Although polynomials can provide a very good fit to data, they extrapolate poorly
and should be used with caution.

Any continuous response function can be approximated to any level of precision desired by a polynomial
of appropriate degree. Because of this flexibility, it is easy to ‘‘overfit’’ a set of data with polynomial models.
Thus, an excellent fit of a polynomial model (or for that matter, any model) cannot be interpreted as an
indication that it is, in fact, the true model.
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4.1.1 First degree polynomial: linear

Functional form: Y = a + bX − ∞ < X < ∞

Derivatives: dY
dX

= b

∂Y ∂Y
∂a ∂b

= 1 = X

Linearized model and parameters: This functional form is already linear.

Description: This is the equation of a straight line. Parameter a is the Y-intercept and it controls the
vertical position of the line. Parameter b is the slope of the line.

Sample PROC REG program:

PROC REG DATA=LINEAR;
MODEL Y = X;

RUN;

PROC NLIN is unnecessary because this is a linear model.
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Functional form: Y = a + bX X > 0
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4.1.2 Second degree polynomial: quadratic

Functional form: Y = a + bX + cX2 − ∞ < X < ∞

Derivatives: dY
dX

= b+2cX

∂Y ∂Y ∂Y
∂a ∂b ∂c

= 1 = X = X2

Linearized model and parameters: This functional form is already linear.

Description: The graph of a quadratic is called a parabola. It is commonly expressed in the above
functional form. However, the roles of the parameters are easier to understand from the
alternative non-linear form:

Y = A(X − B)2 + C

The parameters in the two forms are related as follows:

a = AB2 + C b = −2AB c = A

Also, A = c B = − C = a −b b2

2c 4c

Parameter A controls the shape of the parabola such that:

• for A > 0, parabola is concave up

• for A = 0, parabola becomes the horizontal line Y = C

• for A < 0, parabola is concave down

The parabola is symmetric about X = B, which is the location of the extremum on the X-axis. Parameter C
shifts the parabola up and down the Y-axis. See Section 6.1 for an example using the second degree
polynomial.

Sample PROC REG program for the linearized model:

PROC REG DATA=PARAB;
MODEL Y = X X2;
*NOTE X2 = X*X must be created in a previous data step;

RUN;

Sample PROC NLIN program for the alternative form:

PROC NLIN DATA = PARAB;
PARAMETERS A=5 B=10 C=30;
XB = (X - B);
MODEL Y = A*XB**2 + C;
DER.A = XB**2;
DER.B = -2*A*XB;
DER.C = 1;

RUN;
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Functional form: Y = A(X − B)2 + C
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4.1.3 Third degree polynomial: cubic

Functional form: Y = a + bX + cX2 + dX3 − ∞ < X < ∞

Derivatives: dY
dX

= b + 2cX + 3dX2

∂Y ∂Y ∂Y ∂Y
∂a ∂b ∂c ∂d

= 1 = X = X2 = X3

Linearized model and parameters: This functional form is already linear.

Description: The basic shape of a cubic is a sideways ‘‘S’’ ( ). Parameter d shifts the curve up and down
the Y-axis. The parameters a, b, and c work together to make the S-shape flatter or deeper.
While the above form is linear, the role of the parameters is more clearly understood in the
alternative form:

Y = A(X − B)(X − C)(X − B + C) + D
2

The parameters in the two forms are related as follows:

a = D − ABC (B + C) b = A (B + C)2
+ ABC

2 2

c = −3 A (B + C) d = A
2

Also A = d B = 1 [ − 2c + √4c2
− 4 (b − 2c2 ) ]2 3d 9d2 d 9d

C = 1 [ − 2c − √4c2
− 4 (b − 2c2 ) ]2 3d 9d2 d 9d

D = a − c (b − 2c2 )3d 9d

In the non-linear form of the cubic, parameter A scales the curve in the Y direction and D shifts the curve in the
Y direction. Parameters B and C have the same effects on the shape of the curve; together they shift and
squeeze the curve in the X direction. As parameters B and C are equivalent, only the graphs that show the
effect of varying B are presented in the following pages.

Sample PROC REG program for the functional form:

PROC REG DATA = CUBIC;
MODEL Y = X X2 X3;
* X2 = X*X AND X3 = X*X*X must be created in a previous data step;

RUN;

Sample PROC NLIN program for the alternative form:

PROC NLIN DATA = CUBIC2;
PARAMETER A= 0.8 B=-0.5 C=-0.4 D=2;
XB=X-B; XC=X-C; BC2=(B+C)/2;
MODEL Y = A*XB*XC*(X-BC2)+D;
DER.A = XB*XC((X-BC2);
DER.B = A*XC*(B+0.5*C-1.5*X);
DER.C = A*XB*(C+0.5*B-1.5*X);
DER.D = 1;

RUN;
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Functional form: Y = A(X − B)(X − C)(X − B + C) + D
2
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Functional form: Y = A(X − B)(X − C)(X − B + C) + D
2
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4.2 Inverse Polynomials

In biometrics applications, an increase in a stimulus often produces either a saturation effect or a toxic effect to
the experimental subjects. With a saturation effect, the response reaches a finite amount and remains at that
level without exceeding it. Therefore, an unbounded functional form, such as a polynomial, is not suitable.
With a toxic effect, the response rises to a maximum then drops off, which could be modelled with a concave
down second degree polynomial. However, there is usually no a priori  reason for assuming any symmetry
about the peak of the function and a parabola is not appropriate. Instead, these types of response could be
modelled with inverse polynomials (Nelder 1966).

An inverse polynomial of degree n has the form:

X = c
0

+ c
1
X + c

2
X2 + … + c

n − 1
Xn − 1 + c

n
Xn

Y

or Y = X
c

0
+ c

1
X + c

2
X2 + … + c

n − 1
Xn − 1 + c

n
Xn

where c
i
’s are the parameters.

Inverse polynomials are generally non-negative, bounded, and not necessarily symmetric in the second
degree case. See Nelder (1966) for a complete description of inverse polynomials.
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4.2.1 First degree inverse polynomial: hyperbola

Functional form: Y = X ≠ −X a
a + bX b

Derivatives: dY = a
dX (a + bX)2

∂Y = −X ∂Y = −X2

∂a (a + bX)2 ∂b (a + bX)2

Linearized model and parameters: 1 b
0= + b

1Y X

a = b
0

b = b
1

Description: The first degree inverse polynomial has a horizontal asymptote at Y = 1  and a vertical
b

asymptote at X = −a. (See Section 6.3 for a description of asymptotes.)
b

Sample PROC REG program for the linearized model:

PROC REG DATA = FIRST;
MODEL Y1 = X1;
*NOTE X1 = 1/X and ;
* Y1 = 1/Y must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA = FIRST;
PARAMETERS A = 4.0 B = 0.5;
ABX = 1/(A + B*X);
XABX = X*ABX;
XABXSQ = XABX*ABX;
MODEL Y = XABX;
DER.A = -1*XABXSQ;
DER.B = -X*XABXSQ;

RUN;
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Functional form: Y = X
a + bX
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4.2.2 Second degree inverse polynomial: inverse quadratic

Functional form: Y = X a + bX + cX2 ≠ 0
a + bX + cX2

Derivatives: dY = a − cX2

dX (a + bX + cX2)2

∂Y = −X ∂Y = −X2

∂a (a + bX + cX2)2 ∂b (a + bX + cX2)2

∂Y = −X3

∂c (a + bX + cX2)2

Linearized models and parameters:
1

=
b

0 + b
1

+ b
2
X

Y X

a = b
0

b = b
1

c = b
2

Description: The inverse quadratic function has a shape similar to a parabola. It rises quickly for small
values of X, and then falls gradually as X increases further. Parameters a and c describe the
rising and falling extrema of the curve, respectively; for small X, Y ≈ X/a, and for large X,
Y ≈ 1/(cX). The extrema occur at X = ±√a/c. Parameter b controls the height of the
maximum. Ratkowsky (1990, p.3) calls this the Hailwood and Horrobin Model.

Sample PROC REG program for the linearized model:

PROC REG DATA = SECOND;
MODEL Y1 = X1 X;
*NOTE X1 = 1/X and;
* Y1 = 1/Y must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA = SECOND;
PARAMETERS A = 2.0 B=0.5 C = 0.5;
ABCX = 1/(A + B*X + C*X**2);
ABCX2 = ABCX**2;
MODEL Y = X*ABCX;
DER.A = -X*ABCX2;
DER.B = -X**2*ABCX2;
DER.C = -X**3*ABCX2;

RUN;
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Functional form: Y = X
a + bX + cX2
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4.2.3 Third degree inverse polynomial: inverse cubic

Functional form: Y = X a + bX + cX2 + dX3 ≠ 0
a + bX + cX2 + dX3

Derivatives: dY = a − cX2 − 2dX3

dX (a + bX + cX2 + dX3)2

∂Y = −X
∂a (a + bX + cX2 + dX3)2

∂Y = −X2

∂b (a + bX + cX2 + dX3)2

∂Y = −X3

∂c (a + bX + cX2 + dX3)2

∂Y = −X4

∂d (a + bX + cX2 + dX3)2

Linearized model and parameters:
1

=
b

0 + b
1

+ b
2
X + b

3
X2

Y X

a = b
0

b = b
1

c = b
2

d = b
3

Description: The shape of the curve, the location and the value of the extrema are controlled by all four
parameters.

Sample PROC REG program for the linearized model:

PROC REG DATA = THIRD;
MODEL Y1 = X1 X X2;
* Note: X1 = 1/X, X2 = X*X and Y1 = 1/Y;
* must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA = THIRD;
PARAMETERS A=4.0 B=0.5 C=0.5 D=2.0;
ABCDX = 1/(A + B*X +C*X**2 D*X**3);
ABCDX2 = ABCDX**2;
MODEL Y = X*ABCDX;
DER.A = -X*ABCDX2;
DER.B = -X**2*ABCDX2;
DER.C = -X**3*ABCDX2;
DER.D = -X**4*ABCDX2;

RUN;



25

Functional form: Y = X X > 0
a + bX + cX2 + dX3
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4.2.4 Rational function

Functional form: Y = X ≠ −b and X ≠ −d
a c

+
1 + b/X 1 + d/X

Derivatives: dY ab cd ab cd= + = +
dX (1 + b/X)2X2 (1 + d/X)2X2 (X + b)2 (X + d)2

∂Y 1 ∂Y −a= =
∂a 1 + b/X ∂b X(1 + b/X)2

∂Y 1 ∂Y −c= =
∂c 1 + d/X ∂d X(1 + d/X)2

Linearized model and parameters: This function can not be linearized.

Description: The curve has a horizontal asymptote at Y = a + c. Parameters b and d control the rate at
which the curve approaches its asymptote. Note that varying a would have the same effect
as varying c, and varying b would have the same effect as varying d. Also, the curve is a first
degree inverse polynomial (Section 4.2.1), where c = 0 or a = 0.

