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Abstract

On top of the generalized estimating equation (GEE) approach, there exist two extended generalized estimating equation
(EGEE) approaches where two sets of estimating equations are simultaneously solved for the estimation of the regression
and the so-called ‘working’ correlation parameters. The loss of e�ciency of the GEE approach based regression estimators
was recently studied by Sutradhar and Das (Biometrika 86 (1999) 459). In this paper, we study the e�ciency loss problem
for the two EGEE approaches by utilizing the approach of Sutradhar and Das. c© 2001 Elsevier Science B.V. All rights
reserved
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1. Introduction

Suppose that a scalar response yit and a p-dimensional vector of covariates xit are observed for clusters
i=1; : : : ; K , at a time point t (t=1; : : : ; ni). For the ith cluster, let yi =(yi1; : : : ; yit ; : : :, yini)

T be the response
vector and Xi =(xi1; : : : ; xit ; : : : ; xini)

T be the ni × p matrix of covariates. Further suppose that the marginal
density of the responses yit is of the exponential family form

f(yit)= exp[{yit�it − a(�it)}�+ b(yit ; �)]; (1.1)

(cf. Liang and Zeger, 1986) where �it = h(�it) with �it = xTit �; a(·), b(·), and h(·) are of known functional
form, � is a possibly unknown scale parameter, and � is the p × 1 vector of parameters of interest. It then
follows that E(Yit)= a′(�it) and var(Yit)=�−1a′′(�it); where a′(�it) and a′′(�it) are, respectively, the ?rst and
second derivatives of a(�it) with respect to �it .
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In the cluster regression set-up, the components of the response vector yi are correlated. Let Ci(�) be the
ni × ni true correlation matrix of Yi (i=1; : : : ; K), which is usually unknown in practice. Here, � is an s1 × 1
vector of correlation parameters which fully characterizes Ci(�). For Ai =diag[a′′(�it)], and for known Ci(�),
the quasilikelihood estimator �̃ of � under (1.1), is the solution of the score equation

K∑
i=1

X T
i Ai�−1

i (�)(yi − �i)= 0; (1.2)

where �i =(a′(�i1); : : : ; a′(�it); : : : ; a′(�ini))
T and �i(�)=�−1A1=2

i Ci(�)A
1=2
i is the true covariance matrix of Yi.

In many important situations, for example for binary and Poisson data, one may use �=1. In what follows, we
therefore consider the case �=1, for simplicity. Under mild regularity conditions, K1=2(�̃−�) is asymptotically
multivariate normal with zero mean vector and covariance matrix VT given by

VT = lim
K→∞

K

{
K∑
i=1

X T
i A1=2

i C−1
i (�)A1=2

i Xi

}−1

: (1.3)

In practice, Ci(�) is unknown. This makes it impossible to estimate � by solving the estimating Eq. (1.1).
To overcome the problem of unknown Ci(�), Liang and Zeger (1986) have used a ‘working’ correlation
matrix Ri(�) for Ci(�) and solved the estimating equations

K∑
i=1

X T
i A1=2

i R−1
i (�̂)A−1=2

i (yi − �i)= 0; (1.4)

where �, an s2 × 1 vector of correlation parameters fully characterizes R(a) matrix, and �̂ is a consistent
estimate of �. Let �̂G be the solution for � based on the generalized estimating equation (GEE) (1.4).
In the context of Liang–Zeger (1986) model, Fitzmaurice et al. (1993, Eqs. (2) and (4), pp. 286–87)

