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Summary . We consider the Hermite-Hadamard inequalities and related results to establish
newinequalities involving moments of a random variable whose probability function is a convex
function on the interval of real numbers. More results are derived using integral inequalities due to
Griiss and Holder. Some applications to special means are also considered.
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1. Introduction
Set X to denote a random variable whose probability functionf: / R R isa

convex function on the interval of real numbers / and leta,b I, a b . Denote by M, c
the # moment about any arbitrary point ¢ of the random variable X,» 1,2,3, ..., defined as

b
M, c x ¢ "fxdx. 1.1

a

In what follows now when reference is made to the #” moment of a particular
distribution, we assume that the appropriate integral converges for that distribution.

2. Hermite-Hadamard Inequalities
The following inequalities and results are for the ready reference.
The Hermite-Hadamard H H inequalities [3,4] which provide a necessary and
sufficient condition for a function f'to be convex in a,b :

b
b afaTb fxdc b aM

3 , 2.1

according to as f'is convex (concave).

Fejér’s inequalities which generalize H H inequalities [3]:
. ) b : . :
Consider the integral ' x g x dx, where f'is a convex function in the interval a,b and
a
g is a positive function in the same interval such that

ga t gb t,0 t 4 5 b ,
1e.,y g x isasymmetric curve with respect to the straight line which contains the point

( “Zb ,0 and is normal to the x-axis. Then,




b b b
faTb g x dx fxgxdx j% g x dx. 2.2

The following inequality is valid for a convex functions [6]:

1 b a b fa [fb
4 afxdxf 5 5

1 b
3 P fx dx, 2.3

b

or

which is equivalent to

b b
1 a b 1l ra b
yfa [45 S5 fb. 25

ab ab
2 2 2 2
i fxdx i fxdx

When a 1,b 1in(2.5), we have the Bullen’s inequality [6].

3. Estimation of Moments and Moment-Inequalities

We establish results on moment-estimation and moment-inequalities in the following
theorems.

Theorem 1.Letf: 1 R R be adifferentiable mapping on I and leta,b I, a b .Iff L ab,
then forr 0,1,2,...,
r 1M, c b c¢c"'fb a c¢"'fa x ¢ xdx. 3.1

Proof Consider the integrable function
gx 1 x c"'fx, a,b .
Integrating by parts
b b
x ¢’ 'f xdx b ¢c"%Yb a c’"'fa r 1 x c'fxdx,

a a

and using (1.1), we prove (3.1).
Corollary 1. Forc <2 r 0in(3.2), we have

2
b b
xf xdx« b a LZ& fx dx, 33

an identity by Dragomir and Pearce [3,p.30].
Corollary 2. Forc 0,r 1,2,3,...in (3.1), the identity for the central moments:

b
r 1M, 0 b''fb a 'fa X" xodx. 3.4

The following theorem provides the estimation of M, ¢

Theorem 2. Let the mapping f: I R R be differentiable on I and leta,b I, a b . Further let the
new mapping

2



x : x c¢c"'fx, 3.5

be convex on the interval a,b . Then forr 0,1,2,...

b ¢c"%Yb a c’"'fa b _a c"'fb a c"'fa

4
r 1M ¢ b c¢c"'fb a c¢"'fa . 3.6
Proof Applying the H-H and Bullen’s inequalities to the mapping ,i.e.,
1 a b 1 b
> ¢ 3 b a . x dx c, 3.7
we have
1y _a c’ Ya b c"'fb
2 2
L’ x ¢ xde O 3.8
b a .

From (3.1) and (3.8),

%a c"'fa b c"'fDb

bla b ¢c"%Yb a c"'fa r 1M, c 0, 3.9

hence the theorem.

Corollary 3. Choosingr 0andc “2” in (3.8), we get

b
P szf" fa sz fxde 0, 3.10

a result established by Dragomir and Pearce [3,p.30].
Corollary 4. The estimation of central moments of random variable X follows from (3.6) by taking ¢ 0. For
r 1,2,..
brlfb a”fa %brlfb a”fa
r 1M, 0 b''fb a '‘fa . 3.11

Now we state a lemma without proof [3,p.30] that provides a refinement of the
Chebychev’s integral inequality and that we will use to establish new moment inequalities.

