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Abstract—Some results based on the Korkine’s identity and integral inequalities of Holder and
Griiss are obtained for the moments of a continuous random variable whose probability distribution
is a convex function on the interval of real numbers. Applications of these results are considered in
deriving the inequalities involving higher moments and special means and also in evaluating moments
of a beta random variable. © 2004 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Distribution functions and density functions provide complete descriptions of the distribution of
probability for a given random variable. However, they do not allow us to easily make compar-
isons between two different distributions. The set of moments that uniquely characterizes the
distribution under reasonable conditions is useful in making comparisons. Knowing the probabil-
ity function, we can determine the moments. There are, however, applications wherein the exact
forms of probability distributions are not known or are mathematically intractable so that the
moments cannot be calculated—as an example, an application in insurance in connection with
the insurer’s payout on a given contract or group of contracts that follows a mixture or compound
probability distribution. It is this problem that motivates researchers to obtain alternative esti-
mations for the moments of a probability distribution. Applying the mathematical inequalities,
some estimations for the moments of random variables were recently studied [1-6]. In this paper,
we further develop some estimations for the moments of a continuous random variable taking its
values on a finite interval.

Set X to denote a continuous random variable (referred to as random variable in what follows
now) whose probability density function f : I C R — R, is a convex function on the interval of
real numbers I and a,b € I (a < b).
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Denote by M, the r** moment of X, r > 0, defined as

b
M, =/ t" f(t) dt. (1.1)
The mean and variance of X are
b
p=M = / ££(2) dt, (1.2)
* b
o =M,— M?= / (t — p)2£(t) dt. (1.3)

In what follows now, when reference is made to the v*! moment of a particular distribution,
we assume that the appropriate integral converges for that distribution.

2. PRELIMINARIES

For the integrable mappings m, g, 4 : [a,b] — R, the following identity, inequalities, and results
hold and are presented for ready reference.
The Korkine’s identity [7]

/ mi(t) dt / m(8)g(t)h(t) dt — / m(t)g(t) dt / " m(t)h() dt
a a a a (2.1)

- %/a /,, m(tym(s){g(t) — g(s)][h(t) — h(s)| dt ds

holds provided all integrals involved in (2.1) exist and are finite.
The Holder’s integral inequality for double integrals {7]

/a b /a bg(t)g(s) dtds < ( / b / b g°(t)g"(s) dtds) v ( / ’ /a ’ g9(t)g%(s) dtds) l/q, (2.2)

wherep>1and 1/p+1/g=1.
The Griiss integral inequality [8]

IT(g, )| < (i_—qﬁlu, | (2.3)

where
b b b
T(g,h) = 7= ] o(0)h(t)dt — = / o0 dt - / h(t) dt, (2.4)

¢, ®, v, and T are real numbers such that ¢ < g(t) < ® and v < h(t) <T a.e. on [a,b].
A premature Griiss inequality that provides a sharper bound than the above Griiss inequality [8]

76, < E=Eren, w2, (25)
The Griiss type inequality [9]
o< BaOROE _ ([o®nt)dt)" (M- mp 28)
T [Pty 17 g(t)dt 4

provided all integrals exist and are finite, f: g(t)dt >0, and m < g(t) < M a.e. on [a,b].
It may be noted that inequalities (2.3) and (2.6) are sharp in the sense that the constant 1/4
cannot be replaced by a smaller one.
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3. INEQUALITIES INVOLVING MOMENTS
The following results for the moments of the random variable X hold.

THEOREM 3.1. For a random variable X with probability density function f : [a,b] C R — R,
z € [a,b], and r > 0,

(b - a) (br-l _ ar—l)

2 1
[br+1 — g+l (a + b) (b’ — ar)
\ r+1 4 )

Mr - NM 1< (31)

(b—a) 1 £l

provided f € Ly|a,b].