use two sets of generalized estimating equations to estimate � and the ‘working’ correlation parameter �.
Their estimating equation for � is quite similar to that of Prentice and Zhao (1991) but unlike Fitzmaurice
et al. (1993), Prentice and Zhao (1991) estimate the true correlation parameters �. Thus, Fitzmaurice et al.
(1993) used an extended GEE (EGEE) approach for the estimation of the parameters as in the original paper
of Liang and Zeger. We refer to this technique as the EGEE2 approach. Note that similar to Prentice and
Zhao (1991), this EGEE2 approach of Fitzmaurice et al. (1993) requires the computations of the third- and
the fourth-order moments of the responses, in order to construct the generalized estimating equation for �.
The exact computation of these higher-order moments is, however, not possible. One standard approach for the
estimation of these moments is to use the covariance matrix of the responses by pretending it as the covariance
matrix of the normally distributed responses (Prentice and Zhao, 1991). To avoid the complexity of computing
higher-order moments, recently Hall and Severini (1998) use an extended GEE approach that uses only up to
second-order moments. We refer to this approach as the EGEE1 approach. In this EGEE1 approach, Hall and
Severini (1993) like Fitzmaurice et al. (1993), jointly estimate the regression and the ‘working’ correlation
parameters �. Similar to Liang and Zeger (1986), by using the R(�) matrix in the covariance matrices of
the estimates of the regression and the ‘working’ correlation parameters, Hall and Severini (1998) have also
examined diQerent types of e�ciency losses due to misspeci?cation of the correlation structure of the responses.
We refer to their Tables 3–5 (Hall and Severini, 1998, pp. 1370–1371) in particular to make this point clear.
But as suggested by Sutradhar and Das (1999), the computations of the e�ciencies should be based on the
R(�∗0 ) matrix, where �∗0 is the convergent value of the estimate of �, irrespective of the approaches whether
� and � are jointly or separately estimated. The main objective of the paper is to deal with this important
issue of computing the e�ciencies correctly to understand the merits of the proposed EGEE1 and EGEE2
approaches for the estimation of the parameters, mainly the regression parameters.
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2. EGEE1 and EGEE2 based estimators for working correlations and their convergence

2.1. EGEE1 based estimator and convergence

Let �̂EG denote the EGEE1 based estimator of � due to Hall and Severini (1998). Note, however, that as the
� parameter involved in the Ri(�) (1.4) working correlation matrix is subject to uncertainty of de?nition (cf.
Crowder, 1995), it is essential to see the limiting value of �̂EG obtained based on EGEE1 approach. Suppose
that �̂EG converges to a quantity �̃, say. We then compute the e�ciency of the EGEE1 based estimator of �,
say �̂EG, by computing the covariance matrix of �̂EG with �̃ for � (cf. Sutradhar and Das, 1999), whereas Hall
and Severini computed the covariance matrix of �̂EG by using Ri(�) matrix itself (cf. Tables 3–5 in Hall and
Severini, 1998). We now examine the convergence of �̂EG due to misspeci?cation of the correlation structure.

Following the notation in (1.4), let ui = [uTi1; u
T
i2]

T, where ui1 = [(yi1 − �i1)2; : : : ; (yit − �it)2; : : : ; (yini −
�ini)

2]T, and ui2 = [(yi1 − �i1)(yi2 − �i2); : : : ; (yit − �it)(yit′ − �it′); : : : ; (yi(ni−1) − �i(ni−1))(yini − �ini)]
T are,

respectively, the ni and ni(ni − 1)=2 dimensional vectors of corrected squares and distinct cross-products of
the observations yi1; : : : ; yit ; : : : ; yini for all i=1; : : : ; K . Under the assumption of working correlation struc-
ture Ri(�) or the working covariance matrix Vi(�; �)=A1=2

i Ri(�)A
1=2
i =(vitt′), let ṽi1 = (vi11; : : : ; vitt ; : : : ; vinini)

T

and ṽi2 = (vi212; : : : ; vi2tt′ ; : : : ; vi2(ni−1)ni)
T, respectively, be the vectors of diagonal and distinct oQ-diagonal

elements of the Vi(�; �) matrix. In the EGEE1 approach, one then solves the estimating equations (Hall
and Severini, 1998)

K−1
K∑
i=1

@�T
i

@�
V−1
i (�; �)(yi − �i)= 0 (2.1)

and

K−1
K∑
i=1

[W T
id; W

T
i Rd][(ui1 − ṽi1)T; (ui2 − ṽi2)T]T = 0 (2.2)

for � and � jointly, where Wid and Wi Rd are ni × 1 and ni(ni − 1)=2× 1 vectors consisting of the diagonal and
distinct oQ-diagonal elements of the Wi(�)= @V−1

i (�; �)=@� matrix, respectively. In

Wi(�)=− A−1=2
i R−1

i (�)
@Ri(�)
@�

R−1
i (�)A−1=2

i ; (2.3)

the speci?c form of @Ri(�)=@� will depend on the structure of the Ri(�) matrix, chosen as the working
correlation matrix.
Note that to obtain the best possible estimate of �, one assumes that � is known. Thus, one solves

