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1. Introduction
Set X to denote a random variable whose probability function f : I  R  R is a

convex function on the interval of real numbers I and let a,b  I, a  b. Denote byMrc
the rth moment about any arbitrary point c of the random variable X, r  1,2,3, ..., defined as

Mrc  
a

b
x  crfxdx. 1.1

In what follows now when reference is made to the rth moment of a particular
distribution, we assume that the appropriate integral converges for that distribution.

2. Hermite-Hadamard Inequalities
The following inequalities and results are for the ready reference.
The Hermite-Hadamard H  H inequalities [3,4] which provide a necessary and

sufficient condition for a function f to be convex in a,b:

b  af a  b
2

   
a

b
fxdx  b  a fa  fb

2
, 2.1

according to as f is convex (concave).

Fejér’s inequalities which generalize H  H inequalities [3]:
Consider the integral 

a

b
fxgxdx, where f is a convex function in the interval a,b and

g is a positive function in the same interval such that

ga  t  gb  t, 0  t  a  b
2
,

i.e., y  gx is a symmetric curve with respect to the straight line which contains the point
( ab
2
, 0 and is normal to the x-axis. Then,
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f a  b
2

 
a

b
gxdx  

a

b
fxgxdx  fa  fb

2 
a

b
gxdx. 2.2

The following inequality is valid for a convex functions [6]:

1
b  a 

a

b
fxdx  f a  b

2
  fa  fb

2
 1
b  a 

a

b
fxdx, 2.3

or

2
b  a 

a

b
fxdx  1

2
fa  fb  2f a  b

2
, 2.4

which is equivalent to

2
b  a 

a

ab
2
fxdx  2

b  a 
a

ab
2
fxdx

 1
2

fa  f a  b
2

  1
2

f a  b
2

  fb. 2.5

When a  1,b  1 in (2.5), we have the Bullen’s inequality [6].

3. Estimation of Moments and Moment-Inequalities
We establish results on moment-estimation and moment-inequalities in the following

theorems.

Theorem 1. Let f : I  R  R be a differentiable mapping on I and let a,b  I, a  b. If f   L1a,b,

then for r  0,1,2, ...,

r  1Mrc  b  cr1fb  a  cr1fa  
a

b
x  cr1f xdx . 3.1

Proof Consider the integrable function

gx : x  cr1fx,  a,b.

Integrating by parts


a

b
x  cr1f xdx  b  cr1fb  a  cr1fa  r  1 

a

b
x  crfxdx, 3.2

and using (1.1), we prove (3.1).

Corollary 1. For c  ab
2
, r  0 in (3.2), we have


a

b
xf

xdx  b  a fa  fb
2

 
a

b
fxdx, 3.3

an identity by Dragomir and Pearce [3,p.30].

Corollary 2. For c  0, r  1,2,3, ... in (3.1), the identity for the central moments:

r  1Mr0  br1fb  ar1fa  
a

b
xr1f

xdx . 3.4

The following theorem provides the estimation ofMrc :

Theorem 2. Let the mapping f : I  R  Rbe differentiable on I and let a,b  I, a  b. Further let the
new mapping
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x : x  cr1f x, 3.5

be convex on the interval a,b. Then for r  0,1,2, ...

b  cr1fb  a  cr1fa  b  a
4

b  cr1f b  a  cr1f a

 r  1Mrc  b  cr1fb  a  cr1fa. 3.6

Proof Applying the H-H and Bullen’s inequalities to the mapping , i.e.,

1
2

c  a  b
2

  1
b  a 

a

b
xdx  c, 3.7

we have

1
2

0  a  cr1f a  b  cr1f b
2



 1
b  a 

a

b
x  cr1f xdx  0. 3.8

From (3.1) and (3.8),
1
4

a  cr1f a  b  cr1f b

 1
b  a b  cr1fb  a  cr1fa  r  1Mrc  0, 3.9

hence the theorem.