PRroOF. We choose the mappings m(t) = f(t), g(t) = (t — ), and h(t) = "~ in Korkine’s
identity (2.1). The left-hand side of (2.1) provides

b b b b
| 1w [ ete-wrea- [e-wrwd [ e
b : b : b
= / t (it — ) F(t) de (since / f(t)dt =1 and / (t—p)ft)ydt= 0) (3.2)
b b
= / tTf(t) dt — u/ " () dt = M, — pM,_q,

and the right-hand side of (2.1)

b ;b
% /a /a (t—3) (tT—l _ sr-—l) F()f(s)dtds. (3.3)

Observe that

b pb
/ / (t—s)(t71 = ™) F(t)f(s)dtds
< sup I(t - ) (tr—-l — s?’-—l)l/b /b F®)f(s)dtds

(t,8)€[a,b]?

b rb
= (b—a) (br—l _ ar-—l) (since /a [1 f(t)f(s) dtds = 1) ,

hence, the first part of the moment inequality (3.1).
The second part of (3.1) follows as

b pb
/ / (t—s) ("1 —s"Y) £(2) f(s) dtds

b b
< sup if(t)f(s)|/ /(t—s)(t’"“l——sr_l) dtds

(t,8)€[a,b)?
r+l L grtl r_or
= sup |f(t)f(s)l [2(b-a) (b ,-_i_? B (a+b)g) a ))]

(t,9)€a,b]?
br+1 _ ar+1 3 (a + b) (br — ar)
r41 4 ’

= 1512 [260- 0 (

Using the Griiss type inequality (2.6), we prove the following theorem.
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THEOREM 3.2. For a random variable X with probability density function f : [a,b] C R — R¥,
z € [a,b], andr >0,

_M< % (5" —a)?. (3.4)

PRrROOF. We choose in the Griiss type inequality (2.6): g(t) = f(t) and h(t) =t, t € [a, }]. Thus,
m=a" and M = b", and

lersod (Lriga’ @-a?
J2 ft)at Lfwa ) — 47

b
My — M2 < i (b —a")? (since / ftydt = 1) .

The following results hold also.

THEOREM 3.3. For a random variable X with probability density fanction f : [a,b] C R — R*,
for any z € [a,b] and r > 0,

V: C) (~1yia™ M

=0

—a\r+l _ __pyr+1
1 flloo ) (= —0) , provided f € Lyo[a,b],
r+1 (3.5)
© —a)rTtl — (g — byra+1]V/e X 1 1
= ”f“p [( ) ,’,q__l_(l ] s pI'OVlded f € Lp[ﬂqb]’ r> 1, 5 +a = 1,
b—a a+bl]"
| [ 5 + lx -3 ] .

ProoF. Applying the binomial expansion

o (T q\igd, T—i
ey =3 (7)o
we have

/ (z -t f(t)dt = ;(D(—nw—im. (3.6)

Further observe that

/b( —t)" f(t)dt<ess sup |f(@®) ]/ z~t)"dt

= [|fllo [( - a)r+; ;i ~ b)rﬂ] , provided f € Loola,b],

and thus, the first inequality in (3.5).
For proving the second inequality in (3.5), we have from the Holder’s integral inequality (2.2),

1/4q

b b ve s
(x — ) F(t) dt < ( 77(t) dt) ( (z — t)" dt)
femrroms ([ ros) "

(z — @) 9+ — (g — b)ret! 1/q
[ rg+1 ] ’

= [I7ll»

provided f € Lyla,b], p>1,and 1/p+1/q¢=1.
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Now observing that

b
/(x—t)rf()dt< sup I(a:—t)’"I/ f)dt
= [max(x — a,b —x)]"

te(a,b]
b—a a+b
e
we prove the third inequality in (3.5).
REMARK 3.4. Choosing 7 = 2 in (3.5) results in the inequality established in Theorem 2.4 by
Barnett et al. [2].

COROLLARY 3.5. The best inequality from (3.5) may be seen for x = (a + b)/2. Forr >0,

’ b~ r+1l -b 417 .
1flloo {( a)2,+1(r E:Jl) ) j ) provided f € Ly [a,b],
(3.8)
T T 1/q
- (b—a)e+ — (a = byett . 1,1
<9 Ul [ et (rg + 1) , provided f € Lya,b], p > 1, p + . 1,
b—al”
\ 2 ’

An interesting case follows from (3.5) when p=¢=2.