Eq. (2.2) only to obtain �̂EG. Now by similar arguments as in Sutradhar and Das (1999), �̂EG from (2.2)
would converge to a quantity determined by the form chosen for the working correlation matrix Ri(�) and the
form of the true correlation matrix Ci(�) for the data yi. This is because Wi(�); ṽi1 and ṽi2 are functions of
�, whereas E(ui1) and E(ui2) are naturally the functions of the elements of the Ci(�) matrix, Ci(�) being the
true correlation structure of the data. In order to examine the loss or gain of e�ciency of the EGEE1 based
regression estimator, one ?rst needs to compute �̃, the convergent quantity of �̂EG, due to misspeci?cation of
the correlation structure. We do this by solving the equation

K−1
K∑
i=1

[W T
id; W

T
i Rd][($̃i1 − ṽi1)T; ($̃i2 − ṽi2)T]T = 0 (2.4)

for � as a function of �. Note that Eq. (2.4) is obtained from (2.2) by taking expectations of ui1 and ui2 under
the true correlation structure. Consequently, in (2.4), $̃i1 and $̃i2 are the ni × 1 and ni(ni − 1)=2× 1 vectors
consisting of the diagonal and distinct oQ-diagonal elements of the �i(�)=A1=2

i Ci(�)A
1=2
i matrix, respectively.
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Next, for three commonly encountered correlation processes, as in Liang and Zeger (1986), namely for
equi-correlation (EQC), MA(1) and AR(1) processes, we simplify Eq. (2.4) to compute �̂EG and obtain its
convergent value �̃ under misspeci?cation of correlation structures, as follows. For the true MA(1) versus
working EQC, it can be shown after some algebras that �̂EG obtained from (2.4) converges to �̃=2�=n: For
the true MA(1) versus working AR(1) structure, �̂EG appears to converge to �̃= �, where −0:5¡�¡ 0:5.
For the true AR(1) versus working equicorrelation process, �̂EG converges to �̃ satisfying

�̃= [2�={(1− �)n(n− 1)}]
[
n− 1− �n

1− �

]
;

whereas for the true AR(1) versus working MA(1) structure, �̂EG appears to converge to

�̃=
K∑
i=1

n−1∑
j=1

{
�j

n−j∑
k=1

rk;k+j
2

}/
K∑
i=1

n−1∑
k=1

rk;k+1
2 ; (2.5)

where r j;k
2 =

∑n
t=1(r

j; t−1rt; k + rj; t+1rt; k); with rj;k as the (j; k)th element of the inverse matrix of the working
correlation matrix Ri;M (�), say, for the moving average process of order 1. The formulas for these elements
rj;k are available in Shaman (1969, Eq. (8)) (see also Tanaka and Satchell (1989)), for example. Note that in
this true AR(1) versus working MA(1) structure, �̃ appears to satisfy a complicated polynomial relationship
with �. For a given �, �̃ may be solved by using a trial and error (or search method) technique so that
Eq. (2.5) is satis?ed. Next for the true EQC versus working AR(1) case, �̂EG appears to converge to �̃= �,
whereas for the true EQC versus working MA(1) structure, �̂EG converges to

�̃=
�
∑n−1

j¡k=1

∑n
t=1(r

j; t−1rt; k + rj; t+1rt; k)∑n−1
j=1

∑n
t=1(r

j; t−1rt; t+1 + rj; t+1rt; i+1)
; (2.6)

where rj;k , the (j; k)th element of the inverse matrix of Ri;M (�) is computed as in (2.5). The values of �̃ to
the corresponding values of � for all three correlation structures are shown in Table 1.