Corollary 3. Choosing r  0 and c  ab
2
in (3.8), we get

b  a
2

 f
b  f a

2
  fa  fb

2
 

a

b
fxdx  0, 3.10

a result established by Dragomir and Pearce [3,p.30].

Corollary 4. The estimation of central moments of random variable X follows from (3.6) by taking c  0. For
r  1,2, ...

br1fb  ar1fa  b  a
4

br1f b  ar1f a

 r  1Mr0  br1fb  ar1fa. 3.11

Now we state a lemma without proof [3,p.30] that provides a refinement of the
Chebychev’s integral inequality and that we will use to establish new moment inequalities.

Lemma 1. Let f,g : a,b  R be two integrable mappings which are synchronous, i.e.,
fx  fygx  gy  0 for all x,y  a,b. Then

Cf,g  max|C|f|, |g||, |C|f|,g|, |Cf, |g||  0, 3.12

where

Cf,g : b  a 
a

b
fxgxdx  

a

b
fxdx 

a

b
gxdx. 3.13

We have the following theorem using the H-H inequality and the above lemma 1:

Theorem 3. Let f : I  R  R be a differentiable convex mapping on I and a,b  I. Further let new
mapping

x : x  cr1f x, 3.14
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be convex in the interval a,b. Then for r  0,1,2, ...
1
b  a b  cr1fb  a  cr1fa  r  1Mrc

 max|A|, |B|, |C|  0, 3.15

where

A : 
a

b
|x  cr1||f x|dx   c  ar2  b  cr2

r  2b  a
 

a

b
|f x|dx,

B : b  cr2fb  a  cr2fa

 r  1
a

c
c  xrfxdx  

c

b
x  crfxdx

  c  ar2  b  cr2
r  2b  a

 fb  fa,

C : 
a

b
x  cr1|f x|dx   b  cr2  a  cr2

r  2b  a
 

a

b
|f x|dx.

A : b  a 
a

b
|x  cr1||f x|dx  

a

b
|x  cr1|dx 

a

b
|f x|dx,

B : b  a 
a

b
|x  cr1|f xdx  

a

b
|x  cr1|dx 

a

b
f xdx,

C : b  a 
a

b
x  cr1|f x|dx  

a

b
x  cr1dx 

a

b
|f x|dx

Proof As f is convex on I, the mappings f and x  cr1, r  0,1,2, ..., are synchronous on
a,b. Applying the lemma 1, we have:

b  a 
a

b
x  cr1f xdx  

a

b
x  cr1dx 

a

b
f xdx

 max|A1|, |B1|, |C1|  0, 3.16

where

A1 : b  a 
a

b
|x  cr1||f x|dx  

a

b
|x  cr1|dx 

a

b
|f x|dx,

B1 : b  a 
a

b
|x  cr1|f xdx  

a

b
|x  cr1|dx 

a

b
f xdx,

C1 : b  a 
a

b
x  cr1|f x|dx  

a

b
x  cr1dx 

a

b
|f x|dx.

Since
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
a

b
x  cr1dx  b  cr2  a  cr2

r  2
,


a

b
|x  cr1|dx  

a

c
c  xr1dx  

c

b
x  cr1dx

 c  ar2  b  cr2
r  2

,


a

b
f xdx  fb  fa,


a

b
|x  cr1|f xdx  

a

c
c  xr1f xdx  

c

b
x  cr1f xdx

 b  cr2fb  a  cr2fa

 r  1
a

c
c  xrfxdx  

c

b
x  crfxdx

we have

A1 : b  a 
a

b
|x  cr1||f x|dx   c  ar2  b  cr2

r  2
 

a

b
|f x|dx,

B1 : b  ab  cr2fb  a  cr2fa

 r  1
a

c
c  xrfxdx  

c

b
x  crfxdx

  c  ar2  b  cr2
r  2

 fb  fa,

C1 : b  a 
a

b
x  cr1|f x|dx   b  cr2  a  cr2

r  2
 

a

b
|f x|dx.