COROLLARY 3.6. For a random variable X with probability density function f : [a,b] C R — R,
z€la,b,p=g=2,andr >0,

T r r 1/2
3 (Z) (1) M; < ||fll2 [(” — )’ ;;(1‘” — b H] ., provided f € Lya,b]. (3.9)
i=0

From (3.8), we can evaluate an upper bound for the variance of X as follows.

COROLLARY 3.7. For a random variable X with probability density function f : [a,b] C R — R¥,
z€lab,p=q=r=2,

— q)3/2 a 2
o < pl(a+b) — ] + |82 —(“’

W 5 ) , provided f € La[a, b]. (3.10)

4. PERTURBED RESULTS FOR MOMENTS

We apply the Griiss type inequalities {2.3) to (2.5) to prove results involving the moments.

THEOREM 4.1. For a random variable X with probability density function f : [a,b] C R — R*,
z€le,b,m<f<M,andr >0,

P —att ] (b—a)(M-m)
ng | & L VT (4.1)
where
p2r+l _ g2r+l pril g+l \ 2 ,
T(hsh) = (b—a)2r+1) ((b—a)(r+l)) (42)
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PROOF. Let g(t) = f(t) and h(t) =" in the Griiss integral inequality (2.4). Then

£

Ter =1 [ rrwa— 2 [ L [y
(g, )—E_—a/atf(t) t—b—_—E/a f(t)dt~—T£/at dt
1 [ e
BUECE C=r )

b—a
which is the left-hand side of (4.1), and

1 b e 1 b 1 b
a a

—a b—a J,
p2r+l _ g2r+l prtl _ grtl 2
- (b—a)(2r+1)_((b——a)(r+1)> )

Applying inequality (2.5), we prove the theorem.

COROLLARY 4.2. A reverse inequality from (4.1) provides the moment estimation for a random
variable X with probability density function f : [a,b] C R —» R*, z € [a,b), m < f < M, and

r>0
’ pril - a’tl

R e Ry (- “)(é"" =™ TR (4.3)

In what follows now, we have a theorem that provides an inequality involving the 7** moment
(r > 0) of X about any arbitrary constant c € [a, b], defined as

b
M,(c) = / (t — o) £(t) dt.

THEOREM 4.3. For a random variable X with probability density function f : [a,b] C R — R,
z,c € [a,b], m< f< M, andr >0,

—eYtH — (g — )yt —a —-m
w0 - | < VG “y
where (b= )+t — ( or+1 (b—c)+! —( yr+1 2
-t —(a—c)*r - —(a—e)
T(h,h) = ) _( (b—a)(2r +1) > (45)

The proof is similar to that of Theorem 4.1 by letting g(t) = f(t) and h(t) = (t —¢)".

COROLLARY 4.4. A reverse inequality from (4.4} provides the estimation for M,(c) of a random
variable X with probability density function f : [a,b] C R — R¥, z,c € [a,b], m < f < M, and

r>0
! b'r+1 _ ar+1

M o—esn T (b_a)(gM =LOW sk (4.6)

where T'(h, h) is given by (4.5).
REMARK 4.5. The best inequality from (4.5) is attained at ¢ = (a + b)/2 as

a+b\ (b—a)*—(a—b)t| (b—a)(M —-m)
M ( 2 ) (b —a)(r+1) < ) VIT(h, k), (4.7)

where

T(h,h) = ( (4.8)

b— a)2r+1 —(a— b)2r+1 (- a)r+1 ~(a— b)'r+1 2
22r+1(b—a)(2r +1) ( 27+(b—a)(r + 1) > )
Below we obtain some results for the probability density functions f(z) that are differentiable,
i.e., for absolutely continuous probability functions f(z).
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THEOREM 4.6. Let a random variable X have probability density function f : [a,b] C R — Rt
z € [a,b]. Suppose that f is differentiable and is such that || f'||cc := SuPpe(q,p |F'(t)] < 00. Then,
forr >0,

r+1 _ T+t _ 2r+l _ o2r+1 Tl _ grtl g\ 1/2
M, — i P U a)llf floo ((b @) (b ) _ (b ) ) . (4.9)