Lemma 1. Letf,g: a,b R be two integrable mappings which are synchronous, i.e.,
fx fy gx gy Oforallx,y a,b.Then

Cfg max |Clflgl IC If,g .IC filgl | O, 3.12
where

b b b
Cf,g : b a fxgxdx fxdx gxdx. 3.13

We have the following theorem using the H-H inequality and the above lemma 1:
Theorem 3.Letf: 1 R R be adifferentiable convex mapping on I and a,b 1. Further let new
mapping
x: x c¢"'fx, 3.14



be convex in the interval a,b . Then forr 0,1,2,...

;a c"'Yfb  a c¢’"'fa r 1M, c

b
max |Al,|B|,|C| 0, 3.15
where
b r2 r2 b
) .l c a b c
A a|x c " Hf x |dx 2 b 4 anx|dx,
B: b ¢c"* b a c”"*a
c b
ro1 c x'fxdx X ¢ fxdx
c ar2 b cr2
r 2 b a Jb Ja
b b Cr2 a Cr2 b
. rl
C: ax c"f x |dx 2 b 4 anx|dx.

b b b
A: b a |x c¢"Yf x|dx |x ¢ " Ydx |f x |dx,

a a

b b b
B: b a |x c¢"Yf xdx |x ¢ ldx f xdx,

a

b b b
C: b a x c"Vf xldx x c¢’"ldx | x|dx

a a

Proof As fis convex on /, the mappings f and x ¢ "', 0,1,2,..., are synchronous on
a,b . Applying the lemma 1, we have:

b b b
b a x c¢"Yf xdx x ¢ ldx f xdx
a a a

max |41],|B1,|C1] 0,  3.16

where
b b b
A b a |x c"Yf x|dx |x ¢ " Ydx |f x |dx,
a a a
b b b
Bi: b a |x c"')f xdx |x ¢ Ydx f xdx,
a a a
b b b
Ci: b a x c”"'f x|dx x c"ldx | x |dx.
a a a
Since



rl
ax c " ldx > ,
c b
x ¢ Vdx c x"ldx x ¢ " ldx
a a
c arZ b Cr2
r 2 ’
b
fxdx fb fa,
a
b c b
x ¢ xdx c x"f xdx x ¢ 'f xdx
a a

ro1 c x"fxdx x ¢ 'fxdx
we have
b r2 r2 b
Avc b oa Jx e xlde 4 2” ¢ If x |dx,

Bi: b a b c"*b a c’"*a
c b
ro1 c x'fxdx X ¢ fxdx

a c
c ar2 b cr2

— rb fa,
b r 2 b
Ci: b a x e xldx L€ e If x |dx.
Using inequality (3.16), we have

b
bla x ¢’ 'f xde max |AL|B,|C] O,

where 4, B and C are as given in theorem 3. From the identity (3.1), we get (3.15) and
hence the theorem.

Corollary 5. Choosingr 0 andc “2” in (3.15), we have

b
fa 2f” L Cfxdy may A BaLIC 0, 307
where
1 b a b 1 °
As b 4 a|x 3 If x |dx vy anx|dx,
‘ fb fa 1 azb b
B, : 7] . fxdx azbfxdx,
b
C bla ax a2bjfx|dx,

the inequality established in [3,p.31].

In what follows we apply the Holder’s integral inequality to derive another estimation for
M, c.