Using inequality (3.16), we have

1
b  a 

a

b
x  cr1f xdx  max|A|, |B|, |C|  0,

where A,B and C are as given in theorem 3. From the identity (3.1), we get (3.15) and
hence the theorem.

Corollary 5. Choosing r  0 and c  ab
2
in (3.15), we have

fa  fb
2

 1
b  a 

a

b
fxdx  max|A2|, |B2|, |C2|  0, 3.17

where

A2 : 1
b  a 

a

b
|x  a  b

2
||f x|dx  1

4 
a

b
|f x|dx,

B2 :
fb  fa

4
 1
b  a 

a

ab
2
fxdx  

ab
2

b
fxdx,

C2 : 1
b  a 

a

b
x  a  b

2
|f x|dx,

the inequality established in [3,p.31].

In what follows we apply the Hölder’s integral inequality to derive another estimation for
Mrc.

Theorem 4. Let f : I  R  R be a differentiable convex mapping on I and a,b  I such that a  b and
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p  1. If |f 
| is q-integrable where q  p

p1 , then for r  0,1,2...

|b  cr1fb  a  cr1fa  r  1Mrc|

  b  cpr11  c  apr11
pr11


1
p 

a

b
|f

x|qdx
1
q . 3.18

Proof For p  1 and q  1 with 1
p  1

q  1, using the Hölder’s integral inequality we have

| 1
b  a 

a

b
x  cr1f xdx|   1

b  a 
a

b
|x  cr1|pdx 1

p  1
b  a 

a

b
|f x|qdx

1
q . 3.19

Since


a

b
|x  cr1|pdx  

a

c
c  xpr1dx  

c

b
x  cpr1dx

 b  cpr11  c  apr11
pr11

, 3.20

we get (3.18) using the identity (3.1). This completes the proof.

Corollary 6. For r  0 and c  ab
2
in (3.19), we have

| fa  fb
2

 1
b  a 

a

b
fxdx|  b  a 1

p

2p  1
1
p


a

b
|f

x|qdx
1
q , 3.21

the inequality established by Dragomir and Pearce [3,p.33].

Corollary 7. With the above assumptions and provided that f is convex on I, from (3.18) the following reverse
inequality holds:

0  b  cr1fb  a  cr1fa  r  1Mrc

  b  cpr11  c  apr11
pr11


1
p 

a

b
|f

x|qdx
1
q . 3.22

Corollary 8. Let c  0 in (3.18). Then inequality involving the central moments of the random variable X for
r  0,1,2...

|br1fb  ar1fa  r  1Mr0|

  b
pr11  apr11

pr11

1
p 

a

b
|f

x|qdx
1
q . 3.23

Corollary 9. From (3.18) with c  0, the reverse inequality involving the central moments of the random
variable X for r  0,1,2...

0  br1fb  ar1fa  r  1Mr0

  b
pr11  apr11

pr11

1
p 

a

b
|f

x|qdx
1
q . 3.24

Now we state the well known Grüss integral inequality as a lemma:

Lemma 2. Let f,g; a,b  R be two integrable functions such that   fx   and   gx   for all
x  a,b. Then

| 1
b  a 

a

b
fxgxdx  1

b  a 
a

b
fx dx  1

b  a 
a

b
gxdx|      

4
. 3.25

The following theorem involving moments and based on the above lemma 2 holds:

Theorem 5. Let f : I  R  R be a differentiable mapping on I,a,b  I with a  b and m  f x  M for
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all x  a,b. If f   L1a,b, then for r  0,1,2, ...

|b  cr1fb  a  cr1fa  r  1Mrc  fb  fab  cr2  a  cr2
b  ar  2

|

 M  mb  a2
4

. 3.26

Proof Set the mapping

gx  x  cr1,x  a,b.

Then

a  cr1  gx  b  cr1, for all x  a,b .

Applying the Grüss integral inequality (3.25), we get

| 1
b  a 

a

b
x  cr1f x dx  1

b  a 
a

b
x  cr1 dx  1

b  a 
a

b
f xdx|  M  mb  a

4
.