2.2. EGEE2 based estimator and convergence

Recall from (1.4) that in the GEE approach, Liang and Zeger (1986) estimate the regression vector � by
solving the estimating equation

K∑
i=1

@�T
i

@�
V−1
i (�; �̂)(yi − �i)= 0;

where the ‘working’ correlation estimate �̂ is computed separately by using the method of moments. In this
section, unlike the Hall and Severini (1998) joint estimation approach EGEE1 for � and �, we consider a
third and fourth moments based direct generalization of the Liang–Zeger approach for such joint estimation
(cf. Fitzmaurice et al., 1993), which has been referred to as the EGEE2 approach.
De?ne fi = [(yi − �i)T; (ui1 − ṽi1)T; (ui2 − ṽi2)T]T, and

Di =




@�i

@�T 0

@ṽi
@�T

@ṽi
@�


 ; +i =

[
var(yi) cov(yi; ui)

var(ui)

]
;

where ui = [uTi1; u
T
i2]

T with ui1 and ui2 as the vectors of corrected squares and distinct cross-products of the ni

observations yi1; : : : ; yini under the ith cluster, and ṽi =(ṽTi1; ṽ
T
i2)

T with E(ui1)= ṽi1 and E(ui2)= ṽi2 under the
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Table 1
Percentage relative e�ciency of R(�) working correlation based �̂I = (�̂0I ; �̂1I)

T, �̂G = (�̂0(G); �̂1(G))
T and �̂EG = (�̂0(EG); �̂1(EG))

T to the

generalized estimator �̃= (�̃0; �̃1)
T with true correlation matrix C(�), for log{�it}= �0 + �1t=n with �0 = �1 = 1 for n=5

Estimation approach

EGEE2 with working EGEE2 with working
Working normal based independence based
independence higher moments higher moments EGEE1

R(a)|C(�) � �̂0I �̂1I �∗1 �̂0(G) �̂1(G) �∗2 �̂0(G) �̂1(G) �̃ �̂0(EG) �̂1(EG)

EQC|MA(1) −0:3 97 97 −0:13 97 97 −0:13 97 97 −0:12 97 97
0.1 100 100 0.04 100 100 0.04 100 100 0.04 100 100
0.2 99 99 0.08 99 99 0.08 99 99 0.08 99 99
0.4 95 94 0.17 95 94 0.17 95 94 0.16 95 94

AR(1)|MA(1) −0:3 97 97 −0:29 100 100 — — — −0:3 100 100
0.1 100 100 0.10 100 100 — — — 0.10 100 100
0.2 99 99 0.20 100 100 — — — 0.20 100 100
0.4 95 94 0.37 99 99 — — — 0.40 100 99

EQC|AR(1) −0:3 96 96 −0:10 96 96 −0:10 96 96 −0:10 96 96
0.3 98 98 0.16 98 98 0.16 98 98 0.15 98 98
0.7 97 95 0.53 97 95 0.53 97 95 0.52 97 95

MA(1)|AR(1) −0:7 88 87 −0:36 98 98 −0:49 99 99 −0:02 89 88
−0:3 96 96 −0:26 100 100 −0:30 100 100 −0:03 97 96
0.3 98 98 0.27 100 100 0.30 100 100 0.21 100 100
0.7 97 96 0.39 100 100 0.49 99 99 0.05 98 97

AR(1)|EQC 0.3 100 100 0.33 98 96 0.05 100 100 0.3 98 97
0.7 100 100 −0:53 98 94 0.05 100 100 0.7 96 87
0.9 100 100 −0:52 99 96 0.05 100 100 0.9 98 88

MA(1)|EQC 0.1 100 100 0.09 100 100 0.10 100 100 0.12 100 100
0.3 100 100 0.22 99 98 0.30 97 95 0.12 100 99
0.4 100 100 0.27 98 96 0.40 95 90 0.06 100 100
0.49 100 100 0.31 98 95 0.49 91 82 0.03 100 100

‘working’ correlation model. Then, in EGEE2 approach, one obtains the estimates of � and � simultaneously
by solving the joint estimating equations

K∑
i=1

DT
i +

−1
iw fi =0 (2.7)

for � and �, where +−1
iw represents a working covariance matrix of fi. Two diQerent choices of +iw matrix will

be considered. First, the +iw matrix will be constructed by pretending var(yi)=Vi(�; �) ≡ Vi(�; �) as though
it is the covariance matrix of the normal vector yi. Second, +iw matrix will be constructed by pretending that
the components of yi vector follow the true exponential family model but they are independent.
We now concentrate on the estimation of the working correlation parameter � as in the following. Irre-

spective of the choice for the working covariance matrix, we now estimate � by assuming that � is known.
It then follows from (2.7) that the estimating equation for � is given by

K∑
i=1

@ṽTi
@�

V−1
iuu (ui − ṽi)= 0; (2.8)
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where Viuu is the covariance matrix of ui, and ṽi = [ṽTi1; ṽ
T
i2]