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=RAT;
PARAMETERS A=1.0 B=1.0 C=1.0 D=1.0;
DENOMA = 1/(1 + B/X);
DENOMC = 1/(1 + D/X);
ADENA = A*DENOMA;
CDENC = C*DENOMC;
MODEL Y = ADENA + CDENC;
DER.A = DENOMA;
DER.B = -1*ADENA*DENOMA/X;
DER.C = DENOMC;
DER.D = -1*CDENC*DENOMC/X;

RUN;
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Functional form: Y = X > 0
a c

+
1 + b/X 1 + d/X
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4.2.5 Mixed type function

Functional form: Y = + bX + c X ≠ 0a
X

Derivatives: dY −a= + b
dX X2

∂Y 1 ∂Y ∂Y= = X = 1
∂a X ∂b ∂c

Linearized model and parameters: Y = b
0

+ b
1
X + b

2
X−1

a = b
2

b = b
1

c = b
0

Description: By finding a common denominator for the right-hand side, this functional form can also be
written as:

Y = a + bX2 + cX
X

Notice that this is the reciprocal of the second degree inverse polynomial. There is a vertical asymptote at
X = 0. The parameters a and b control the shape of the curve while c shifts the curve up and down the Y-axis.

Sample PROC REG program for the linearized model:

PROC REG DATA = ABC;
MODEL Y = X X1;
*NOTE X1 = 1/X must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA = ABC;
PARAMETERS A=4.0 B=5.0 C=10.0;
X1 = 1/X;
MODEL Y = A*X1 + B*X + C;
DER.A = X1;
DER.B = X;
DER.C = 1;

RUN;
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Functional form: Y = + bX + c X > 0a
X
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4.3 Exponential Functions

4.3.1 Type I exponential function

Functional form: Y = aebX − ∞ < X < ∞

Derivatives: dY = abebX

dX

∂Y ∂Y= ebX = aXebX

∂a ∂b

Linearized model and parameters: ln(Y) = b
0

+ b
1
X

a = eb0 b = b
1

Description: The parameter a is the Y-intercept; the parameter b is the shape parameter of the curve.
There is a horizontal asymptote at Y = 0. When b < 0, the curve approaches the asymptote
as X approaches infinity; when b > 0, the curve approaches the asymptote as X approaches
negative infinity. See Daniel and Woods (1980, Chapter 3) and Ratkowsky (1990, p. 86) for
descriptions of the exponential function.

Sample PROC REG program for the linearized model:

PROC REG DATA=EXPON;
MODEL Y1 = X;
**** Y1 = LOG(Y) must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=EXPON;
PARAMETERS A=5.0 B=2.0;
EBX = EXP(B*X);
MODEL Y = A*EBX;
DER.A = EBX;
DER.B = A*X*EBX;

RUN;
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Functional form: Y = aebX
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4.3.2 Type II exponential function

Functional form: Y = ea − bX − ∞ < X < ∞

Derivatives: dY
dX

= −bea − bX

∂Y ∂Y
∂a ∂b

= ea − bX = −Xea − bX

Linearized model and parameters: ln(y) = b
0

+ b
1
X

a = b
0

b = −b
1

Description: This is a more modern form of the exponential function in Section 4.3.1. Ratkowsky (1990)
describes this as a ‘‘close-to-linear’’ model because the estimated parameters possess the
characteristics of those of a linear model — that is, the estimates are close to being
unbiased, normally distributed, and having minimum variance. Since the parameter esti-
mates have desirable statistical properties, this form of the exponential function is also used
in the logistic curve and the Gompertz curve.

Sample PROC REG program for the linearized model:

PROC REG DATA=EXPON;
MODEL Y1 = X;
**** Y1 = LOG(Y) must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=EXPON;
PARAMETERS A=5.0 B=2.0;
EABX = EXP(A - B*X);
MODEL Y = EABX;
DER.A = EABX;
DER.B = -X*EABX;

RUN;
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Functional form: Y = ea − bX
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4.3.3 Type III exponential function

Functional form: Y = aeb/X X ≠ 0

Derivatives: dY −abeb/X
=

dX X2

∂Y = eb/X ∂Y = a
eb/X

∂a ∂b X

Linearized model and parameters: ln(Y) = b
0

+
b

1

X

a = eb0 b = b
1

Description: In this functional form, X is non-linear in the exponent. This function has no maximum or
minimum. It has a vertical asymptote at X = 0 and a horizontal asymptote at Y = a. The shape
of the curve is concave up for a > 0 and b > 0, and concave down for a < 0 and b < 0. See
Daniel and Woods (1980, Chapter 3) for another description of this exponential function.

Sample PROC REG program for the linearized model:

PROC REG DATA=AEBX;
MODEL Y1 = X1;
**** X1 = 1/X must be created in a previous data step;
**** Y1 = LOG(Y)

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=EXPON;
PARAMETERS A=5.0 B=2.0;
EBX = EXP(B/X);
MODEL Y = A*EBX;
DER.A = EBX;
DER.B = A*EBX/X;

RUN;
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Functional form: Y = aeb/X X > 0
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4.3.4 Type IV exponential function

Functional form: Y = abX = aeXln(b) − ∞ < X < ∞

Derivatives: dY
dX

= abXln(b), b > 0

∂Y ∂Y
∂a ∂b

= bX = aXbX − 1

Linearized model and parameters: For b > 0, ln(Y) = b
0

+ b
1
X

a = exp(b
0
) b = exp(b

1
)

Description: This functional form is a more general form of the Type I exponential function (Section
4.3.1). Note that bX is not always defined for b < 0. For example, the square root (X = 1⁄2) of a
negative number is undefined. Also, Y = a at X = 0.

Sample PROC REG program for the linearized model:

PROC REG DATA=MODEXP;
MODEL Y1 = X;
**** Y1 = LOG(Y) must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=MODEXP;
PARAMETERS A=4.0 B=1.25;
BX = B**X;
ABX = A*BX;
MODEL Y = ABX;
DER.A = BX;
DER.B = X*ABX/B;

RUN;
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Functional form: Y = abX X > 0
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4.3.5 Type V exponential function

Functional form: Y = ab(X − c)2 − ∞ < X < ∞

Derivatives: dY
dX

= 2a(X − c)b(X − c)2 ln(b), b > 0

∂Y ∂Y
∂a ∂b

= b(X − c)2 = a(X − c)2b(X − c)2 − 1

∂Y
∂c

= −2a(X − c)ln(b)b(X − c)2

Linearized model and parameters: ln(Y) = b
0

+ b
1
X + b

2
X2

a = exp(b
0

−
b

1
2

) b = exp(b
2
)

4b
2

c =
−b

1

2b
2

Description: This functional form has a quadratic in the exponent. This curve is the same as the Normal
distribution in Section 4.8.1 (mean µ and variance σ2) when a = 1 , b = e−1/( 2 σ2), and√2π σ
c = µ. Parameter a controls the height (Y-value) of the maximum or minimum; parameter c
controls the location (X-value) of the maximum or minimum. The curve has a minimum for
a > 0 and b > 1, and a maximum for a > 0 and b < 1; it is straight line (i.e., Y = a) for b = 1.

Sample PROC REG program for the linearized model:

PROC REG DATA=MODEXP;
MODEL Y1 = X X2;
**** X2 = X*X must be created in a previous data step;
**** Y1 = LOG(Y)

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=MODEXP;
PARAMETERS A=2.0 B=0.1 C=1.0;
XC = (X-C)**2;
BXC = B**XC;
ABXC = A*BXC;
MODEL Y = ABXC;
DER.A = BXC;
DER.B = ABXC*XC/B;
DER.C = -2*ABXC*(X-C)*LOG(B);

RUN;



39

Functional form: Y = ab(X − c) 2
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4.3.6 Type VI exponential function

Functional form: Y = a(e− bX − e− aX) − ∞ < X < ∞
a − b

Derivatives: dY = a(ae− aX − be− bX)
dX a − b

∂Y = 1 (e−aX (aX − 1) + e−bX) − a(e−bX − e−aX)
∂a a − b (a − b)2

∂Y = a(e−aX − e−bX) − aXe−bX

∂b (a − b)2 a − b

Linearized model and parameters: This function can not be linearized.

Description: The parameters a and b work together to control the height of the maximum. Parameter a
also shifts the maximum along the X-axis. See Daniel and Woods (1980, Chapter 3) for
another description of this exponential function.

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=NLIN;
PARAMETERS A=0.3 B=0.4;
EAX = EXP(-A*X);
EBX = EXP(-B*X);
EAEB = EBX-EAX;
AB = 1/(A-B);
AEB = A*EAEB*AB
MODEL Y = AEB;
DER.A = AB*(EAX*(A*X-1) + EBX) - EAEB*A*AB*AB;
DER.B = AEB*AB - A*X*EBX*AB;

RUN;
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Functional form: Y = a(e− bX − e− aX) X > 0
a − b
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4.3.7 Schumacher’s equation

Functional form: Y = ea + b/X − ∞ < X < ∞

Derivatives: dY = − b ea + b/X

dX X2

∂Y = ea + b/X ∂Y = 1 ea + b/X

∂a ∂b X

Linearized model and parameters: ln(Y) = b
0

+
b

1

X

a = b
0

b = b
1

Description: This equation was developed by F.X. Schumacher (1939) for modelling volume-yield of an
even-aged timber stand. It is usually expressed in the linearized form. This equation
assumes that the rate of change of Y is inversely proportional to X. In growth and yield
terms, this assumption translates as decline in growth rate with age, a characteristic of an
even-aged timber stand. Parameter a is the logarithm of the maximum Y-value as
X approaches infinity. See Schumacher (1939) for more description and an application of
this equation.

Sample PROC REG program for the linearized model:

PROC REG DATA=SCHUMACH;
MODEL Y1 = X1;
**** Y1 = LOG(Y) and X1 = 1/X ;
**** must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA = SCHUMACH;
PARAMETER A = 0.1 B = 0.1;
EX = EXP(A+B/X);
MODEL Y = EX;
DER.A = EX;
DER.B = EX/X;

RUN;
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Functional form: Y = ea + b/X
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4.3.8 Modified Weibull equation

Functional form: Y = 1 − e− aXb
− ∞ < X < ∞

Derivatives: dY
dX

= abXb −1e− aXb

∂Y ∂Y
∂a ∂b

= Xbe−aXb
= aXbe− aXb

ln(X)

Linearized model and parameters: ln[− 1
ln(Y) ] = b

1
Xa

b = b
1

This linearized model requires that a be known.