Since


a

b
x  cr1 dx  b  cr2  a  cr2

r  2
,
a

b
f xdx  fb  fa,

and using the identity (3.1), we deduce (3.26) that proves the theorem.

Corollary 10. For r  0 and c  ab
2
in (3.26), we have

| fa  fb
2

 1
b  a 

a

b
fxdx|  M  mb  a

4
, 3.27

the inequality established in [3,p.34].

Corollary 11. With the above assumptions and provided that f is convex on I, from (3.26) the following reverse
inequality holds:

0  b  c r2  a  c r2fb  fa
b  ar  2

 b  cr1fb  a  cr1fa  r  1Mrc

 M  mb  a2
4

. 3.28

Corollary 12. Let c  0 in (3.26). Then inequality involving the central moments of the random variable X for
r  0,1,2...

|br1fb  ar1fa  r  1Mr0  fb  fabr2  ar2
b  ar  2

|

 M  mb  a2
4

. 3.29

Corollary 13. From (3.26) with c  0, the reverse inequality involving the central moments of the random
variable X for r  0,1,2...

br1fb  ar1fa  r  1Mr0  br2  ar2fb  fa
b  ar  2

 M  mb  a2
4

. 3.30

Now follows an useful identity in terms of moments:

Lemma 3. Let f : I  R  R be a differentiable convex mapping on I and a,b  I such that a  b and
f  L1a,b. Then for r  0,1,2, ...
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r  1Mrc  c  ar1  c  br1fc  
a

b
pxf xdx, 3.31

where

px 
x  ar1,x  a,c,

x  br1,x  c,b.

Proof Integrating by parts,


a

c
x  ar1 f xdx  c  ar1fc  r  1 

a

c
x  arfx dx,


c

b
x  br1 f xdx  c  br1fc  r  1 

c

b
x  brfx dx,

and adding


a

c
x  ar1 f xdx  

a

c
x  ar1 f xdx  c  ar1  c  br1fc  r  1 

a

b
x  crfx dx.

Using (1.1) and since


a

c
x  ar1 f xdx  

a

c
x  ar1 f xdx  

a

b
px f xdx,

(3.31) is proved.

Corollary 14. For r  0 and c  ab
2
in (3.31), we have

f a  b
2

  1
b  a 

a

b
fxdx  1

b  a 
a

b
pxf xdx, 3.32

where

px 
x  a ,x  a, ab

2
,

x  b,x   ab
2
,b,

the identity established by Dragomir and Pearce [3,p.35].

The following theorem also holds good:

Theorem 6. Let f : I  R  R be a differentiable mapping on I, a,b  I with a  b and p  1. If |f| is
q-integrable on a,b where q  p

p1 , then

|c  ar1  c  br1fc  r  1Mrc|

  c  ap1  b  cp1
p  1


1
p  

a

b
|f x|qdx

1
q . 3.33

Proof By applying the Holder’s integral inequality

| 1
b  a 

a

b
pxf xdx|   1

b  a 
a

b
|px|pdx

1
p   1

b  a 
a

b
|f x|qdx

1
q .

Since


a

b
|px|pdx  

a

c
|x  a|pdx  

c

b
|x  b|pdx

 c  ap1  b  cp1
p  1

,
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and using identity (3.1), we establish (3.33) and hence the theorem.

Corollary 15. For r  0 and c  ab
2
in (3.33), we have

| f a  b
2

  1
b  a 

a

b
fxdx|  b  a 1

p

2p  1
1
p

 
a

b
|f x|qdx

1
q , 3.34

the inequality established in [3,p.36].