(b—a)r+ 1) V12 (2r+1) (r+1)

PRrOOF. Let g,h : [a,b] — R be absolutely continuous and %/, g’ be bounded. Then, from
Chebyshev's inequality [10],

_ N2
T(g,h) < ¢ 1;) sup |g'(t) - ' (t)]-
t&la,b)

Matic, Petaric and Ujevic [8] have shown that
(o, ) < & Jf) sup 196) - VT ) (410)
Let g(t) = f(t) and h(t) = ¢". Then,
sup. lg' )] = 11flloos

ie a

and from (4.1), (4.2), and (4.10), we get

< (b — a) ( b2r+1 — a2r+1 ( br+1 . ar—{—l \ 2) 1/2

1 b'r'+1 _ ar+l

b—:EM’“(b—a)z(rH) =T/ \b—a)@r+1) \(B-a)(r+1)

COROLLARY 4.7. Let a random variable X have probability density function f : [a,b] C R — RT,
z € [a,b]. Suppose that f is differentiable. Then, from (4.9), the reverse inequality for r > 0
provides

1/2
r+1 _ r+l b—a) (B2r+1 — g2r+l r+l _ el 2
M < e (b “)nfuoo(( 2 (7 —a )—(” a )) - (a)

(b—a)(r-{—l) V12 (2r+1) (r+1)

We apply the results from Lupas [11] and Matic, Pedaric and Ujevic [8] to prove the following
theorem.

THEOREM 4.8. Let a random variable X have probability density function f : [a,b] C R — R*,
z € [a,b]. Suppose that f is locally absolutely continuous on (a,b) and f' € Ly(a,b). Then, for
r20,

prl — gr+? b— bh— 2r+1 _ g2r+1 pr+l o gr+ly 2
M, - < “)nf'n\/( - (T ) - )

(b —a)(r+1) (2r+1) (r+1)

Proor. For g,k : (a,b) — R locally absolutely continuous on (a,b), and ¢’, 4’ € La(a,b), Lu-
pas [11] established

b—a)? ,
(e, i < L2 g,

where
1/2

b
Ilg"||; = (_—L—/ |k(t)i2 dt) , fork e Lz(a, b).
b—a J,
Further, Matic, Pecaric and Ujevic [8] have shown that

T 1)l < L= g1t VTR, (4.13)

Letting g(t) = f(¢t) and A(t) =t in (4.13), we prove the theorem.
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COROLLARY 4.9. Let a random variable X have probability density function f : [a,b] C R — R,
z € [a,b]. Suppose that f is locally absolutely continuous on (a,b) and f' € Ly(a,b). Then,
from (4.12), the reverse inequality for r > 0 provides

pr+l _ grtl a) ~ @) (b2r+1 — g2r+1) pr+l . gr+1 2
M < (b—a)(r+ 1) 11 \/ (2r+1) ( (r+1) ) - @19

In what follows now, we apply the results from the Griiss type inequalities to develop estima-
tions for the central moments of X. Let

S(h(z)) = h(z) — M(h), (4.15)

where

/ ’ hw) du (4.16)

b—-a J,
From (2.5),
T(g,h) = M(gh) — M(g)M(R).
Dragomir and McAndrew [9] established the identity
T(g, h) = T(S(g), S(h)). (17)
We now apply (4.15) through (4.17) to obtain the following results.

THEOREM 4.10. Let a random variable X have probability density function f : [a,b] C R — R,
z € [a,b]. Then, forr > 0,

pr+l _ grtl b . 1
’M,— - m = /a S(t ) (f(t) - b—_:z) dt|. (418)
PrROOF. Let g(t) = f(t) and h(t) = ¢t". Using identity (4.15), we have
b b
/ £ 7(t) dt — M(t7) = / [t — M ()] (f(t) - bia) dt, (4.19)
where
M) = — bt"dtz—bLarH— (4.20)
b-a (b-a)(r+1) '
and
St =t"-M(1"). (4.21)