Theorem 4.Let f: 1 R R be adifferentiable convex mapping on I and a,b [ such thata b and
5



1. I |f | is g-integrable where q p’;l, then forr 0,1,2...

P
| b ¢c"'fb a c’'fa r 1M, c|
b cPr 11 c abr’ 11 1 b 1
— ¢ xledeT. 38
. 1 1 . . b) . . .
Proof Forp 1landg 1with — 1, using the Holder’s integral inequality we have

L’ L’ o1 1
x ¢ "f x dx| - |x ¢ " Ypdx 7 - If x |9dx 7. 3.19

b a .
Since
b ) c ) b
x ¢ " 'Pdx c xPrldx x c?"ldx
a a c
b cprll c aprll
, 3.20

prl1 1

we get (3.18) using the identity (3.1). This completes the proof.

Corollary 6. Forr Oandc “2” in (3.19), we have

fa__[b
| 2

b - b
L a7 e cpa k321
a a 2p 7 a

b

the inequality established by Dragomir and Pearce [3,p.33].
Corollary 7. With the above assumptions and provided that fis convex on I, from (3.18) the following reverse
inequality holds:
0 b c¢c"'fb a
rl 1 rl 1 b
b c? p,.llc a’ 7 anx|qu%. 3.22

c"'fa r 1M, c

0 in (3.18). Then inequality involving the central moments of the random variable X for

Corollary 8. Letc

r 0,1,2..
|b" b  a 'fa r 1M, 0]

bprl 1 aprl 1 1 b 1
7o x [4dx 7. 3.23
prl1 1 a

Corollary 9. From (3.18) with ¢ 0, the reverse inequality involving the central moments of the random

variable X forr  0,1,2...
0 b''fb a 'fa r 1M, 0
brr 11 abl’ 11 1 b 1
— P f xldeT. 324
Now we state the well known Griiss integral inequality as a lemma:
Lemma 2. Letf,g; a,b R be two integrable functions such that fx and gx for all
x a,b.Then

1 ° J L e d L4
|baafxgxxbaafxxbaagxx| 4

3.25

The following theorem involving moments and based on the above lemma 2 holds:
M for

R R be adifferentiable mapping on I,a,b [Iwitha bandm [ x

Theorem 5. Letf: 1
6



allx  a,b . Iff Ly ab, thenforr 0,1,2,..

r2 r2
b cfb a crVfa oy 1M JLb Ja b c a_c

b ar 2
2
M mb a” 35
4
Proof Set the mapping
gx x ¢c"'x ab.
Then
a c"' gx b c’ !l forallx a,b .
Applying the Griiss integral inequality (3.25), we get
1 b rl 1 b rl 1 b M m b a
|baaxcfxdxbaaxc dxbaafxd)d 7] .
Since
b r2 r2 b
x erlae b< . 2a € _ fxdc fb fa,

and using the identity (3.1), we deduce (3.26) that proves the theorem.

Corollary 10. Forr 0andc “2” in (3.26), we have

|fafb M m b a
2

7 , 3.27

1 b
b 2 afxdx|

the inequality established in [3,p.34].

Corollary 11. With the above assumptions and provided that f'is convex on I, from (3.26) the following reverse

inequality holds:
b ¢’ a c"®>fb fa i -
0 b a2 b c¢”'fb a c”"'fa r 1 M,c
2
M m b a 398
4
Corollary 12.Letc 0 in (3.26). Then inequality involving the central moments of the random variable X for
r 0,1,2...
rl rl fb fa b" ? a’ ?
|b" 'fb a" ‘fa r 1 M. 0 ) |
2
Momb a3

Corollary 13. From (3.26) with ¢ 0, the reverse inequality involving the central moments of the random
variable X forr  0,1,2...

b2 g2 fb fa

rl rl

b"'fb a ‘fa r 1 M. 0 b 4 s 2

M m b a?
7 )

Now follows an useful identity in terms of moments:

3.30

Lemma 3.Letf:1 R R be adifferentiable convex mapping on I and a,b I such thata b and
f Liab.Thenforr 0,1,2,..
7



b
r 1M, c c a"' ¢ b"'fc pxf xdx, 3.31

where
x a’l',x ac,
pXx
x b"'x «¢b.
Proof Integrating by parts,
C

C
x a"'fxde ¢ a"'fe r 1 x a'fx dx,
a

a

b b
x b"'f xdx c b"'fe r 1 x b'fx dx,
and adding
c c b
x a"'f xdx x a’'f xdx c a™ ¢ b"'fec r 1 x c¢'fx dx

Using (1.1) and since

c

c b
x a’l'f xdx x a’l'f xdx px f xdx,

a a

(3.31) is proved.