Description: This model is derived from the Weibull Probability function, originally developed by Weibull
(1951). It is very flexible, and especially useful for fitting growth and yield data. Parameters a
and b are scale and shape parameters, respectively. The curve passes through the origin
(X = 0, Y = 0), and approaches a maximum asymptotically when X approaches infinity. It is
similar to the Type I exponential function (Section 4.3.1) when b = 1. See Yang et al. (1978)
for more description of the modified Weibull equation and examples. See Leech and
Ferguson (1981) for a comparison of this model with other growth models.

Sample PROC REG program for the linearized model with parameter a known:

PROC REG DATA=WEIBULL;
MODEL Y1 = X / NOINT; ** A no intercept model is requested;
**** Y1 = LOG(-LOG(1-Y)/A) must be created in a previous

data step;
RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=WEIBULL;
PARAMETERS A=10 B=2.0;
EABX = EXP(-A*X**B);
MODEL Y = 1-EABX;
DER.A = EXAB*X**B;
DER.B = LOG(X)*A*EABX*X**B

RUN;
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Functional form: Y = 1 − e−aXb
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4.3.9 Chapman-Richard’s equation

Functional form: Y = a[1 − e−bX ] c
− ∞ < X < ∞

Derivatives: dY
dX

= abc e− bX [1 − e− bX] c − 1

∂Y ∂Y
∂a ∂b

= [1 − e− bX] c
= acXe− bX[1 − e−bX] c − 1

∂Y
∂c

= a[1 − e− bX] c
ln[1 − e−bX]

Linearized model and parameters: ln[1 − (Y )
1/c

] = b
1
X

a

b = − b
1

This linearized model requires that parameters a and c be known.

Description: This model is also known as the Von Bertalanffy equation. It includes a number of common
models. It is the natural growth model when c = 1:

Y = a(1 − e− bX)

It is the logistic model when c = −1:

Y = 1
a(1 − e− bX)

See Richards (1959), Hunt (1982, Sections 6.2 and 6.5), and Ratkowsky (1990,
pp. 109–110, 131) for more descriptions of this function. The following PROC REG step is
written for the natural growth model (c = 1).

Sample PROC REG program for the linearized model with parameter c = 1 and parameter a known:

PROC REG DATA=NATURAL;
MODEL Y1 = X / NOINT; ** A no intercept model is requested;
**** Y1 = LOG(1 - Y/A) must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=NATURAL;
PARAMETERS A=8.0 B=2.0 C=0.5;
EBX = EXP(-B*X);
EBX1 = 1 - EBX;
EBXC = (EBX1)**C;
MODEL Y = A*EBXC;
DER.A = EBXC;
DER.B = A*X*C*EBX*EBX1**(C-1);
DER.C = A*EBXC*LOG(EBX1);

RUN;
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Y = a(1 − e−bX)C X > 0
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4.3.10 Generalized logistic function

Functional form: Y = a − ∞ < X < ∞
d + eb − cX

Derivatives: dY aceb − cX
=

dX (d + eb − cX)2

∂Y 1 ∂Y −aeb − cX
= =

∂a d + eb − cX ∂b (d + eb − cX)2

∂Y aXeb − cX ∂Y −a= =
∂c (d + eb − cX)2 ∂d (d + eb − cX)2

Linearized model and parameters: ln[ a − d ] = b
1

+ b
2
X

Y

b = b
1

c = −b
2

The linearized form of the generalized Logistic function requires that both parameters a and
d be known. Note also that a/Y − d must be positive for the logarithm to be valid.

Description: This is a common function in biometrics applications. It has two horizontal asymptotes: at
Y = 0 for X → ∞ (off the graph), and at Y = a/d for X → −∞ (c positive). This function has an
inflection point at X = b/c. The characteristic shape of the logistic function is called a sigmoid.
See Sweda (1984), Daniel and Woods (1980, Chapter 3), and Ratkowsky (1990, pp. 128,
137) for other descriptions of this function. Any textbook on modelling growth will also
discuss the logistic function.

Sample PROC REG program for the linearized model with parameters a and d known:

PROC REG DATA=LOGISTIC;
MODEL Y1 = X;
**** Y1 = LOG(A/Y - D) must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=LOGIST;
PARAMETERS A=2.0 B=2.0 C=2.0 D=2.0;
DEN = 1/(D + EXP(B-C*X));
EE = A*EXP(B-C*X)*DEN**2;
MODEL Y = A*DEN;
DER.A = DEN;
DER.B = -EE;
DER.C = X*EE;
DER.D = -A*DEN**2

RUN;
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Functional Form: Y = a X > 0
d + eb − cX
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4.3.11 Logistic function

Functional form: Y = a − ∞ < X < ∞
1 + eb − cX

Derivatives: dY aceb − cX
=

dX (1 + eb − cX)2

∂Y 1 ∂Y −aeb − cX
= =

∂a 1 + eb − cX ∂b (1 + eb − cX)2

∂Y aXeb − cX
=

∂c (1 + eb − cX)2

Linearized model and parameters: ln[ a − 1 ] = b
1

+ b
2
Xy

b = b
1

c = −b
2

Description: This is a special case of the generalized logistic function (Section 4.3.10) with d = 1. It has
the same shape as the generalized function. It is symmetric about the inflection point
(X = b/c, Y = a/2) and has an asymptote at Y = a. See Sweda (1984), Daniel and Woods
(1980, Chapter 3), Hunt (1982, Section 6.3), and Ratkowsky (1990, pp. 128, 137) for other
descriptions of this function. Any text on modeling growth will also discuss the logistic
function.

Sample PROC REG program for the linearized model with parameter a known:

PROC REG DATA = LOGISTIC;
MODEL Y1 = X;
**** Y1 = LOG(A/Y - 1) must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA = LOGISTIC;
PARAMETERS A = 2.0 B=1.0 C=-0.5;
E = EXP(B - C*X);
MODEL Y = A/(1 + E);
DER.A = 1/(1 + E);
DER.B = -A*E/(1 + E)**2;
DER.C = A*E*X/(1 + E)**2;

RUN;
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Functional form: Y = a X > 0
1 + eb − cX
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4.3.12 Gompertz function

Functional form: Y = ae− eb − cX
− ∞ < X < ∞

Derivatives: dY
dX

= ace− eb − cX
eb − cX

∂Y ∂Y
∂a ∂b

= e− eb − cX
= −ae− eb − cX

eb − cX

∂Y
∂c

= aXe− eb − cX
eb − cX

Linearized model and parameters: ln[−ln [ Y ] ] = b
1

+ b
2
Xa

b = b
1

c = −b
2

Description: This function is named after Benjamin Gompertz who derived it in 1825. Similar to the
logistic function, the Gompertz function has asymptotes at Y = 0 and Y = a. The Gompertz
function is not symmetric about its point of inflection. Parameters a and c control the shape
of the curve. Parameter b shifts the curve sideways along the X-axis. See Sweda (1984) and
Hunt (1982) for more description of the Gompertz function.

Sample PROC REG program for the linearized model:

PROC REG DATA=GOMP;
MODEL Y1 = X;
**** Y1 = LOG((-LOG(Y/A)) must be created in a previous data step;

RUN;

Sample PROC NLIN program:

PROC NLIN DATA=GOMP;
PARAMETERS A=6.0 B=2.0 C=1.0;
BDX = EXP(B-C*X);
BCBDX = EXP(-BDX);
BBB = BDX*BCBDX*A;
MODEL Y = BCBDX*A;
DER.A = BCBDX;
DER.B = -BBB;
DER.C = X*BBB;

RUN;
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Functional form: Y = ae−eb − cX
X > 0
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4.3.13 Schnute’s equation

Functional form: Y = [ cb + (db − cb) 1 − e−a(X − x1) ]
1/b

− ∞ < X < ∞
1 − e−a(x2 − x1)

Derivatives: Not available because the partial derivatives are not easily simplified to manageable forms.

Linearized model and parameters: This function can not be linearized.

Description: This four-parameter model was developed by J. Schnute (1981) for fisheries research. It is
equivalent to the Chapman-Richards equation (Section 4.3.9), the logistic function (Section
4.3.11), and the Gompertz function (Section 4.3.12) in simple cases. It is more flexible than
the Chapman-Richards equation because it does not impose an asymptotic trend. It can
assume a wide range of characteristic shapes that describe asymptotic and non-asymptotic
trends. Parameters a and b implicitly define the shape of the curve. Parameters c and d are
Y-values at X = x1 and X = x2 respectively; x1 and x2 are the first and last values of the
X-interval on which the function is to be fitted. See Bredenkamp and Gregoire (1988) for an
example and more description of Schnute’s equation.

Sample PROC NLIN program:

PROC NLIN DATA=SCHNUTE;
PARAMETERS A=0.1 B=0.5 C=5 D=20;

/*** use the Y-values corresponding to the first and last
**** X-values as the starting values for C and D ***/

X1 = 0; *** X1 and X2 are the first and last values;
X2 = 20; *** of the X-interval;
EX = (1-EXP(-A*(X-X1)))/(1-EXP(-A*(X2-X1)));
MODEL Y = (C**B + (D**B - C**B)*EX)**(1/B);

RUN;
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Functional form: Y = [ cb + (db − cb) 1 − e−a(X − x1) ]
1/b

X > 0
1 − e−a(x2 − x1)
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4.4 Power Function

Functional form: Y = aXb − ∞ < X < ∞, restricted X when b is not an integer

Derivatives: dY
dX

= abXb − 1

∂Y ∂Y
∂a ∂b

= Xb = aXb ln(X)

Linearized model and parameters: ln(Y) = b
0

+ b
1

ln(X)

a = e
b0 b = b

1

Description The power function is also called the allometric function. When parameter b is an integer,
the power function is a special case of a polynomial of degree b. This model is undefined for
values of X < 0 when b is not an integer (e.g., undefined for X < 0 and b = 0.5). The parameter
a controls the rate of increase or decrease of the curve. The parameter b controls the shape
of the curve as follows (a > 0):

• for b > 1, curve is concave up and increasing

• for 0 < b < 1, curve is concave down and increasing

• for b < 0, curve is concave up and decreasing

See Little and Hills (1978, Chapter 14), Daniel and Woods (1980, Chapter 3), and Ratkowsky
(1990, p. 125) for more discussion on the power function.