From (1.1) and (4.19)-(4.21),

and taking the modulus, we prove the theorem.
COROLLARY 4.11. Let a random variable X have probability density function f : {a,b]C R— R,

z € [a,b], and f € Loo[a,b]. Then, for r >0,
b
”( 1 )H / 1S (7)) dt. (4.22)
_a o Ja

brtl — o™t
b-a)r+1)

REMARK 4.12. We can obtain other estimations for the moments from (4.18) for f € Lyla, b},

1/p+1/q =1, p > 1. However, they will involve calculation of

b 1/a pr+l _ g+l
™\ |9 TN o 3T
(/a 16 ()] dt) , where S (t7) =1 ——_———_‘(b—a)(r—i—l)'

M, -
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5. ESTIMATIONS WHEN PROBABILITY DENSITY
FUNCTION IS ABSOLUTELY CONTINUOUS

‘We start with the following lemma.

LeMMA 5.1. Let a random variable X be such that its probability density function f : [a,b] — Ry
is absolutely continuous on [a,b]. Then, for r > 0,

r

r . . z—a)tl — (¢ - pyrtt b pb
Z (’L) (“1)‘337—’Mi - ( (g_a)(r(+ 1)b) + + bia’/ / (SE —t)rp(t,S)f'(s) dsdt, (51)

1=0

where p: [a,b]? > R is
s—a, ifa<s<t<hb,
a={ 17
s—b, ifa<t<s<hb,
for all x € [a,b].
ProoF. From (3.6), we have the identity

/ (z — )" F(t) dt = Z@(—nimr—%, (5.2)

i=0

for all z € [a, b].
Further, integrating by parts,

b
7t) = = / 1) ds+ 5= [ st 97 s, (5.9)

for all ¢ € {a,b].

On substituting (5.3) in (5.2), we prove the lemma.

The following theorem holds for the probability density functions which are absolutely contin-
uous and have essentially bounded derivatives.

THEOREM 5.2. Let a random variable X be such that its probability density function f : {a,b]
— Ry is absolutely continuous on [a,b] and f’ € Los[a, b, i.e., || f'llcc = esssUPye(q 4 |/ (2)] < 00.

Then, for r > 0,
> <r> (1yiar-ing, - EZT — e D™
i 1
=0

(b—a)(r+1)

(5.4)
1" lloo _ a4
< Ml [ty -0+ 007 a
for all x € {a,b].
ProoF. Applying identity (5.1) from the lemma, we have

I r r _ imr-i o (:l: . a}r-{—l . (:E — b)r+1
Z(i)‘ Ve - —a)(r+1)

//(z—t p(t, 8)f ()dsdtk
<

Y v / / (= = 78(t,5)] 1 ()] dsdt

||f’Hoo/ / (z— 5)| dsdt.

b—a
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/ab /ab (= — t)"p(t, s)| dsdt

S/ab|(x—t)rl [/ﬂb(s—a)ds-l—/ab(b——s)dsl dt

= [ty [ RO o

Further,

and hence, the theorem.

COROLLARY 5.3. Let the probability density function f : [a,b] — Ry be absolutely continuous
on [a,b] and f' € Loo[a,b]. Then, for all z € [a,b], 1/p+1/q =1, and even integers r > 2,

r

"N/ _qvior—ing _ (z “a)r+1 —(z "b)rJr1
E%(z)( sl (b-a)r+1)
(x_a)r+3é(b—a r41 3) ) (55)
o CU 1 e e ) |
2(b—a) +(b__z)'r+3_§ (:::’,’._'_1’3)

where B (.,.,.) is the quasi-incomplete Euler’s Beta mapping
B(,.,)= /oz(u —1)* Wy, >0, z>1
Proor. From (5.4) for even integers r > 2,
/b|(a:—t)'| [(t—a)? + (b—8)?] dt
= / b(z =) [(t —a)® + (b~1)?] dt (5.6)

= (=1 (f(t _ 2y (t—a)di+ /b(t _z)(b—t)? dt) .

a

We evaluate the integrals
b
I = / (t —x)"(t —a)?dt
(b-a)/(z—a)
=(zx—a)™ / (u— 1) u? du (5.7)
0