Corollary 16. With the above assumptions and provided that f is convex on I, from (3.33) the following reverse
inequality holds:

0  c  ar1  c  br1fc  r  1Mrc

  c  ap1  b  cp1
p  1


1
p  

a

b
|f x|qdx

1
q . 3.35

Corollary 17. Let c  0 in (3.33). Then inequality involving the central moments of the random variable X for
r  0,1,2...

|ar1  br1f0  r  1Mr0|

  ap1  bp1

p  1

1
p  

a

b
|f x|qdx

1
q . 3.36

Corollary 18. From (3.18) with c  0, the reverse inequality involving the central moments of the random
variable X for r  0,1,2...

ar1  br1f0  r  1Mr0

  ap1  bp1

p  1

1
p  

a

b
|f x|qdx

1
q . 3.37

We present another theorem involving moments by applying the Grüss integral
inequality:

Theorem 7. Let f : I  R  R be a differentiable convex mapping on I and a,b  I such that a  b and
m  f x  M for all x  a,b. If f  L1a,b, then for r  0,1,2, ...

|c  ar1  c  br1fc  r  1Mrc  c  ar2  c  br2fb  fa
b  ar  2

|

 M  mb  a2
4

. 3.38

Proof Applying the Grüss integral inequality (3.25), we get

| 1
b  a 

a

b
pxf x dx  1

b  a 
a

b
px dx  1

b  a 
a

b
f xdx|  M  mb  a

4
.

Since


a

b
px dx  

a

c
x  ar1dx  

c

b
x  br1dx

 c  ar2  c  br2
r  2

,


a

b
f x dx  fb  fa,

and identity (3.231), we establish the required inequality (3.38)

Corollary 19. For r  0 and c  ab
2
in (3.38), we have
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| f a  b
2

  1
b  a 

a

b
fxdx|  M  mb  a

4
, 3.39

the inequality established in [3,p.36].

Corollary 20. With the above assumptions and provided that f is convex on I, from (3.38) the following reverse
inequality holds:

0  c  ar1  c  br1fc  c  ar2  c  br2fb  fa
b  ar  2

 r  1Mrc

 M  mb  a2
4

. 3.40

Corollary 21. Let c  0 in (3.38). Then inequality involving the central moments of the random variable X for
r  0,1,2...

|ar1  br1f0  r  1Mr0  ar2  br2fb  fa
b  ar  2

|

 M  mb  a2
4

. 3.41

Corollary 22. From (3.38) with c  0, the reverse inequality involving the central moments of the random
variable X for r  0,1,2...

ar1  br1f0  r  1Mr0  ar2  br2fb  fa
b  ar  2

 M  mb  a2
4

. 3.42

4. Applications to Special Means
We now consider the following convex mappings that result in special means:

fx Mean

xp Arithmetic: Aap,bp  apbp
2
,a,b  0

1
x Logarithmic: La,b 

ba
lnblna , if a  b,a,b  0

a, if a  b,a,b  0

1
x Harmonic: Ha,b  2

1
a  1

b

,a,b  0

lnx Identric: Ia,b 
1
e  b

b

aa 
1
ba , if a  b,a,b  0

a, if a  b,a,b  0

lnx Geometric: Ga,b  ab ,a,b  0

4.1.Mapping fx  xp,p  1,x  0,a,b  R with 0  a  b
We have

pap1  f x  pxp1  pbp1, x  a,b,

f a  b
2

  Apa,b, fa  fb
2

 Aap,bp, 1
b  a 

a

b
fxdx  Lppa,b. 4.1

10



Proposition 1. Let p  1,q  p
p1 and 0  a  b. Then for r  0,1,2, ...

0  r  1Mrc  b  cr1bp  a  cr1ap

 pb  a 1
q b  cpr11  c  apr11 1

p

pr  1  1
1
p

Lpa,b
p
q . 4.2

Proof For the convex mapping fx  xp, we apply (3.22). Then
r  1Mrc  b  cr1bp  a  cr1ap

 b  cpr11  c  apr11 1
p

pr  1  1
1
p

 
a

b
|pxp1|qdx

1
q

 pb  cpr11  c  apr11 1
p

pr  1  1
1
p

 
a

b
xp1qdx

1
q .

Since


a

b
xp1qdx  bp1  ap1

p  1
 b  aLppa,b,

we prove the required inequality (4.2).