Sample PROC REG program for the linearized model:

PROC REG DATA=POWER;
MODEL Y1 = X1;
**** X1 = LOG(X) must be created in a previous data step;
**** Y1 = LOG(Y)

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=POWER;
PARAMETERS A=2.0 B=2.0;
XTOB = X**B;
MODEL Y = A*XTOB;
DER.A = XTOB;
DER.B = A*XTOB*LOG(X);

RUN;
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Functional form: Y = aXb X > 0
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4.5 Combined Exponential and Power Functions

4.5.1 Type I combined exponential and power function

Functional form: Y = aXbcX − ∞ < X < ∞, X restricted when b is not an integer

Derivatives: dY = aXbcX [ ln(c) + b ]dX X

∂Y ∂Y ∂Y
∂a ∂b ∂c

= XbcX = aXbcX ln(X) = aXb + 1cX − 1

Linearized model and parameters: ln(Y) = b
0

+ b
1
ln(X) + b

2
X

a = e
b0 b = b

1
c = e

b2

Description: This is a more general form of both the power function (Section 4.4) and the exponential
function (Section 4.3.1). If interested in curves of this shape, the reader is encouraged to
also fit the model in Section 4.5.2 as it has more desirable statistical properties. Note that:

• for b = 0, the function becomes y = acX, the exponential function (Section 4.3.4);

• for c = 1, the function becomes y = aXb, the power function (Section 4.4.1);

• for c = e, the function becomes y = aXbeX, the model in Section 4.5.2 with c = 1;

• for c < 0, many values of cX will be undefined.

This functional form produces graphs of very different shapes depending on the
parameter values. In other words, the parameters a, b and c interact closely to control the
shape of the graph, and none of the three parameters independently controls a character-
istic of the curve.

Sample PROC REG program for the linearized model:

PROC REG DATA = MODALLO;
MODEL Y1 = X1 X;
**** X1 = LOG(X) must be created in a previous data step;
**** Y1 = LOG(Y)

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=MODALLO;
PARAMETERS A=4.0 B=2.0 C=0.5;
XBXC = (X**B)*(C**X);
AXBXC = A*XBXC;
MODEL Y = AXBXC;
DER.A = XBXC;
DER.B = AXBXC*LOG(X);
DER.C = AXBXC*X/C;

RUN;
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Functional form: Y = aXbcX X > 0
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4.5.2 Type II combined exponential and power function

Functional form: Y = aXbecX − ∞ < X < ∞, restricted X when b is not an integer

Derivatives: dY b
dX X

= aXbecX (c + )
∂Y ∂Y
∂a ∂b

= XbecX = aXbecX ln(X)

∂Y
∂c

= aXb + 1ecX

Linearized model and parameters: ln(Y) = b
0

+ b
1
ln(X) + b

2
X

a = e
b0 b = b

1
c = b

2

Description: This function is a generalization of the power function (Section 4.4.1) and the exponential
function (Section 4.3.1). This model is more specific and has better statistical properties than
that of Type I (Section 4.5.1). The estimated parameters are close to being unbiased and
normal, and have minimum variance. The readers are encouraged to fit the model in Section
4.5.1 and this model and to compare the results. Note:

• for c = 0, the function becomes Y = aXb, the power function (Section 4.4.1)

• for b = 0, the function becomes Y = aecX, the exponential function (Section 4.3.1)

The parameters a and b interact closely to control whether the curve is increasing or
decreasing. Changing the value of the parameter c causes dramatic changes in the shape of
the curve (see graphs below). See Hoerl (1954) and Daniel and Woods (1980), Chapter 3,
for further descriptions of this function. Ratkowsky (1990, pp. 162, 163) also discusses this
function and the related function Y = Xbe(a − bX).

Sample PROC REG program for the linearized model:

PROC REG DATA=HOERL;
MODEL Y1 = X1 X;
**** X1=LOG(X) and Y1=LOG(Y) must be created in a previous data step;

RUN;

Sample PROC NLIN program:

PROC NLIN DATA=HOERL;
PARAMETERS A=2.0 B=2.0 C=0.1;
EBCX = X**B*EXP(C*X);
MODEL Y = A*EBCX;
DER.A = EBCX;
DER.B = A*EBCX*LOG(X);
DER.C = A*X*EBCX;

RUN;



61

Functional form: Y = aXbecX X > 0
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Functional form: Y = aXbecX X > 0

Note: as pointed out in the description, changing the value of c causes dramatic changes in the shape of the
curve. The graph on the right has a vertical asymptote at X = 0 and is discontinuous.
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4.5.3 Generalized Poisson function

Functional form: Y = [b − X ]
c

exp { c [1 − [b − X]
d] } , X restricted when c or d not an integer

b − a d b − a

Derivatives: dY = c [b − X ]
c − 1 [ [b − X ]

d

− 1] exp { c [1 − [b − X]
d] }dX b − a b − a b − a d b − a

∂Y = Y [ c − c [b − X]
d 1 ]∂a b − a b − a b − a

∂Y = Y [ c − c − c [b − X]
d − 1 X − a ]∂b b − X b − a b − a (b − a)2

∂Y = Y { ln [b − X ] + 1 [1 − [b − X]
d ] }∂c b − a d b − a

∂Y = −Y c { [b − X]
d

ln [b − X] + 1 [1 − [b − X ]
d ] }∂d d b − a b − a d b − a

Linearized model and parameters: This function can not be linearized.

Description: This model is restrictive for general use since it is not always defined for values of X > b
when parameters c or d are not integers. For example, where parameters c and d vary, for
b = 12 and a = 5 (as shown in the following graphs), the curves are not always defined for
X > 12. Parameters c and d are shape parameters. The points (a,1) and (b,0) are on
the curve.

Sample PROC NLIN program for the functional form:

PROC NLIN DATA = POISSON;
PARAMETERS A=2.0 B=12.0 C=30.0 D=5.0;
BA = 1/(B-A);
CBA = C*BA;
BASQ = BA*BA;
BXBA = (B-X)*BA;
BXBAD = BXBA**D;
BD = (1-BXBAD)/D;
BXBAC = (BXBA**C)*(EXP(C*BD));
DBC = D*BXBAD/BXBA+C/BXBA;
MODEL Y = BXBAC;
DER.A = BXBAC*(CBA - C*BXBAD*BA);
DER.B = BXBAC*(C/(B-X) - CBA - C*BXBAD*(X-A)*BASQ/BXBA);
DER.C = BXBAC*(LOG(BXBA) + BD);
DER.D = -BXBAC*(C/D)*(BXBAD*LOG(BXBA) + BD/D);

RUN;
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Functional form: Y = [b − X ]c
exp { c [1 − [b − X]d] } X > 0

b − a d b − a
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4.6 Logarithmic Function

Functional form: Y = a + bln(X), X > 0

Derivatives: dY b
dX X

=

∂Y ∂Y
∂a ∂b

= 1 = ln(X)

Linearized model and parameters: Already linear in ln(X).

Description: The parameter a shifts the curve up and down the Y-axis. The parameter b controls the
shape of the curve as follows:

• for b > 0, the curve is concave down and increasing

• for b = 0, the curve is a horizontal line, Y = a

• for b < 0, the curve is concave up and decreasing

Sample PROC REG program for the linearized model:

PROC REG DATA=LOGR;
MODEL Y = X1;
**** X1 = LOG(X) must be created in a previous data step;

RUN;

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=LOGR;
PARAMETERS A=5.0 B=2.0;
LOGX = LOG(X);
MODEL Y = A + B*LOGX;
DER.A = 1;
DER.B = LOGX;

RUN;
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Functional form: Y = a + bln(X) X > 0
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4.7 Trigonometric Functions

The cosine (cos) and sine (sin) functions are the most commonly used trigonometric functions. The two
functions are identical except for a lag of 90° (π/2). That is,

sin(X + ) = cos(X)π
2

cos(X − ) = sin(X)π
2

The sine and cosine functions are also related in their derivatives as follows:

d(sin(X)) = cos(X)
dX

d(cos(X)) = −sin(X)
dX

The sine and cosine functions are periodical functions; that is, the shape of the curve repeats along the X-axis.
The shape of such a curve is determined by amplitude and wavelength. The amplitude of the curve is the
distance between the maximum and minimum Y-values. The wavelength of the curve is the length of each
non-repeating pattern along the X-axis. The sine and cosine functions are symmetric about any maximum and
minimum. The shape of a sine or cosine curve is often referred to as sinusoidal.

Many trigonometric identities exist that relate sine, cosine, tangent (tan) and their reciprocals: cosecant,
secant, and cotangent. Two commonly used identities are:

tan(X) = sin(X)
cos(X)

sin2(X) + cos2(X) = 1

For more information on trigonometry, see Edwards and Penney (1982) or other algebra and calculus
textbooks.
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4.7.1 Cosine function

Functional form: Y = a cos [ 2π (X − c) ] − ∞ < X < ∞
b

Derivatives: dY = −2πa sin [ 2π (X − c) ]dX b b

∂Y = cos [ 2π (X − c) ]∂a b
∂Y = (X − c) 2πa sin [ 2π (X − c) ]∂b b2 b

∂Y = 2πa sin [ 2π (X − c) ]∂c b b

Linearized model and parameters: This function can not be linearized.

Description: The cosine function has an amplitude of 2a and a wavelength of b. The parameter c shifts
the curve along the X-axis. The maximum is at X = c and again at X = c + b, and so on.

Sample PROC NLIN program for the functional form:

PROC NLIN DATA = COSINE;
PARAMETERS A=1.0 B=10.0 C=0;
PI = 3.1415926;
BXC = 2*PI*(X-C)/B;
COSBXC = COS(BXC);
SINBXC = 2*PI*A*SIN(BXC)/B;
MODEL Y = A*COSBXC;
DER.A = COSBXC;
DER.B = SINBXC*(X-C)/B;
DER.C = SINBXC;

RUN;
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Functional form: Y = a cos [ 2π (X − c) ] X > 0
b
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4.7.2 Sine function

Functional form: Y = a sin [ 2π (X − c) ] − ∞ < X < ∞
b

Derivatives: dY = 2πa cos [ 2π (X − c) ]dX b b

∂Y = sin [ 2π (X − c) ]∂a b
∂Y = (X − c) −2πa cos [ 2π (X − c) ]∂b b2 b

∂Y = − 2πa cos [ 2π (X − c) ]∂c b b

Linearized model and parameters: This function can not be linearized.

Description: The sine function has an amplitude of 2a and wavelength of b. The parameter c shifts the
curve along the X-axis with maximums at X = c + b/4, X = c + 5b/4, and X = c + 9b/4, and
so on.

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=SINE;
PARAMETERS A=1.0 B=10.0 C=0;
PI = 3.1415926;
BXC = 2*PI*(X-C)/B;
SINBXC = SIN(BXC);
COSBXC = 2*PI*A*COS(BXC)/B;
MODEL Y = A*SINBXC;
DER.A = SINBXC;
DER.B = -COSBXC*(X-C)/B;
DER.C = -COSBXC;

RUN;
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Functional form: Y = a sin [ 2π (X − c) ] X > 0
b
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4.7.3 Arctangent function

Functional form: Y = a + b arctan [πc(X − d)] − ∞ < X < ∞π

Derivatives: dY = bc [ 1 ]dX 1 + (πc(X − d))2

∂Y = 1 ∂Y = 1 arctan [ πc(X − d) ]
∂a ∂b π

∂Y = b(X − d) ∂Y = −bc [ 1 ]∂c 1 + (πc(X − d))2 ∂d 1 + (πc(X − d))2

Linearized model and parameters: This function can not be linearized.