=(z—a)r+3B (.:_Z’ r+1,3),

by changing variable to ¢t = (1 — u)a + uz, and

L= / "t o) (b— )2t

(b—a)/(b—2)
=(b—z)*3 / (v—1)"v*dv (5.8)
1}
= (:1: - a)'r+3B (::Z,T—i— 1,3) ,

by changing variable to t = (1 — v)a + vz.
Substituting from (5.7) and (5.8) in (5.6), we get (5.5), and hence, the corollary.
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COROLLARY 5.4. Let the probability density function f : [a,b] — Ry be absolutely continuous
on [a,b] and f’ € Le[a,b]. Then, for z = (a +b)/2,1/p+1/q =1, and even integers r > 2,

r r ~ izr_—i . (b _ a)r (1 _ (_1)’r‘+1)
;o(@)( Ve (r+1)

< (—-1)"(b 2Ta+)3’+ l|f'|loo[ B(r+1,3)+¥(r +1,3)],

where B(.,.) is the Euler’s Beta mapping and

(5.9)

1
U(a, B) =[) u* (1 4+ u)P 1 du, o,f>0, z>1

ProoF. In (5.5), set = (a + b)/2. The left side of (5.9} is then obvious. For the right side,

B(b_“,r+1,3> =B(2,r+1,3)
r—a
2
=/ uz(u— 1)" du
0

1 2
= / wi(u—1)"du +/ ui(u—1)"du
0 1
=B(r+1,3)+%(r+1,3).
The right side of (5.9) becomes

- a
U e | E9 +3B< —Tth 3)
2(b—a) b-a

+(b—z)3B ( ,r+1 3)

_ (17— a) 2 e

or+3

[B{r+1,3)+9%(r+1,3),
and hence, the corollary.
We now obtain results where f’ is a Lebesgue p— integrable mapping, p € (1,00).

THEOREM 5.5. Let the probability density function f : [e,b] — R4 be absolutely continuous on
la,b] and f' € Ly[a,b], ie.,

b 1/p
1l = (/ lf'(t)l”dt) <oo,  pE€(l,00).

Then, for r > 0,

i (T) (=1)iz"M; — (@ — @)™+ — (z — by +1]

=0 \' (b—a)(r+1)
[l YL 4 (b — g)at 1/q (5.10)
' P r(g —a +{o—t
< BmapTe (/ (= eye [t ]dt) ,
forallz € [a,b],p>1,and 1/p+1/g=1.
ProoF. Applying Lemma 5.1, we have
=T\, ireiyy  (@—a) = (-
g(i)( Ve M; (b—a)(r+1)
1 b b ‘
bt a I / / (z—t)"p(t, s)f'(s) dsdt (5.11)

—8)"p(t, 8)| |f(s)| dsdt.
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Substituting from (5.15) and (5.16) in (5.14), we prove the corollary.

COROLLARY 5.7. Let the probability density function f : [a,b] — Ry be absolutely continuous
on [a,b] and f' € Lyla,b]. Then, for z = (a+b)/2,1/p+1/q=1, p> 1, and even integersr > 2,

N T e
(-1 M; -
; (1)( e H(r+1) (5.17)

(=17 (b — a) e, 1/
- 2r+1+1/q(q+1) [B(Tq+1sq+2)+\P(Tq+1aq+2)J 2,

ProoF. In (5.13), let z = (a + b)/2. The left side of (5.17) is obvious. For the right side, we
consider

/b _
B(m a rq+1,q+2)=B(2,rq+1,q+2)

2

= [ uiti(u — )7 du
Jo

1 2
= / uTt(u — 1) du -i—/ uTtHu — )7 du

0 1
=B(rg+1,q+2)+¥(rg+1,q+2).

The right side of (5.17) is

1/q

a
,qr+1,q+2)
—a

rinr [
7 | o ““”qMHB(x

(b-a)t/e | g+1

a
_x,qr+1,q+2>

o !

_ (Db~ a)rte|
- 2r+l+1/q(q+ 1)

le(B(rg +1,0+2) + U(rg+ 1,0+ 2)],

and hence, the corollary.
An interesting case of p = ¢ = r = 2 from (5.17} results in the following upper bound for the
variance of X.