T. Let �̂G be the solution of (2.8) for �. There
is, however, no guarantee that �̂G will converge to �, as the working correlation parameter � is subject to
an uncertainty of de?nition (cf. Crowder, 1995). In order to examine this, we now simplify the estimating
equation (2.8) for two diQerent types of third- and fourth-order moment matrix Viuu, analogously to Hall and
Severini (1998). First, we consider a working structure for Viuu based on the assumption that the observations
have Gaussian distribution with correct mean vector �i and covariance matrix Vi(�; �). Second we construct a
working structure for Viuu under the assumption that the observations are independent following the exponential
family density (1.1) so that one may compute the necessary third- and fourth-order moments by exploiting
the density (1.1) itself. The two estimators based on these two approaches will be denoted by �̂G1 and �̂G2,
respectively.

2.2.1. Normal based EGEE2 estimator of �
Let

Viuu =

[
m∗

11 m∗
12

m∗
22

]
; (2.9)

where m∗
11 = var(ui1); m∗

12 = cov(ui1; ui2), and m∗
22 = var(ui2); ui1 and ui2 being the ni and ni(ni − 1)=2 dimen-

sional vectors of squares and cross-products, respectively. For j; k =1; : : : ; ni, the general (j; k)th element of
m∗

11 is given by

m∗
11(j; k) = Ew[{(yij − �ij)2 − vijj(�; �)}{(yik − �ik)2 − vikk(�; �)}]

= 2�2|j−k|vijj(�; �)vikk(�; �); (2.10)

as under normality and the working expectation assumption Ew(yi − �i)(yi − �i)T =Vi(�; �)= (vijk(�; �)), one
obtains Ew[(yij − �ij)2(yik − �ik)2]= vijj(�; �)vikk(�; �) + 2v2ijk(�; �). In (2.10), �|j−k| is the (j; k)th element
of the Ri(�) matrix in Vi(�; �), with �0 = 1. The elements of the m∗

12 and m∗
22 matrices may be computed

similarly.
Note that when Ri(�) is assumed to be a working correlation matrix following AR(1), MA(1) or equi-

correlation process, s2 becomes 1 implying that � is a scalar parameter. Since these processes are widely used in
practice, in this paper we consider s2 = 1 only. It then follows that @ṽTi =@� in (2.8) is a 1×ni(ni +1)=2 vector
given by

@ṽTi
@�

=
[
0T;

@
@�

{�|1−2|(vi11vi22)1=2; : : : ; �|j−k|(vijjvikk)1=2; : : : ; �|(ni−1)−ni|(vi(ni−1)(ni−1)vinini)
1=2}
]

= [b11; : : : ; bnini ; b12; : : : ; bjk ; : : : ; b(ni−1)ni ] (say) (2.11)

Remark that estimating equation (2.8) is unbiased only with respect to �, the working correlation para-
meter. Now suppose that Ci(�) is the true correlation structure of the data yi1; : : : ; yini as mentioned in (1.2).
Consequently, E(ui) in (2.8) is no longer ṽi, although E(ui1)= ṽi1. This is because, for Ci(�)= (�|j−k|) with
�0 = 1,

E(ui2) = [{vi11vi22}1=2�|1−2|; : : : ; {vi11vinini}1=2�|1−ni|; {vi22vi33}1=2

�|2−3|; : : : ; {vi(ni−1)(ni−1)vinini}1=2�|(ni−1)−ni|]
T

leading to

E(ui − ṽi)= [d11; : : : ; dnini ; d12; : : : ; djk ; : : : ; d(ni−1)ni ]
T (say); (2.12)
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where for j¡k, djk = {vijjvikk}1=2(�|j−k| − �|j−k|). Next, for j; k =1; : : : ; ni(ni + 1)=2, let V−1
iuu =(cjk): Now,

by combining (2.11) and (2.12), one solves

n∗i∑
k=1

n∗i∑
j=1

b1jcjkdk1 = 0; (2.13)