Description: The arctangent function has an S shape. Parameter a shifts the curve up or down;
parameter b controls the vertical distance between the minimum and the maximum;
parameter c gives the slope of the curve at the point of inflection; and parameter d shifts the
curve along the X-axis.

Sample PROC NLIN program for the functional form:

PROC NLIN DATA=ARCTANG;
PARAMETERS A = 4.0 B= 0.5 C= 1.0 D = 1.0;
PI = 3.1415926;
CXD = PI*C*(X-D);
CXD2 = B/(1+CXD**2);
MODEL Y = A+B*ATAN(CXD)/PI;
DER.A = 1;
DER.B = ATAN(CXD)/PI;
DER.C = (X-D)*CXD2;
DER.D = -CXD2*C;

RUN;
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Functional form: Y = a + b arctan [πc(X − d)] X > 0π
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4.8 Common Distributions

To find the distribution of a set of data, frequency data can be fitted to probability distribution functions. The
following distributions and accompanying notation are commonly used in statistics. A basic statistics textbook
such as Freund and Walpole (1987) is recommended for the interested reader.

Normal N(µ,σ2) where µ is the mean and σ2 is the variance

Student-t t
a

where a is the degrees of freedom

Fisher F F
a,b

where a and b are the numerator and denominator degrees of freedom

Chi-square χ2
a

where a is the degrees of freedom

The following definitions and properties apply to the preceding distributions.

Definition 1: Let Z
1
, Z

2
,…, Z

n
 be independent N(0,1) random variables, then:

Z2
1

+ Z2
2

+…+ Z2
n

has a Chi-square distribution with n degrees of freedom, and is denoted as:

Z2
1

+ Z2
2

+…+ Z2
n

∼ χ2
n

Note: The notation ∼ means ‘‘is distributed as.’’

Definition 2: Let Z ∼ N(0,1) and W ∼ χ2
n
 be independent random variables, then:

T = Z ∼ t
n√W/n

That is, T has a Student-t  distribution with n degrees of freedom.

Definition 3: Let W
1

∼ χ2
n
 and W

2
∼ χ2

m
 be independent Chi-square variables, then:

F = W
1
/n ∼ F

n,m
W

2
/m

That is, F has a Fisher F distribution with n and m degrees of freedom.

Properties:

1. If W ∼ t
n
, then W2 ∼ F

1,n
.

2. If W ∼ F
n,m

, then 1 ∼ F
m,n

.W
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4.8.1 Normal distribution

Functional form: Y = 1 exp [− (X − a)2] − ∞ < X < ∞ b > 0
√2πb 2b

Derivatives: dY = − (X − a) exp [− (X − a)2]
dX √2π b1.5 2b

∂Y = (X − a) exp [− (X − a)2]∂a √2π b1.5 2b

∂Y = 1 [(X − a)2
− 1] 1 exp [− (X − a)2]∂b 2 b √2π b1.5 2b

Linearized model and parameters: This function cannot be linearized.

Description: The function is symmetric about X = a. The parameter a is the mean of the distribution and is
usually denoted by the Greek letter µ. The parameter b is the variance which is denoted by
the Greek letter σ2. The latter controls the height and width of the curve. The reader may
also try to fit the model in Section 4.3.5 which has the same features as the normal
distribution.

Sample PROC NLIN Program for the functional form:

PROC NLIN DATA=NORMAL;
PARAMETERS A=0 B=1;
PI = 3.14215926;
XA = X-A;
NORM = EXP(-0.5*XA**2/B)/SQRT(2*PI*B);
MODEL Y = NORM;
DER.A = NORM*XA/B;
DER.B = 0.5*(XA**2/B-1)*NORM/B;

RUN;
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Functional form: Y = 1 exp [−1 (X − a)2]√2πb 2b
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4.8.2 Student-t  distribution

Functional form: Y = {1 + X2 } − ∞ < X < ∞ , a > 0
a

Γ[ a + 1]2
− a + 1

2

√aπ Γ [ a ]2

Derivative: dY = {1 + X2}dX a

− (a + 1) XΓ[ a + 1]2

a √aπ Γ [ a ]2

− a + 3
2

Linearized model and parameters: This function can not be linearized.

Description: This model is also known as the central student-t  distribution. It looks more like a normal
distribution as parameter a gets larger. The parameter a is called the degrees of freedom;
the curve is taller and narrower for larger values of a. See Appendix 1 for a description of
Γ(X), the Gamma function.

Sample PROC NLIN program for the functional form:

Because the derivative of the Gamma function is not easily calculated, it is more straightforward, in this case,
to use the DUD method within NLIN. DUD is the default method used when no derivatives are given in the
program. The SAS function GAMMA can be used to evaluate the gamma function. For example, use
GAMMA(7) to evaluate Γ(7).

PROC NLIN DATA=STUDT;
PARAMETERS A = 5.0;
PI = 3.14215926;
A12 = (A+1)/2;
G = GAMMA(A/2);
G1 = GAMMA(A12);
MODEL Y = G1*(1 + X*X/A)**(-A12) / (SQRT(A*PI) * G);

RUN;
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Functional Form: Y = {1 + X2 }a

Γ[ a + 1]2
− a + 1

2

√aπ Γ [ a ]2



4.8.3 Fisher F distribution

a + ba aa + b −−1Γ 22 2[ ]2a aFunctional form: Y = X 1 + X X > 0[ ] [ ]b ba bΓ Γ[ ] [ ]2 2

a + ba a + b a −−1Γ 22 ][ 2 −12 aaaa a + bdY a X1 +− 1 X−1 −1 +X XDerivative: = }][] []{ [ [][ ] ][ bdX b b 2 b 2baΓ Γ[ ]] [2 2

Linearized model and parameters: This function can not be linearized.

Description: This model is also known as the central F distribution. It looks more like a Chi-square, χ2,
distribution as parameters a and b get larger. Parameters a and b are the numerator and
denominator degrees of freedom respectively. Parameter a controls the rate of the curve’s
decrease while b controls the height of the curve.

Sample PROC NLIN program for the functional form:

Because the derivative of the Gamma function is not easily calculated, it is more straightforward, in this case,
to use the DUD method within NLIN. DUD is the default method used when no derivatives are given in the
program. The SAS function GAMMA can be used to evaluate the gamma function. For example, use
GAMMA(7) to evaluate Γ(7).

PROC NLIN DATA=FISHER;
PARAMETERS A=3 B=5;
AB = A/B;
A2 = A/2;
AB2 = (A+B)/2;
GA = GAMMA(A2);
GB = GAMMA(B/2);
GAB = GAMMA(AB2);
MODEL Y = (AB**A2) * (GAB/GA/GB) * X**(A2-1)

* (1 + AB*X)**(-AB2);
RUN;

82
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Functional form: Y = [ a ] X [1 + a X] X > 0
b b

Γ[ a ] Γ[ b ]2 2

a
2 Γ[a + b]2

a −1
2

−a + b
2
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4.8.4 Chi-square distribution

Functional form: Y = X ≥ 0, a ≥ 0
X exp[−X]2

2a/2 Γ[ a ]2

a −1
2

Derivative: dY = 1 X exp[−X] { [ a − 1] 1 − 1 }dX 2 2 X 2
2a/2 Γ[ a ]2

a −1
2

Linearized model and parameters: This function can not be linearized.

Description: The Chi-square distribution with a degrees of freedom is commonly denoted by the Greek
symbol χ2

a
. The parameter a represents the degrees of freedom and controls the height and

the shape of curve. See Appendix 1 for a description of the Gamma function, Γ(X).

Sample PROC NLIN program for the functional form:

Because the derivative of the Gamma function is not easily calculated, it is more straightforward, in this case,
to use the DUD method within NLIN. DUD is the default method used when no derivatives are given in the
program. The SAS function GAMMA can be used to evaluate the gamma function. For example, use
GAMMA(7) to evaluate Γ(7).

PROC NLIN DATA=CHISQ;
PARAMETERS A=11.0;
A2 = A/2;
GA = GAMMA(A2);
MODEL Y = (X**(A2-1) * EXP(-X/2))/(2**A2 * GA);

RUN;
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Functional form: Y = 1 X exp[−X]2
2a/2 Γ[ a ]2

a −1
2
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5 CURVE FITTING METHODS

This section explains how to use this handbook to fit curves. The concept of convergence is discussed and
some suggestions to correct nonconvergence are provided. Also the criteria for comparing models are briefly
described. Two examples are presented to demonstrate the curve fitting process. This is an introduction only
and further information should be sought in books such as Hoerl (1954), Ratkowsky (1983), Gallant (1987),
and Rawlings (1989).

5.1 How to Select Models

Choosing a model for a set of data can be a difficult task. It is important to incorporate prior information of the
system’s behaviour into the model. The following steps describe the procedure for selecting a model from
those contained in this handbook.

First, plot the data, dependent variable (Y) versus independent variable (X). This will provide some
information on the relationship between the dependent and independent variables.

There are several ways to select candidate functional forms to fit a particular data set. A thorough review
of the literature may indicate models that have been successful in the past. Theoretical considerations are also
important in biological modelling. If the behaviour of the data is known a priori  (for example, growth rates are
often represented by exponential functions), then choose a curve that reflects this knowledge. If no previous
research has been done and nothing is known about the data, then the selection of the model must be based
on the raw data.

On the scatter plot, draw a smooth curve that fits the data well, noting where the data is increasing,
decreasing, or symmetric, and where the maximums, minimums, bounds, or concavity occur. This curve
should provide the general shape of the regression model. Examine the graphs provided in this catalog and
select a curve that is similar in shape to the graph of the raw data. Consider the following:

• How well does the curve mimic the data?

• How complex is the function? Keep in mind that a simple function is easier to use and interpret.

• Can the parameters of the function be interpreted?

Once a curve is selected, use the sample SAS programs for PROC NLIN or PROC REG to perform
curve fitting.

5.2 How to Choose Starting Values for PROC NLIN

PROC NLIN requires that starting values for the parameters be estimated. The closer the starting values are to
the true parameter values, the more likely that the fitting process will be successful. Finding an appropriate set
of starting values can be tricky. Fortunately, there are some strategies for choosing the starting values.

1. Read the descriptions of the parameters carefully, then try to match them with features on the
scatter plot.

For example, suppose the quadratic function in Section 4.1.2 is to be fitted. According to the
description in that section, the parameter B in the alternative form is the location of the extremum on
the X-axis. If a maximum is found near X = 10 on the scatter plot then B = 10 would be an appropriate
starting value.