COROLLARY 5.8. Let the probability density function f : [a,b] — R, be absolutely continuous
on [a,b] and f' € Lya,b]. Then, forz ={a+b)/2, p=qg=71=2,

0 < pl(a +b) — u] +0.0833(b — a)? + 0.0330(b — a)™/2|| f||5. (5.18)
Further, if f is absolutely continuous, f’ € L;[a, b}, and ||f']; = f: [f/(t)] dt, then we have the
following theorem.

THEOREM 5.9. Letting the probability density function f : [a,b] — R, be absolutely continuous
on [a,b], then for r > 0,

r

Z (T) (—1)iz™iM; — (@ — a)™+! — (z — b)r+!

v (b—a)(r+1)

)

{5.19)
_a+ b
2

<1he-a) (252 +|o

for all z € [a, b)].
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Proor. For r >0,
b pb
/a / [(z —8)"p(t, s)| |f'(s)| ds dt
b pb
< sup [I((L’ - t)"'l |p(t, S)l] / / |f/(3)| ds dt

T t,3€[ab)?
= f'|l11,

where

I'= sup [|(z—1t)"||p(t,s)]
t,s€{a,b)?

< (b—a) sup |(z —t)|
tefa,b]
= (b — a)[max(|z —a|, |b— )|

b——a+lx_a+b] ,

=(b-a) [ 2 2
From (5.19), we get the following corollary when z = (a + b)/2.

and hence, the theorem.

CoROLLARY 5.10. Let the probability density function f : [a,b] — R, be absolutely continuous
on [a,b]. Then, for r > 0,

/T i (b—a) (1—(=1)+Y)
;(i>(_1)x M= =5y

b—a r+1
<1

(5.20)

6. APPLICATIONS TO SPECIAL MEANS

We consider the following convex mappings that result in the special means.

6.1. Mapping: f(z) =2, p>1,2>0,a,b€ R, 0<a<b
We have arithmetic mean A(a?,b?) = (a? +b?)/2, a,b > 0 and

b
f (a;b) = #ay), QIO ;f(b) = A(a?, V), _b_i_a/ f(z)dr = Li(a,b). (6.1)

ProrosiTioN 6.1.1. Letp>1,g=p/(p—1), and 0 < a < b. Then, for r > 0,

(z — a)Prtl — (z — byPrtt

Er: C) (—1)iz™iM; < ( o ) p b a)l/ngq(a, b). 6.2)

=0

Proor. For the convex mapping f(z) = z¥, we apply Hélder’s integral inequality to get

/:(m -t f(t)dt < (/ab () dt) /e (/ab(x iy dt) 1/

_ </ab - dx) l/q ((x — a)prz;‘;(lm) — pypr+1 ) 1/p |

b
/ 2P dz = (b — a)L¥(a,b),

we prove the required inequality (6.2).

P

Using (3.6) and since

An upper bound for the variance of X follows from (6.2).
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COROLLARY 6.1.2. Forr =2 and z = (a +b)/2 in (6.2),

(b—a)?Pt! — (a = b)*1 (a +b

2
o® < pl(a+b) -+ ( 2P (5p + 1) 5 ) ) (= a)l/"L{;q(a, b).  (6.3)

6.2. Mapping: f(z)=1/z,z>0,0,b€R,0<a<b

We have
b—a
G b, a,b> 0,
logarithmic mean L{a,b) = { mb—Ina’ = ° #b ab>
a, ifa=b, a,b>0,
. 2
harmonic mean H{a,d) = Tasilb’ a,b>0,
and
1 1 1
- < flix) = =< @ for all z € [a, b], 6
6.4
1 b K
f (a;b) =A—1(a,b), L(_a'_).%-_f_‘_(.lgl — H_l(a,b), ,l_)_:_;/ flz)dz = L—l(a,b).

PROPOSITION 6.2.1. Letp>1,9g=p/(p—1), and 0 < a <b. Then, forr >0,

~ (T i,.r—i (z— a)x”""'1 — (z - bPr+? i/p oy |
) (-1) M; £ (b—a)/9L7P (a,b). (6.5)
; (’) * ( (pr+1) ) )

We prove (6.5) by choosing the mapping f(z) = 1/z, and following the proof of Proposition 6.1.
An estimation for the variance of X is obtained in the following corollary.