Corollary 14. Forr 0andc “2” in (3.31), we have

4 b 1 bfxdx 1 xf xdx 3.32
2 b a . baap ’ '

where

X a,x a,

x b,x “21’ b,

pPXx

the identity established by Dragomir and Pearce [3,p.35].
The following theorem also holds good:

Theorem 6.Letf:1 R R be adifferentiable mapping on I, a,b Iwitha bandp 1.If|f]is
g-integrable on a,b where g le, then

|l c a™ ¢ b"'fec r 1M c|

1 1 b
¢ “”p 1b ¢’ 5 U xldet. 333
Proof By applying the Holder’s integral inequality
b b b
|ﬁ paf xdx ﬁ a|px|pdx% ﬁ ajfxwdx%.
Since
b c b
x |Pdx x alPdx x x
. x alPd. x bPd.
c aP! b cr!
p 1 ’



and using identity (3.1), we establish (3.33) and hence the theorem.

Corollary 15. Forr 0andc “21’ in (3.33), we have

b b
et v ;Z,g—aL If x |9dx ¥, 334
a P a

==

the inequality established in [3,p.36].
Corollary 16. With the above assumptions and provided that f'is convex on I, from (3.33) the following reverse
inequality holds:
0 c a"' ¢ b"'fc r 1M, c
c a?' b c?' 1
p 1

b
[f x |9dx 7. 335

Corollary 17.Letc 0 in (3.33). Then inequality involving the central moments of the random variable X for
r 0,1,2..

art bTIfO0 r 1M O]
a?l prlt .
- 7

b
> [f x 9dx 7.  3.36

Corollary 18. From (3.18) with ¢ 0, the reverse inequality involving the central moments of the random
variable X forr  0,1,2...

a’! b 'f0 r 1M,0
aP! prl 1
_— 7
p 1
We present another theorem involving moments by applying the Griiss integral
inequality:

b
[/ x|%dx 7. 337

Theorem 7.Letf:1 R R be adifferentiable convex mapping on I and a,b I such thata b and
m fx Mforallx a,b.Iff Liab, thenforr 0,1,2,..

r2 r2
1 . c a c b fb fa
| ¢ a c b"'fc r 1M, c b a2 |
2
M mb a” 333
4
Proof Applying the Griiss integral inequality (3.25), we get
1 b 1 b 1 b M m b a
|—b P aprx dx 5 a apx dx b a afxdx| 7] .
Since
b c b
px dx x a’”ldx x b7 ldx
c arZ c er
r 2 ’

b
fxde fb fa,
and identity (3.231), we establish the required inequality (3.38)
Corollary 19. Forr 0andc “2” in (3.38), we have
9




a b 1 ° M m b a
|f 3 b2 afxdx| 7] , 3.39

the inequality established in [3,p.36].

Corollary 20. With the above assumptions and provided that f'is convex on I, from (3.38) the following reverse

inequality holds:
r2 r2
rl rl c _a c b fb fa
0 c a c b"'fc b a2 r 1 M,c
2
M m b a” 34
4
Corollary 21.Letc 0 in (3.38). Then inequality involving the central moments of the random variable X for
r 0,1,2..
r2 r2
rl rl a b fb fa
| a b"'f0 r 1 M0 b a2 |
2
Momb o 34

Corollary 22. From (3.38) with ¢ 0, the reverse inequality involving the central moments of the random
variable X forr  0,1,2...

r2 r2
rl rl a b fb fa
a b"'f0 r 1 M0 b a2

M m b a?