2. Compare the scatter plot with the sample graphs provided. This will help to eliminate improper starting
values.

Continuing with the example in point one, the description of the quadratic function states that
parameter A must be negative for a quadratic curve with a maximum. The size of parameter A also
controls the spread of the curve so that a large negative value will give a sharp maximum. Therefore, if
the scatter plot of experimental data shows a flatter maximum, then a small negative value could be
used as the starting value for parameter A.
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3. If the curve to be fitted can be linearized, it may be possible to obtain starting values of the parameters
from PROC REG.

As an example, suppose the logistic function in Section 4.3.11 is to be fitted to a set of data showing a
horizontal asymptote at Y = 15. This asymptote suggests that a = 15 is a reasonable starting value.
With this assumption, the Y-variable can be transformed according to the left-hand side of the
linearized model (ln(a/Y − 1)). Then a linear regression with PROC REG can be performed on the
transformed Y- and X-variables. The estimated parameters (slope and intercept) from this linear
regression can be used as starting values for parameters b and c of the logistic curve. This technique
is demonstrated in Sit (1992).

4. If there is no clue at all then take an educated guess. Try a range of starting values. Sometimes the
parameter estimates from the last iteration of an unsuccessful run would be good starting values for
the parameters in the next run.

5.3 What is Convergence?

The PROC NLIN procedure in SAS uses an iterative algorithm to estimate the model parameters. At each
iteration, the residual sum of squares (SSE)2 is evaluated. The procedure is said to have converged when the
SSE is at a minimum. This is detected when the change in the SSE from the previous to the present iteration is
less that a preset constant (10−8 by default). If the procedure has converged, then the parameter estimates in
the last iteration would be the parameter estimates of the model.

If there are local minima on the SSE response curve and the starting values are far from the true
parameter values, convergence to the local minimum rather than to the global minimum may occur (see
Section 6.5 for definitions of local and global minimum). To check that convergence is to a global minimum,
use different sets of starting values to see whether the same solution is reached in all cases. Always plot the
fitted model over the raw data to ensure that the fit is reasonable.

In some cases, convergence may not be obtainable. Possible reasons are that the model is inappropriate
or the derivatives are incorrect. Rawlings (1988) points out three other reasons for nonconvergence:

1. The model is over-defined. That is, it has too many parameters or is unnecessarily complex.

2. There is insufficient data to fully characterize the response curve. Note that a model may appear over-
defined in this case.

3. The model is poorly parameterized with several parameters playing similar roles. This could lead to a
similar fit from different combinations of parameter values and may be reflected in highly correlated
(0.98 or higher) parameter estimates.

If PROC NLIN fails to converge, try the following:

• check the derivatives to make sure that they are properly specified;

• use a different set of starting values — even the last set of iterative estimates may do;

• use a different iterative method — METHOD = MARQUARDT sometimes works when the default method
(Gauss-Newton) does not; or

• use a different model.

Rawlings (1988) shows how to diagnose possible causes of nonconvergence (see Example 14.2). As
well, Section 5.5 presents an example of a nonconvergence fit and provides steps to correct the problem.

5.4 Model Comparisons and Model Validation

Several common criteria are available to compare regression models. These include: residual mean squares
MSE; coefficient of determination (R2); and adjusted coefficient of determination (R2

adj).

2 SSE is sometimes denoted as SSR (Handbook No. 1). Both notations are commonly used in the literature. SSE is used here because
SAS outputs use this notation.
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Residual mean squares, MSE, is defined as the residual sum of squares (SSE) divided by its degrees of
freedom. It is an estimate of the variance of Y(σ2). MSE is automatically calculated when PROC REG or PROC
NLIN is used. A model with small MSE is more desirable.

The coefficient of determination, R2, is the proportion of corrected total sum of squares of the dependent
variable that is ‘‘explained’’ by the independent variable(s) in the model (Rawlings 1988):

R2 =  SS(regression)
SS(corrected total)

The larger the R2, the more variation that is accounted for by the model. Note that the regression SS
displayed in a PROC NLIN output is uncorrected for the mean. Therefore, R2 must be computed with the
following equation:

R2 = 1 −  SS(residual)
SS(corrected total)

The adjusted coefficient of determination (R2
adj) is a rescaling of R2 by the degrees of freedom so that it

involves a ratio of mean squares rather than sums of squares. Similar to R2, it should be computed from the
residual mean squares:

R2
adj

= 1 −  MS(residual)
MS(corrected total)

The adjusted coefficient of determination is more comparable than R2 for models that involve different
numbers of parameters. A model with large R2

adj is more favourable. Because of its structure, the R2
adj criterion

often leads to the same conclusion as the MSE criterion. See Section 5.6 for a comparison of two models from
the statistical and subjective points of view.

Once a regression model is chosen, the model should be validated to confirm its effectiveness. Validation
of the model requires comparing the fitted equation with an independent set of data. See Rawlings (1988,
Section 7.6) for an in-depth discussion of model validation.

5.5 Example 1

This example is taken from Little and Hills (1978). A researcher is interested in finding the relationship between
the yield in kilograms of lima beans and the time of harvest. In an experiment, the yield is recorded for various
harvest dates. The data is shown in Table 1.

TABLE 1. Lima bean yield data

Date (X) Yield (Y)

0 27.4

4 39.3

7 46.2

10 47.8

13 44.5

18 24.5

The variable Y represents the yield in kilograms of lima beans; the variable X represents the number of days
from the initial harvest at X = 0. To investigate the relationship, we first plot (Figure 1) yield (Y) versus harvest
date (X) from the data in Table 1.
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FIGURE 1. Lima bean yield versus harvest dates.

No other experimental work has been done on lima bean yield, so nothing is known about the relationship
between yield and date of harvest. Therefore curve selection must be based on the scatter plot.

The graphed data in Figure 1 resembles the shape of a parabola. According to Section 4.1.2, either PROC
REG or PROC NLIN can be used to fit the data. The two approaches are demonstrated below.

5.5.1 Fitting the model using PROC REG

The linearized model of the parabola has the form:

Y = a + bX + cX2

We can fit the model by performing a multiple regression on Y, lima bean yield, with X, the harvest date, and X2

as the independent variables. In the following SAS program, a variable called DATE2 is created in the data
step for the X2 values. The PROC REG step in this program is identical to the sample program given in Section
4.1.2 except for the change in variable names.
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SAS program using PROC REG

TITLE1 ‘LIMA BEAN EXAMPLE’;
TITLE2 ‘SECOND DEGREE POLYNOMIAL FIT - PROC REG’;

DATA BEAN;
INPUT DATE YIELD;
DATE2 = DATE**2;
CARDS;
0 27.4
4 39.3
7 46.2
10 47.8
13 44.5
18 24.5

;
PROC REG DATA=BEAN;
MODEL YIELD = DATE DATE2;

RUN;

SAS output

LIMA BEAN EXAMPLE
SECOND DEGREE POLYNOMIAL FIT - PROC REG

Model: MODEL1
Dependent Variable: YIELD 

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 493.57666 246.78833 95.265 0.0019
Error 3 7.77167 2.59056
C Total 5 501.34833

Root MSE 1.60952 R-square 0.9845
Dep Mean 38.28333 Adj R-sq 0.9742
C.V. 4.20423

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > T

INTERCEP 1 26.331776 1.47950636 17.798 0.0004
DATE 1 4.783178 0.36857319 12.978 0.0010
DATE2 1 -0.269021 0.01950494 -13.792 0.0008

The parameter estimates are: a = 26.3, b = 4.78, and c = −0.269.

The fitted model is: Y = 26.3 + 4.78X − 0.269X2
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5.5.2 Fitting the model using PROC NLIN

Either the functional form or the alternative form of the quadratic can be fitted with PROC NLIN. In this
example, we will use the alternative form:

Y = A(X − B)2 + C

PROC NLIN uses an iterative algorithm to estimate the parameters and requires starting values for the
first iteration. The closer the starting values are to the true values, the faster the convergence. Appropriate
starting values can be found by examining the data plot in Figure 1.

Starting value for A

As stated in Section 4.1.2, if A is less than zero then the parabola is concave down. Therefore, we can try
A = − 1 as the starting value.

Starting value for B

The maximum or the minimum of a parabola occurs at X = B and Y = C. We can estimate from Figure 1 that the
maximum of the curve is approximately at X = 10 and Y = 47.8. Therefore, we can try B = 10 and C = 48 as the
starting values.

The following is the SAS program for fitting the alternative form of the parabola. The PROC NLIN step is
identical to the sample program in Section 4.1.2, except for the two statements (in bold italics) for assigning
proper values to X and Y.

SAS program using PROC NLIN

TITLE1 ‘LIMA BEAN EXAMPLE’;
TITLE2 ‘SECOND DEGREE POLYNOMIAL FIT - PROC NLIN’;

DATA BEAN;
INPUT DATE YIELD;
CARDS;
0 27.4
4 39.3
7 46.2
10 47.8
13 44.5
18 24.5

;
PROC NLIN DATA=BEAN;
PARAMETERS A=-.1 B=10 C=48;
X = DATE;
Y = YIELD;
XB = (X-B);
MODEL Y = A*XB**2 + C;
DER.A = XB**2;
DER.B = -2*A*XB;
DER.C = 1;

RUN;
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SAS output

LIMA BEAN EXAMPLE
SECOND DEGREE POLYNOMIAL FIT - PROC NLIN

Non-Linear Least Squares Iterative Phase
Dependent Variable YIELD Method: Gauss-Newton

Iter A B C Sum of Squares
0 -0.100000 10.000000 48.000000 438.390000
1 -0.269021 7.013777 47.261441 225.703710
2 -0.269021 8.889967 46.645943 13.152283
3 -0.269021 8.889967 47.592921 7.771674

WARNING: Step size shows no improvement.
WARNING: PROC NLIN failed to converge.

Non-Linear Least Squares Summary Statistics Dependent Variable YIELD

Source DF Sum of Squares Mean Square

Regression 3 9287.2583255 3095.7527752
Residual 3 7.7716745 2.5905582
Uncorrected Total 6 9295.0300000

(Corrected Total) 5 501.3483333

WARNING: PROC NLIN failed to converge.

