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ABSTRACT

An inequality for the Euler’s Beta -function is established. Properties of the Beta
probability distributions like mean , variance, moment ratios, are considered to prove some
more inequalities.

1. INTRODUCTION

Beta probability distributions have established their usefulness in the statistical analysis of
reliability, life testing models and in many other applications [Bain (1978)]. A beta random
variable (r.v.) X with parameters a,b has the probability density function pdf

fx : a,b  xa−11 − xb−1

Ba,b ; 0  x  1 1.1

where   a,b : a  0,b  0 and Ba,b  ΓaΓb
Γab .

These distributions possess a number of statistical properties [Johnson and Kotz (1970),
p.41; Ord (1972), p. 6], some of interesting being : these are (i) members of Pearson family,
(ii) exponential (a) wrt a (b known) , (b) wrt b (a known), (c) wrt both a and b, (iii) monotone
likelihood ratio (MLR) in (a)T1x  logx , (b known) , (b) T2x  log1 − x, (a known),
(iv) unimodal a  1,b  1 ; not unimodal a  1,b  1,or, a − 1b − 1 ≤ 0. These
have (i) increasing failure rate (IFR) a ≥ 1,b  1, not IFR0  a  1, not decreasing
failure rate (DFR) 0  a  1, rx  axa−1

1−xa , for b  1, and (ii) IFR a  1, rx  b
1−x ,

where rx is the failure rate.

The present paper aims at first establishing an inequality on the Beta - function and then, to
use moments and moment ratios of the Beta random variables to derive some more
inequalities.
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2. AN INEQUALITY FOR THE EULER’S BETA - FUNCTION

We start with the following lemma.

Lemma. Let m, n, p, and q be positive real numbers, such that (p-m)
(q-n) ≤ (≥ 0. Then,

Bp,qBm,n ≥ ≤Bp,nBm,q 2.1

and

Γp  nΓq  m ≤ ≥Γp  qΓm  n 2.2

Proof. Define the mappings : f , g , h : [0,1]→ 0,, given by

fx  xp−m,gx  1 − xq−n and hx  xm−11 − xn−1 2.3

Asp − mq − n ≤ ≥0, the mappings f and g are the same (opposite) monotonic on 0,1
and h is non-monotonic on 0,1.

Applying the well known Cebysev’s integral inequality for synchronous (asynchronous)
mappings [Lebedev (1957)] , i.e.,


a

b
hxdx 

a

b
hxfxgxdx ≥ ≤ 

a

b
hxfxdx 

a

b
hxgxdx 2.4

we can write the inequality


0

1
xm−11 − xn−1dx 

0

1
xm−11 − xn−1xp−m1 − xq−ndx ≥ ≤


0

1
xm−11 − xn−1xp−mdx 

0

1
xm−11 − xn−11 − xq−ndx

i.e.,


0

1
xm−11 − xn−1dx 

0

1
xp−11 − xq−1dx ≥ ≤
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0

1
xp−11 − xn−1dx 

0

1
xm−11 − xq−1dx

and, by virtue of (1.1), the inequality (2.1) is proved.

The inequality (2.2) follows from (2.1) by taking into account that

Bp,q  ΓpΓq
Γp  q 2.5

for all p,q  0. We shall omit the details.

The following interesting corollaries may be noted as well:

Corollary 2.2. Let p, m0.Then,we have the inequalities

Bp,pBm,m ≤ B2p,m 2.6

and

Γ2p  m ≤ Γ2pΓ2m 2.7

Proof. In the above lemma, if we choose p  q, and m  n, we have
p − mq − n  p − m2 ≥ 0, and thus,

Bp,pBm,m ≤ Bp,mBm,p

which proves the inequality (2.6).

The inequality (2.7) follows from (2.6) through (2.5).

Corollary 2.3. Given two positive real numbers u and v0, the geometric mean of Γ(u) and
Γ(v) is greater than the gamma of the arithmetic mean of u and v.

This result follows by re-writing (2.7) as

Γ u  v
2  ≤ ΓuΓv

where u  2p and v  2m.

3. INEQUALITIES FOR MOMENTS OF BETA RANDOM VARIABLES

A distribution function determines a set of moments when they exist. The first moment
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about origin, recognized as the mean or center of gravity and the second moment about mean,
a measure of the spread or dispersion of the population, are frequently studied parameters of a
population . Other properties such as skewness and kurtosis are defined in terms of the higher
moments. The r − th moment of the r.v. X about the origin is defined by r

′
X  EXr, where

E denotes the mathematical expectation. The r − th central moment of the r.v. X , rX , can
be derived from

rX ∑
i0

r

−1 i r
i r−1

′

X1
′i
X, r  1,2, ...

Now, we present a theorem on the moments of the random variables which follow Beta
pdfs.

Theorem 3.1. Let the r.v. X and Y be such that X Bp,q and Y Bm,n, p,q,m,n  0.
Further, let the r.v. U and V be defined as U Bp,n and V Bm,q. Then, for
(p-m)(q-n)≤ ≥ 0,

EXrEYr

EUrEVr ≥ ≤
Bp,nBm,q
Bp,qBm,n , r  1,2, ... 3.1

Proof. In (2.3) of lemma 2.1, we choose

fx  xp−m,gx  1 − xq−n and hx  xrm−11 − xn−1 3.2

Then , on substituting these mappings in (2.4), we reach at the inequality in Theorem 3.1.