7 3.42

4. Applications to Special Means
We now consider the following convex mappings that result in special means:

fx Mean
xP  Arithmetic: 4 a?,b” “"2” ,a,b 0
| ) ) llg—i’,ifa b,a,b 0
+ Logarithmic: L a,b 1o ma

a,ifa b,a,b 0
1 Harmonic: H a,b —~—.a,b 0

1
Inx  Identric: Iab { ¢ a

Inx Geometric: G a,b Jab,a,b 0
4.1. Mappingfx x',p 1,x 0,a,b Rwith0 a b
We have

pat fx pxr! pbPlx  ab,

b
fast Apa,b,%& Adwy o Crxae 1pap. 4

10



Proposition 1.Letp 1,q p’;landO a b.Thenforr 0,1,2,..

0 r 1Mc b ¢c"'b» a c"'a’
% prl 1 pri1 14 »
pb a b ¢ 1c a pra,b 2
pr 1 17
Proof For the convex mapping f'x  x”, we apply (3.22). Then
r 1M, c b c¢c"'»» a c’"'a’
b crrl !l alp” ' 7 |pxpl|qu%
pr 1 1% a
r r €1
p b cplllcloi”llp bxplfldx%.
p Va P a
Since
b
xP Vadx % b al}ab,
we prove the required inequality (4.2).
Corollary 23. Forr 0andc % in (4.2), we have
0 dapr Lab LLC 1 ap b a3
2p 17

the inequality established by Dragomir and Pearce [3,p.37].

42 Mappingfx L,x 0.ab
We have

1 1 1
g Jx 2 b2
b

b
fa2 Ala,b,fa fb Hla,b,#a fxdc L'ab.

Rwith0 a b

forallx a,b,

b

Proposition 2. Letp 1,¢q p’;landO a b.Thenforr 0,1,2,..

0 r 1M c b c"l% a c”%
b a%b Cprll c aprll;
pr 1 17 !

Proof For the convex mapping 1 x

1 we apply (3.22). Then

|

r 1M, c bc”z a

b c

prl 1 c aprll,l,

Since

11

1

pr 1 1%

4.2



a )CZq
p 1

and1 2q T

we prove (4.4).
Corollary 24. Forr 0andc “21’ in (4.5), we have
.
0 a__ b Inb_Ina b a1 Lyi ab 2l
2 b a 2p 17 17
or
0 H'ab L'ab —29% 1, ab %,
2p 17 1»

the inequality in [3,p.37].

43. Formappingfx Inx,x 0,0 a b
We have

% fx % %forallx a,b,
b

/45 mAmb,iiiiﬁ- InG a,b , -1

Proposition 3.Letp 1,9 L-and0 a b.Thenforr 0,1,2,..
0 r 1M, c a c"'lna b c"'inb

1

b av b crrl] f aﬂll%qua,b 7
pr 1 17
Proof For the convex mapping /" x L applying (3.22), we have
r 1M, c b ¢c"'" Inb a c”!' Ina
prl 1 prl 1+ b
b c c a1 » qux L
pr 1 17 a X
Since
"

and thus we prove (4.8).
Corollary 25. Forr Oandc % in(4.8), we have

2
Lab D a
G ab Py

b
p
the inequality by Dragomir and Pearce [3,p.38].

12

b
b a afx dx Inla,b .

4.7

4.8



We apply (3.26) that was established using the Griiss integral inequality to (4.1,4.4,4.7)
and obtain the following results (proofs are straightforward, hence omitted):

Proposition 4. Letp 1,q p’;landO a b.Thenforr 0,1,2,..

0 r»r 1M, c b c¢c"'b» a c"laP

pp 1 b a?
4

Lysab P2 410

Proposition 5. Letp 1.q p’;landO a b.Thenforr 0,1,2,..

rl

0 r» 1M c b ¢! %

1
2 a c
b a?b?> a?

4.11
4a°b?

Proposition 6.Letp 1,q p’;lando a b.Thenforr 0,1,2,..

0 r 1M c a c¢c’"'lna b c"'inb

3
exp bz;T];l . 4.12
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