Parameter Estimate Asymptotic Asymptotic 95 %
Std. Error Confidence Interval

Lower Upper
A -0.26902111 0 -0.269021108 -0.269021108
B 8.88996693 0 8.889966930 8.889966930
C 47.59292137 0 47.592921371 47.592921371

Asymptotic Correlation Matrix

Corr A B C
---------------------------------------------------------------------

A 1 -0.039491723 -0.71679787
B -0.039491723 1 0.0547551726
C -0.71679787 0.0547551726 1

There is a warning in the SAS output stating that the iterations in PROC NLIN did not converge. As
discussed in Section 5.1, nonconvergence can be caused by:

• the starting values are too far from the true parameter values;

• the derivatives given in PROC NLIN are incorrect; or

• the model chosen is incorrect.
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We can safely eliminate the last two causes in this example. To solve the problem, we can a try different
fitting method with the METHOD = option, or we can try a different set of starting values. Checking the last two
iterations, we see that the estimates for A and B are quite stable, but the estimate for C and the sum of
squares (SSE) value fluctuate slightly. The small SSE (7.772) suggests that the estimates are quite close to
the true values. Sometimes the last SSE computed is so close to its minimum that new parameter estimates
cannot be found to further reduce the SSE. When this happens, PROC NLIN gives up and declares
nonconvergence. We can re-run the program using a different set of starting values. In this example, we will
use the estimates from the last iteration as the starting values. That is, we will replace the PARAMETER
statement with the following:

PARAMETER A = -0.26 B = 8.9 C = 47.6;

The following is the iteration portion of the output using this set of starting values.

LIMA BEAN EXAMPLE 1
SECOND DEGREE POLYNOMIAL FIT - PROC NLIN

Non-Linear Least Squares Iterative Phase
Dependent Variable YIELD Method: Gauss-Newton

Iter A B C Sum of Squares
0 -0.260000 8.900000 47.600000 8.943748
1 -0.269021 8.889619 47.592894 7.771682
2 -0.269021 8.889967 47.592921 7.771674
3 -0.269021 8.889967 47.592921 7.771674

NOTE: Convergence criterion met.

The convergence criterion is met and the fitted model is:

Y = − 0.269(X − 8.89)2 + 47.6

It is left to the readers to check that this fitted model is the same as the model obtained from PROC REG.
Readers can refer to the books listed in the references for discussions about interpreting regression results
from SAS output or determining the goodness-of-fit of the model.
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5.6 Example 2

The city of San Diego, California wants to model its population growth over time. The population of the city in
the last 11 decades is shown in Table 2.

TABLE 2. San Diego population data from 1860 to 1960

Year of Census Decades from 1860 (X) Population (Y)

1860 0 731

1870 1 2 300

1880 2 2 636

1890 3 16 159

1900 4 17 700

1910 5 39 578

1920 6 74 361

1930 7 147 995

1940 8 203 341

1950 9 334 387

1960 10 573 224

The variable X is the number of decades from the first census in 1860 (X = 0 for the first census). The
variable Y is the city’s population. Figure 2 shows a scatter plot of this data.

FIGURE 2. San Diego population versus decades from first census
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No previous information about the population growth in San Diego is assumed. Nevertheless, growth data
can often be represented by an exponential function, which is also suggested by the scatter plot. The type IV
exponential form in Section 4.3.4 is the most general form with a minimum number of parameters and both
PROC REG and PROC NLIN can be used to fit the data.

5.6.1 Fitting the model using PROC REG

The linearized form of model:

Y = abX

is ln(Y) = A + BX

where a = eA and b = eB. The following is an SAS program to fit the linearized model.

SAS program using PROC REG

TITLE1 ‘SAN DIEGO POPULATION EXAMPLE’;
TITLE2 ‘EXPONENTIAL GROWTH FUNCTION - PROC REG’;

DATA POPN;
INPUT DECADE POPN;
LOGP = LOG(POPN);
CARDS;
0 731
1 2300
2 2636
3 16159
4 17700
5 39578
6 74361
7 147995
8 203341
9 334387
10 573224
;
PROC REG;
MODEL LOGP = DECADE;

RUN;
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SAS output

SAN DIEGO POPULATION EXAMPLE 1
EXPONENTIAL GROWTH MODEL - PRO REG

Model: MODEL1
Dependent Variable: LOGP

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 47.31372 47.31372 333.001 0.0001
Error 9 1.27874 0.14208
C Total 10 48.59247

Root MSE 0.37694 R-square 0.9737
Dep Mean 10.32664 Adj R-sq 0.9708
C.V. 3.65016

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > T

INTERCEP 1 7.047444 0.21262209 33.145 0.0001
DECADE 1 0.655839 0.03593969 18.248 0.0001

The parameter estimates are A = 7.05 and B = 0.656. The fitted equation is:

ln(Y) = 7.05 + 0.656X

Transforming the estimates to the non-linear form:

a = e7.05 = 1150

b = e0.656 = 1.93

The fitted model is:

Y = 1150 (1.93)X

5.6.2. Fitting the model using PROC NLIN

We can use the estimates from PROC REG as the starting values for the parameters. However, for the sake of
illustration, we will choose starting values based on the plotted curve in Figure 2.

Starting value for a

For the model Y = abX, at X = 0, Y = a, reasonable starting value is a = 700. (In table 2, population = 731 in 1860.)
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Starting value for b

The graphs in Section 4.3.4 indicated that as b gets bigger, the curves get steeper. We can begin with b = 1.5.
The PROC NLIN step in the following program is identical to the sample program in Section 4.3.4 except for
the two statements (in bold italics) for assigning proper values to X and Y.

SAS program using PROC NLIN

TITLE1 ‘SAN DIEGO POPULATION EXAMPLE’;
TITLE2 ‘EXPONENTIAL GROWTH MODEL - PROC NLIN’;

DATA POPN;
INPUT DECADE POPN;
CARDS;
0 731
1 2300
2 2636
3 16159
4 17700
5 39578
6 74361
7 147995
8 203341
9 334387

10 573224
;
PROC NLIN DATA=POPN;
PARAMETERS A=700 B=1.5;
X = DECADE;
Y = POPN;
MODEL Y = A*B**X;
DER.A = B**X;
DER.B = A*X*B**(X-1);

RUN;
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SAS output

SAN DIEGO POPULATION EXAMPLE
EXPONENTIAL GROWTH MODEL - PROC NLIN

Non-Linear Least Squares Iterative Phase
Dependent Variable Y Method: Gauss-Newton

Iter A B Sum of Squares
0 700.000000 1.500000 437333614628
1 898.141784 1.947689 22313337398
2 1527.141021 1.792251 10147766051
3 1922.094536 1.749936 8883368862
4 2630.817000 1.694216 7330093063
5 3555.319008 1.653680 1863046080
6 3594.316548 1.659922 848171927
7 3597.263952 1.659614 847713812
8 3597.204591 1.659616 847713811

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics Dependent Variable Y

Source DF Sum of Squares Mean Square

Regression 2 510485940983 255242970492
Residual 9 847713811 94190423
Uncorrected Total 11 511333654794

(Corrected Total) 10 329978413181
Parameter Estimate AsymptoticAsymptotic 95 %

Std. Error Confidence Interval
Lower Upper

A 3597.204591 489.99575478 2488.7477532 4705.6614287
B 1.659616 0.02385320 1.6056563 1.7135766

Asymptotic Correlation Matrix
Corr A B
---------------------------------------------

A 1 -0.995015492
B -0.995015492 1

The parameter estimates are a = 3600 and b = 1.66 and the fitted model is:

Y = 3600 (1.66X)

Notice that the fitted model from PROC REG is quite different from the fitted model from PROC NLIN. This is
because the two SAS procedures use different statistical models — PROC REG uses a model with multiplica-
tive errors while PROC NLIN uses a model with additive errors. In other words, PROC REG minimizes the
transformed residuals whereas PROC NLIN minimizes the untransformed residuals (see Section 3.2 for
discussion). Which model is better? The answer depends on the statistical and subjective considerations.
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5.6.3 Statistical considerations for a ‘‘better’’ model

Two or more models can be compared statistically on the basis of the residual mean squares (MSE), the
coefficient of determination (R2), or the adjusted coefficient of determination (R2

adj
). These criteria are briefly

described in Section 5.4. Since R2
adj

 and MSE are equivalent for model comparisons, only MSE will be
calculated in this example.

MSE is defined as:

MSE = SSE
df

where SSE is the sum of the squared differences between the observed value, Y
i
, and the predicted value, Ŷ

i
.

That is,

SSE = ∑ (Y
i
= Ŷ

i
)2

n

i=1

With PROC NLIN, the model Y = 3597.21(1.66X) was fitted, and the MSE of the model is 94 190 423. This is
given in the SAS output ANOVA table.

With PROC REG, the model ln(Y) = 7.05 + 0.60X was fitted. Because the SSE calculated by SAS is for the
linearized model only, we must calculate the SSE for the transformed model Y = 1150(1.93X) using equation 1.
To avoid rounding error, SSE should be calculated using the results directly from PROC REG, as shown in the
following SAS code.

SAS code to compute SSE: SAS output:

PROC REG; POPN SSE
ID POPN;
MODEL LOGP = DECADE; 731 175490.10
OUTPUT OUT=PRED P=PRED; 2300 182611.94

2636 2849115.37
DATA PRED; 16159 65793951.37
SET PRED; 17700 69223801.47
PHAT = EXP(PRED); 39578 150994331.41
SSE + (POPN-PHAT)**2; 74361 392077957.20

147995 1591719792.04
PROC PRINT; 203341 1818966177.48
VAR POPN SSE; 334387 9292094235.98

573224 65756264558.98
RUN;

Cumulative SSE’s are calculated for the observations. The SSE of the model is the cumulative SSE of the
last observation — that is, SSE = 65 756 264 558.98 and MSE = SSE = 7 306 251 617.66. The MSE of9
the fitted model from PROC NLIN is smaller than the MSE of the fitted model from PROC REG; therefore, based
on the MSE criteria,

Y = 3600.21(1.66X)

is a better model.
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5.6.4 Subjective consideration for a ‘‘better’’ model

Figure 3 is a plot of the two models and the observed data. Both models are quite good for the early decades
(decades ≤ 6), but for the later decades, the model from PROC NLIN provides a better fit for the data.

FIGURE 3. Fitted models and the observed data.
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6 BASIC ATTRIBUTES OF CURVES

This section describes some basic attributes of curves that have been used throughout this handbook.

A function is expressed as:

Y = ƒ (X)

where Y is a function of X. The following symbols are used in this chapter.

• Y
c

= the value of Y at X = c

• dY = the first derivative of Y with respect to X
dX

• d2Y = the second derivative of Y with respect to X
dX2

A function Y = ƒ (X) is defined at a point, say X = a, if it has a finite value at X = a. Some possible causes of
undefined functions are:

• Division by zero, e.g., Y = 1 is undefined at X = 1.
X − 1

• Logarithm of a non-positive number, e.g., Y = log(X) is undefined at X ≤ 0.

• Even roots of a negative number, e.g., Y = √X is undefined at X < 0.
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6.1 Increasing and Decreasing Functions

A function is increasing if the Y-values get bigger as the X-values get bigger. A function is decreasing if the
Y-values get smaller as the X-values get bigger. Figures 4a and 4b show an example of each type of function.

FIGURE 4a. An increasing function. FIGURE 4b. A decreasing function.