Corollary 23. For r  0 and c  ab
2
in (4.2), we have

0  Aap,bp  Lppa,b  pb  a
2p  1

1
p

Lpa,b
p
q , 4.3

the inequality established by Dragomir and Pearce [3,p.37].

4.2.Mapping fx  1
x ,x  0,a,b  R with 0  a  b

We have

 1
a2

 f x   1
x2

  1
b2
for all x  a,b,

f a  b
2

  A1a,b, fa  fb
2

 H1a,b, 1
b  a 

a

b
fxdx  L1a,b. 4.4

Proposition 2. Let p  1, q  p
p1 and 0  a  b. Then for r  0,1,2, ...

0  r  1Mrc  b  cr1 1
b

  a  cr1 1a 

 b  a 1
q b  cpr11  c  apr11 1

p

pr  1  1
1
p

L p1
1p

a,b
p1
p . 4.5

Proof For the convex mapping fx  1
x , we apply (3.22). Then

r  1Mrc  b  cr1 1
b

  a  cr1 1a 

 b  cpr11  c  apr11 1
p

pr  1  1
1
p

 
a

b 1
x2q
dx

1
q .

Since
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
a

b 1
x2q
dx  b  aL12q

12qa,b,

and 1  2q  p  1
1  p ,

we prove (4.4).

Corollary 24. For r  0 and c  ab
2
in (4.5), we have

0 
1
a  1

b

2
 lnb  lna

b  a  b  a
2p  1

1
p

L p1
1p

a,b
p1
p ,

or

0  H1a,b  L1a,b  b  a
2p  1

1
p

L p1
1p

a,b
p1
p , 4.6

the inequality in [3,p.37].

4.3. For mapping fx  lnx, x  0,0  a  b
We have

1
b

 f x  1
x  1

a for all x  a,b,

f a  b
2

  lnAa,b, fa  fb
2

 lnGa,b, 1
b  a 

a

b
fxdx  ln Ia,b. 4.7

Proposition 3. Let p  1,q  p
p1 and 0  a  b. Then for r  0,1,2, ...

0  r  1Mrc  a  cr1 lna  b  cr1 lnb

 b  a 1
q b  cpr11  c  apr11 1

p

pr  1  1
1
p

L1qa,b
1q
q . 4.8

Proof For the convex mapping fx   1
x , applying (3.22), we have

r  1Mrc  b  cr1 lnb  a  cr1 lna

 b  cpr11  c  apr11 1
p

pr  1  1
1
p

 
a

b 1
xq
dx

1
q .

Since


a

b 1
xq
dx  b  aL 1q

1qa,b,


a

b 1
xq
dx

1
q  b  a 1

q L 1qa,b
1q
q ,

and thus we prove (4.8).

Corollary 25. For r  0 and c  ab
2
in (4.8), we have

0  Ia,b
Ga,b

 exp b  a
2p  1

1
p

L 1qa,b
1q
q , 4.9

the inequality by Dragomir and Pearce [3,p.38].
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We apply (3.26) that was established using the Grüss integral inequality to (4.1,4.4,4.7)
and obtain the following results (proofs are straightforward, hence omitted):

Proposition 4. Let p  1,q  p
p1 and 0  a  b. Then for r  0,1,2, ...

0  r  1Mrc  b  cr1bp  a  cr1ap  b  c r2  a  c r2bp  ap
b  ar  2

 pp  1b  a3
4

Lp2a,bp2. 4.10

Proposition 5. Let p  1,q  p
p1 and 0  a  b. Then for r  0,1,2, ...

0  r  1Mrc  b  cr1 1
b

  a  cr1 1a  
b  c r2  a  c r2 1

b
 1

a 
b  ar  2

 b  a2b2  a2
4a2b2

. 4.11

Proposition 6. Let p  1,q  p
p1 and 0  a  b. Then for r  0,1,2, ...

0  r  1Mrc  a  cr1 lna  b  cr1 lnb  b  c r2  a  c r2lna  lnb
b  ar  2

 exp b  a3
4ab

 . 4.12
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