Remark 3.2. The inequalities for the absolute moments of r.v. X , rX  E ∣ X ∣r and
the factorial moments, r

′
X  EXr, about origin, may be obtained from Theorem 3.1, on

replacing r
′ . by r. and r

′ . , respectively. Similarly, corresponding inequalities for the
moment generation functions , Mxt  Eetx, and characteristic function, xt  Eeitx may
be easily obtained from lemma 2.1.

An interesting result from this theorem follows as :

Corollary 3.3. For p q,m n  0,

EXrEYr

ErUErV ≤
Γ2pΓ2m
Γ2p  m

, r  1,2, ... 3.3

4. INEQUALITIES FOR MOMENTS OF TWO BETA
RANDOM VARIABLES
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Theorem 4.1. Let the r.v. X and Y be such that X Bp,q and Y Bp,n. Then, for
p,q,m,n  0

EXr

EYr ≥ ≤
Γp  qΓm  n
Γp  nΓm  q , r  1,2, ... 4.1

according as (p-m)(q-n)≤ ≥ 0.

Proof. We choose in (2.3) of lemma 2.1,

fx  xrp−m,gx  1 − xq−n and hx  xm−11 − xn−1 4.2

Then , substituting these mappings in (2.4) results in the desired expression in Theorem
4.1.

Corollary 4.2. For q(p), m(n)  0,

EXrΓ2p  n ≤ EYrΓ2pΓ2n, r  1,2, ... 4.3

5. INEQUALITIES FOR HARMONIC MEANS OF TWO BETA RANDOM
VARIABLES

Theorem 5.1. Let the r.v. X and Y be such that X Bp,q and Y Bp,n. Denote the
harmonic means of r.v. X and r.v. Y by HM(X) E( 1

X  and HM(Y)  E( 1
Y . Then, for p,q,m,n 

0,

HMX
HMY ≥ ≤

Bp,nBm,q
Bp,qBm,n 5.1

according as (p-m)(q-n)≤ ≥ 0.

Proof. We choose in (2.3) of lemma 2.1,

fx  x−1p−m,gx  1 − xq−n and hx  xm−11 − xn−1 5.2

Then , substituting these mappings in (2.4) proves Theorem 5.1.

Corollary 5.2. For q(p), m(n)  0,
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HMX
HMY ≤

Γ2pΓ2n
Γ2p  n

5.3

6. INEQUALITIES FOR VARIANCES OF TWO BETA
RANDOM VARIABLES

Theorem 6.1. Let the r.v. X and Y be such that X Bp,q and Y Bp,n. Denote the
variances of r.v. X and r.v. Y by V(X)2

′

X − 1
′2X and V(Y)  2

′

Y − 1
′2Y. Then, for

p,q,m,n  0

VXBm,nBp,q − VYBm,qBp,n ≥ ≤

Bm,qB2p  1,n
Bp,n − Bm,nB2p  1,q

Bp,q 6.1

according as (p-m)(q-n)≤ ≥ 0.

Proof. We consider the inequality in theorem 4.1 by choosing r  2 and rewrite 2
′
. in

terms of V(.).Then, we get

VX  1
′2XBm,nBp,q ≥ ≤VY  1

′2YBm,qBp,n 6.2

Now substituting 1
′
X  p

pq and 1
′
Y  p

pn in the above expression, we reach at the
desired inequality in Theorem 6.1.

Corollary 6.2. Denoting coefficients of variation of the r.v. X and Y by CV(X)and CV(Y)
where CV(.)  V.

1
′
.

, the inequality for CV (X) and CV(Y) follows:

CV2X  1
CV2Y  1

≥ ≤ p  qΓm  nΓp  q  1
p  nΓm  qΓp  n  1 6.3

according as (p-m)(q-n)≤ ≥ 0.

Proof. From ( 6.1), we have
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VX

1
′
2X

 1

VY

1
′
2Y

 1
≥ ≤ Γm  nΓp  q

Γm  qΓp  n
1

′2Y
1

′2X

Now, substituting 1
′

X  p
pq and 1

′

Y  p
pn , in the above expression, we prove the

corollary.

7. SOME MORE INEQUALITIES FOR GAMMA FUNCTIONS

We note that the mean and variance of a Beta r. v. Z with parameters u and v are u
uv and

uv
uv1uv2 , respectively. Then, we have for Beta r.v ′s. X and Y , defined as above,

EX  p
p  q , EY  p

p  n

VX  pq
p  q  1p  q2 , VY  pn

p  n  1p  n2

Using these values, the inequality (4.1) and (6.3) yield

Γp  n  1Γm  q ≥ ≤ Γp  q  1Γm  n 7.1

and

p  nq  pp  q  1
p  qn  pp  n  1 ≥ ≤ Γp  q  2Γm  n

Γp  n  2Γm  q 7.2

according as (p-m)(q-n)≤ ≥ 0, where p, q, m, n  0.
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