following (2.8) for � in terms of �, which will be the convergent value of �̂G1. In (2.13), n∗i = ni(ni + 1)=2.
Let �∗1 be the convergent value of �̂G1. For clarity, take for example the data considered by Hall and Sev-
erini (1998), where vitt = �itt =exp{�1 + �2t=ni} with �1 = �2 = 1, following a Poisson model. We, however,
assume that these cluster data (ni =5 say) really follow an equi-correlation process, whereas one uses MA(1)
working correlation structure to estimate � and hence �. For such a case, the elements bjk in (2.11) are:
bjk = {vijjvikk}1=2 for |j − k|=1, and bjk =0 for |j − k|¿ 1; the elements djk in (2.12) are: djj =0 for
j=1; : : : ; ni, djk =(�− �){vijjvikk}1=2 for |j− k|=1, and djk = �{vijjvikk}1=2 for |j− k|¿ 1; and the elements
of the submatrices in (2.9) are computed by putting �|j−k| = � for |j − k|=1 and �|j−k| =0 for |j − k|¿ 1,
yielding the appropriate values for cjk . Now for �=0:1, 0.3, 0.4 and 0.49, the solutions for � by (2.13)
are given by �∗1 = 0:09, 0.22, 0.27 and 0.31, respectively. Note that these �∗1 values should be used in the
e�ciency computations for the estimates of �, but not the values of �. In the same manner, we also compute
the �∗1 values for other model misspeci?cation such as: true equi-correlation versus AR(1) working processes;
true AR(1) versus working MA(1) and equi-correlation processes; and true MA(1) versus working AR(1)
and equi-correlation processes. The �∗1 values for all these cases are reported in Table 1. The e�ciencies for
the � estimates are computed in Section 2.2.2.

2.2.2. Independence (for third and fourth moments) based EGEE2 estimator of �
In this approach, one computes the third- and fourth-order working covariance matrix Viuu under the assump-

tion that the observations follow the true exponential family model but they are independent. The formulas
for bjk and djk remain the same as in Section 2.2.1 constructed for the normal based GEE2 estimator of �.
We now develop the submatrices m∗

11, m∗
12 and m∗

22 for the construction of the Viuu matrix in (2.8). By
similar calculations as in (2.10), one obtains

m∗
11(j; j)=mij4 − 2mij2vijj + v2ijj for j=1; : : : ; ni (2.14)

and for j �= k; j; k =1; : : : ; ni; m∗
11(j; k)=mij2mik2−vikkmij2−vijjmik2+vijjvikk ; where mij2 = a′′(�ij) and mij4 =

aIV(�ij) + 3{a′′(�ij)}2 are the second and fourth moments of the exponential family (1.1) based response
variable yij. For the Poisson case mij4 = �ij +3�2

ij, and mij2 = �ij with �ij = vijj = $ijj. It then follows that for
the Poisson model

m∗
11(j; j)= �ij + 2�2

ij for j=1; : : : ; ni (2.15)

and m∗
11(j; k)= 0; otherwise. The elements of m∗

12 and m∗
22 matrices may be computed similarly.

Now, by similar operations as in the case for normal based EGEE2 estimation, we solve (2.13) for �
in terms of �. Note that cjk are obtained from the inverse matrix of Viuu. The b1j and dk1 are the same
as in (2.13) for the normal based EGEE2 estimation for �. For the same equi-correlation �=0:1, 0.3, 0.4,
and 0.49 used in the normal based EGEE2 estimation, we now obtain �∗2 = 0:1, 0.3, 0.4, and 0.49 , as the
convergent values of �̂G2, which are the same as the values of �. Here, � was chosen to characterize the
working correlation matrix of the MA(1) process. Similarly to the values of �∗1 , the values of �∗2 are also
computed for other model misspeci?cation, and they are reported in the same Table 1.
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3. E�ciency under correlation structure misspeci cation

Recall that for known true correlation structure Ci(�), the quasi-likelihood estimator �̃ obtained by solving
the estimating equation (1.2) has the asymptotic covariance matrix given by (1.3). We identify this covariance
matrix as var(�̂): Similarly, for the EGEE1 based estimator �̂EG, we ?rst compute the covariance matrix of

(�̂
T
EG; �̂EG)

T, where �̂
T
EG and �̂EG are obtained from (2.1) and (2.2) jointly, and then use the ?rst p diagonal

elements of this covariance matrix as the variances of the elements of �̂EG. Let var(�̂EG) denote the p × p
covariance matrix of �̂EG. Next, we obtain the covariance of EGEE2 based estimator �̂G from the covariance

matrix of (�̂
T
G; �̂G)