The first derivative can be used to test whether a function is increasing or decreasing at a point, say
at X = a:

1. A function is increasing at X = a if dY > 0 at X = a.
dX

2. A function is decreasing at X = a if dY < 0 at X = a.
dX
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6.2 Symmetric Functions

A function is symmetric about a certain line if its graph on one side of the line is a mirror image of the graph on
the other side of the line (Figure 5). For example, a quadratic function is a symmetric function.

FIGURE 5. A symmetric function.



6.3 Asymptotes

An Asymptote to a curve is a straight line that the curve approaches but never reaches.

The line X = a is a vertical asymptote for the curve Y= ƒ(X) if Y approaches positive infinity or negative
infinity as X approaches a.

The line Y = b is a horizontal asymptote for the curve Y = ƒ(X) if Y approaches b when X approaches
positive infinity or negative infinity.

Figure 6 is a plot of the function Y = x – 1
1   

. The dotted lines are the asymptotes: a horizontal asymptote

at Y = 0, and a vertical asymptote at X = 1.
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FIGURE 6. A function with asymptotes.
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6.4 Concavity of a Function

A curve that is concave upward has an apparent U-shape. A curve that is concave downward has an upside
down U-shape. Concavity of a function can be tested with the second derivative (provided that it is defined):

1. A function Y = ƒ (X) is concave upward at X = a if d2Y > 0 at X = a.
dX2

2. A function Y = ƒ (X) is concave downward at X = a if d2Y < 0 at X = a.
dX2

Figures 7a and 7b show an example of each type of function.

FIGURE 7a. A concave upward function. FIGURE 7b. A concave downward function.
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6.5 Maximum and Minimum

The value Yc is a local maximum of the function Y = ƒ (X), if Yc is the largest value of Y in the neighbourhood
of X = c. Similarly, the value Yc is a local minimum of the function Y = ƒ (X), if Yc is the smallest value of Y in
the neighbourhood of X = c. A local extremum is a value of Y that is either a local minimum or a local
maximum.

Local extremums occur at the critical points of ƒ — that is, when dY = 0 or is undefined. If X = c is a
dX

critical point of the function Y = ƒ (X) then:

Yc is a local maximum if d2Y < 0 at X = c; and
dX2

Yc is a local minimum if d2Y > 0 at X = c.
dX2

Figures 8a and 8b show example functions with extremums.

FIGURE 8a. A function with a local
maximum.

FIGURE 8b. A function with a local
minimum.

Yc is a global maximum if it is the largest value of Y for all possible values of X. Conversely, Yc is a
global minimum if it is the smallest value of Y for all possible values of X.
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6.6 Point of Inflection

The point of inflection is where a function changes concavity from concave upward on one side to concave
downward on the other side.

The point (c,Yc) is a point of inflection if d2Y = 0 or is undefined.
dX2

Figure 9 represents the curve Y = 8X5 − 5X4 − 20X3 with the local extremums and inflection points identified.
The global maximum is positive infinity and the global minimum is negative infinity.

FIGURE 9. The graph of Y = 8X5 − 5X4 − 20X3 showing the local extremums and inflection points.
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APPENDIX 1: GAMMA FUNCTION

The Gamma Function has the form:

Γ (a) = ∫ Ya −1e−YdY a > 0
∞

0

The Gamma function has the following special properties that can be useful in evaluating Γ(a):

1. Γ (a + 1) = aΓ(a)

2. Γ (a + 1) = a! if a is an integer.

3. Γ (1 ) = √π
2

4. Γ (1) = 1

Example:

For a = 5, Γ (a) = Γ ( 5 )2 2

= Γ ( 3 + 1)2

= ( 3 ) Γ ( 3 )2 2
Property 1

= ( 3 ) Γ ( 1 + 1)2 2

= ( 3 )( 1 ) Γ ( 1 )2 2 2
Property 1

= ( 3 )( 1 ) √π = 3√π
2 2 4

Property 3

Evaluating the Gamma function in SAS:

Γ (a) can be evaluated in SAS by the function GAMMA. For example, to compute G = Γ (9), one would
use the command G = GAMMA(9); .



109

BIBLIOGRAPHY

Bard, Y. 1974. Nonlinear parameter estimation. Academic Press, New York, N.Y.

Bergerud, W. 1991. Handbook No. 1: Pictures of linear models. B.C. Min. of For., Res. Br. Victoria, B.C.
Biometrics Information Handb. Ser.

Beyer, W.H. 1984. CRC Standard mathematical tables. 27th ed. CRC Press, Boca Raton, Fla.

Bredenkamp, B.V. and T.G. Gregoire. 1988. A forestry application of Schnute’s generalized growth function.
For. Sci. 34 (3): 790-797.

Campbell, H.E. and P.F. Dierker. 1982. Calculus with analytic geometry. 3rd ed. Prindle, Weber, and Schmidt,
Boston, Mass.

Daniel, C. and F. Woods. 1980. Fitting equations to data. 2nd ed. John Wiley and Sons, New York, N.Y.

Edwards, C.H. Jr. and D.E. Penney. 1982. Calculus and analytic geometry. Prentice-Hall, Englewood
Cliffs, N.J.

Fletcher, R.I. 1975. A general solution for the complete Richards function. Mathematical Biosciences
27:349–360.

Freedman, D., R. Pisani, and R. Purves. 1978. Statistics. W.W. Norton Company, New York, N.Y.

Freund, J.E. and R.E. Walpole. 1987. Mathematical statistics, 4th ed. Prentice-Hall, Englewood Cliffs, N.J.

Gallant, A.R. 1987. Nonlinear statistical models. John Wiley and Sons, New York, N.Y.

Hoerl, A.E. 1954. Fitting curves to data. Chemical business handbook. J.H. Perry (editor). McGraw-Hill, New
York, N.Y.

Hunt, R. 1982. Plant growth curves: the functional approach to plant growth analysis. Edward Arnold, London.

Jenson, C.E. 1964. Algebraic description of forms in space, USDA, FS Central States Forest Experiment
Station, Columbus, Ohio.

Jenson, C.E. and J.W. Homeyer. 1970. Matchacurve-1 for algebraic transforms to describe sigmoid- or bell-
shaped curves. U.S. Dep. of Agric. For. Serv., Intermountain For. Range Exp. Sta., Ogden, Utah.

. 1971. Matchacurve-2 for algebraic transforms to describe curves of the class Xn. U.S. Dep. of Agric.
For. Serv., Intermountain For. Range Exp. Sta., Ogden, Utah.

Jenson, C.E. 1973. Matchacurve-3: multiple-component and multidimensional mathematical models for
natural resource studies. U.S. Dep. of Agric. For. Serv., Intermountain For. Range Exp. Sta., Ogden, Utah.

. 1976. Matchacurve-4: segmented mathematical descriptors for asymmetric curve forms. U.S. Dep.
of Agric. For. Serv., Intermountain For. Range Exp. Sta., Ogden, Utah.

Kozak, A. Forestry 466 course notes. Faculty For., Univ. B.C. Vancouver, B.C.

Leech, J.W. and I.S. Ferguson. 1981. Comparison of yield models for unthinned stands of radiata pine. Aust.
For. Res. 11:231–245.

Little, T.M. and F.J. Hills. 1978. Agricultural experimentation design and analysis. John Wiley and Sons, New
York, N.Y.

Nokoe, S. 1980. Nonlinear models fitted to stand volume-age data compare favourably with British Columbia
Forest Service hand-drawn volume-age curves. Can. J. For. Res. 10:304–307.

Nelder, J.A. 1966. Inverse polynomials. Biometrics 22:128–141.

Parton, W.J. and G.S. Innis. 1972. Some graphs and their functional forms. Nat. Resource Ecology Lab. Colo.
State Univ. Colo., Tech. Rep. No. 153.



110

Ratkowsky, D.A. 1983. Nonlinear regression modeling. Marcel Dekker, New York, N.Y.

. 1990. Handbook of nonlinear regression models. Marcel Dekker, New York, N.Y.

Rawlings, J.O. 1988. Applied regression analysis: a research tool. Wadsworth and Brooks, Belmont, Calif.

Richards, F.J. 1959. A flexible growth function for empirical use. J. Exp. Bot. Vol. 10 (29):290–300.

SAS Institute Inc. 1988a. SAS/STAT User’s Guide. Release 6.03 ed., SAS Institute Inc., Cary, N.C.

. 1988b. SAS/Graph User’s Guide. 1988. Release 6.03 ed., SAS Institute Inc., Cary, N.C.

Schlotzhauer, S.D. and R.C. Littell. 1987. SAS system for elementary statistical analysis. SAS Institute,
Cary, N.C.

Schnute, J. 1981. A versatile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci.
38:1128–1140.

Schumacher, F.X. 1939. A new growth curve and its application to timber-yield studies. J. For. 37:819–820.

Sit, V. 1992. A repeated measures example. B.C. Min. For. Res. Br., Victoria, B.C., Biom. Infor. Pamp. No. 39.

Spain, J.D. 1982. BASIC microcomputer models in biology. Addison-Wesley Publishing Company, Mass.

Sweda, T. 1984. Theoretical growth equations and their applications in forestry. Nagoya Univ. For. Nagoya,
Japan, Bull. Nagoya Univ. For. No. 7.

Weibull, W. 1951. A statistical distribution function of wide applicability. J. Appl. Mech. 18:293–296.

Weisburg, S. 1985. Applied Linear Regression, 2nd ed. John Wiley and Sons, New York, N.Y.

Yang, R.C., A. Kozak, and J.H.G. Smith. 1978. The potential of Weibull-type functions as flexible growth
curves. Can. J. For. Res. 8:424–431.

Zeide, B. 1993. Analysis of growth equations. For. Sci., Vol. 39, No. 3:594–616.


	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1 INTRODUCTION
	2 REGRESSION ANALYSIS
	3 CURVE FITTING WITH SAS
	3.1 Linear Regression Using PROC REG
	3.2 Non-linear Regression Using PROC REG
	3.3 Non-linear Regression Using PROC NLIN

	4 A CATALOG OF CURVES
	4.1 Polynomials
	4.2 Inverse Polynomials
	4.3 Exponential Functions
	4.4 Power Function
	4.5 Combined Exponential and Power Functions
	4.6 Logarithmic Function
	4.7 Trigonometric Functions
	4.8 Common Distributions

	5 CURVE FITTING METHODS
	5.1 How to Select Models
	5.2 How to Choose Starting Values for PROC NLIN
	5.3 What is Convergence?
	5.4 Model Comparisons and Model Validation
	5.5 Example 1
	5.6 Example 2

	6 BASIC ATTRIBUTES OF CURVES
	6.1 Increasing and Decreasing Functions
	6.2 Symmetric Functions
	6.3 Asymptotes
	6.4 Concavity of a Function
	6.5 Maximum and Minimum
	6.6 Point of Inflection

	APPENDIX 1: GAMMA FUNCTION
	BIBLIOGRAPHY