COROLLARY 6.2.2. Forr =2 and z = (a +b)/2 in (6.5),

o? < plla+b) —p] + ((b‘a)z”“ —(a=b)PFl (a+b

2
227 +1(2p + 1) 2 > ) (b—a)/9L,(a,b).  (6.6)

7. APPLICATIONS TO BETA DISTRIBUTIONS
A random variable X with parameters a and 8 have beta probability density function
(1 — z)f-1
B(a,B8)

where B(.,.) denotes the beta function that is defined by B(e, ) = f01 20711 - z)B~1 dz.
Denoting by M the value of X for which f(z) is maximum, we have

fl@)y= a,f>0, 0<z<l, (7.1)

a—1
M = m’ a,ﬁ > 1.
From (4.2), \
7‘ )
b = G e+ e (7.2)

and from (4.3), forr >0, o, 5 > 1,

1 rla—1) 1 .
M’§r+1(1+2(a+/3—2) 2r+1>' (7:3)
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Further from (4.2) and (4.11), we have for r > 0, o, 8 > 1,

1 1 r?
M < — 4+ 24— / )
“r+1 + m\ 2r+D(r+ 1)2”f 2, (7.4)

172 = ((e = 1)*B(2a — 3,28 — 1) + (8 — 1)*B(2a: — 1,28 — 3)
—2(a ~ 1)(8 — 1)B(2a — 2,26 — 2))

where

1/2

For the beta random variables with parameters & = 3, r > 0, from (7.3),

1 r 1
< —_ —_— .
M’—r+1(l+4 2r+1)’ (7.5)

A Y e L (7.6)
"Tr4+1 x| (2r+1)(r+1)2 2 :

T (2a — 2)T(2a — 3)\ /2
T(da —4) ) ’

and from (7.4),

where

1z = (a—l)(

and ['(n) = (n — 1)L
When r = 1,2 and a, 8 > 0, the upper bounds for 4 and ¢? from (7.3),

<1 14 a—1 1
H=3 atrp-2V12)°

(7.7)
1 a-—1 1
2 2 o2 a—1 ji
oS+ u <3 <1+a+ﬂ——2\/;)’
and from (7.4),
1 1
wsg (14 500).
) ”2 (7.8)
4 <3 (14 22171k,
3 V5

where
1#ll2 = ((e — 1)*B(2a - 3,28 — 1) + (6 — 1)*B(2a — 1,26 - 3)
—2a—1)(8 - 1B(2a — 2,28 - 2))/*.
For the beta random variables with a = 8, we have from (7.7),

(+5)

(+5)

ns
(7.9)
o2+t <

L=

and from (7.8),

IA

1 /2 (a—1)T(2a —2)T (2 —3)\?

3 T(de — 4)

B o 3\ M2
[1 +2 (2l e ) } A7)

1
2
(7.10)
2

1
0'2+,U/ §

IA
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Table 1. Exact values of ¢ and o2 and upper bounds for o, 8 = 2, 3, 4.

U. Bound | U. Bound U. Bound | U. Bound
a | B @ (7.7) (7.8) a? (7.7) (7.8)
2 2 0.50 0.57 0.55 0.05 0.0805 0.0823
3 3 0.50 0.57 0.51 0.04 0.0805 0.0836
4 4 0.50 0.57 0.50 0.03 0.0805 0.0834
2 3 0.40 0.55 0.53 0.04 0.0826 0.0833
2 4 0.33 0.54 0.53 0.03 0.0832 0.0835
3 4 0.43 0.56 0.66 0.03 0.0819 0.0617
4 3 0.57 0.59 0.66 0.03 0.0787 0.0817

where

o — )\ /2
Iz =(a~1) (21"(2 F(4Z)1:(Z)oz 3)) |

The exact values of y and 02 and their upper bounds from (7.7) and (7.8) for some choices
of o and 3 are evaluated in Table 1.
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