T computed based on (2.7). We denote this covariance matrix by var(�̂G).
For the Poisson model considered by Hall and Severini (1998) (see also Section 2), we now apply the

proposed approach to deal with misspeci?cation of the correlation structure and compute the e�ciency of
�̂EG and �̂G by using var(�̃)=var(�̂EG) and var(�̃)=var(�̂G), respectively. For e�ciency comparison, we also
include the working independence estimator �̂I, which is the solution of the independence estimating equation
(IEE)

K∑
i=1

X T
i (yi − �i(�))= 0 (3.1)

and which has the asymptotic covariance VI given by

VI = lim
K→∞

(
K∑
i=1

X T
i AiXi

)−1( K∑
i=1

X T
i A1=2

i Ci(�)A
1=2
i Xi

)(
K∑
i=1

X T
i AiXi

)−1

: (3.2)

The e�ciencies of �̂I; �̂EG and �̂G with respect to �̃ are reported in Table 1.
It is clear from Table 1 that in four out of six cases, namely for the cases with true MA(1) versus working

EQC, true AR(1) versus working EQC, true EQC versus working AR(1) and MA(1) correlation structures,
the working independence estimator �̂I is either equally or more e�cient as compared to the EGEE1 and
EGEE2 estimators of �. In other two cases, �̂I appears to trail to both EGEE1 and EGEE2 estimators. The
EGEE1 and Gaussian EGEE2 estimators appear to be equally e�cient when MA(1) is a true correlation
structure but one uses AR(1) as the working correlation structure. In the last case, when AR(1) is a true
correlation structure but one uses MA(1) as the working correlation structure, Gaussian and independence
EGEE2 estimators appear to be more e�cient than the EGEE1 based estimators. Thus, in general, EGEE1
and EGEE2 approaches do not appear to perform well as compared to the working independence estimator
�̂I. Note that similar conclusion was reached by Sutradhar and Das (1999) regarding the performance of the
Liang–Zeger (1986) GEE estimator as compared to the working independence estimating equations (IEE)
based estimator of �. Since, EGEE1 and EGEE2 are more complex to compute the estimate of �, the ?ndings
of the present paper clearly reveal that in a situation where it is not possible to specify true correlation
structure of the responses, it is much better to use the simple IEE approach as opposed to the EGEE1 and
EGEE2 approaches in estimating �.

4. Concluding remarks

It was shown by Sutradhar and Das (1999) that in the longitudinal regression set-up, the generalized
regression estimators (Liang and Zeger, 1986) may be less e�cient as compared to the regression estimators
obtained by using the independence estimating equations approach. In the present paper, it is shown that the
extended generalized estimators of the regression coe�cients may also be less e�cient than the regression
estimators obtained based on the independence estimating equations approach. This ?ndings clearly suggests
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that in situations where it is not possible to specify the correct correlation structure, it is much better to use
the independence based regression estimators which are easy to compute.

Acknowledgements

This research was partially supported by a grant from the Natural Sciences and Engineering Research
Council of Canada.

References

Crowder, M., 1995. On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika 82,
407–410.

Fitzmaurice, G.M., Laird, N.M., Rotnitzky, A.G., 1993. Regression models for discrete longitudinal responses (with discussion). Statist.
Sci. 8, 284–309.

Hall, D.B., Severini, T.A., 1998. Extended generalized estimating equations for clustered data. J. Amer. Statist. Assoc. 93, 1365–1375.
Liang, K.Y., Zeger, S.L., 1986. Longitudinal data analysis using generalized linear models. Biometrika 78, 13–22.
Prentice, R.L., Zhao, L.P., 1991. Estimating equations for parameters in means and covariances of multivariate discrete and continuous

responses. Biometrics 47, 825–839.
Shaman, P., 1969. On the inverse of the covariance matrix of a ?rst order moving average. Biometrika 56, 595–600.
Sutradhar, B.C., Das, K., 1999. On the e�ciency of regression estimators in generalized linear models for longitudinal data. Biometrika

86, 459–465.
Tanaka, K., Satchell, S.E., 1989. Asymptotic properties of the maximum-likelihood and nonlinear least-squares estimators for noninvertible

moving average models. Econometric Theory 5, 333–353.


