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ABSTRACT

Fundamental inequalities, such as Cebysev’s integral inequality for synchronous
(asynchronous) mappings, Holder’s integral inequality and Griiss’s integral inequality, are
applied to the estimation of moments and moment ratios of the beta and gamma random
variables.
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1. INTRODUCTION

The beta and gamma distributions have shown useful representations of many physical
situations. For example - these distributions are being applied in the statistical analysis of
reliability and life testing models [1] and to make realistic adjustments to exponential
distributions in representing life-testing situations; in the theory of random counters and other



topics associated with random processes in time, in particular in meteorological precipitation
processes [ 3,9]. The use of gamma distribution in approximating the distribution of quadratic
forms ( in particular positive definite quadratic forms), in multi-normally distributed random
variables is well-established and widespread. One of the earliest examples refers to its use in
approximating the distribution of the denominator in a test criterion for difference between
values of two populations with unequal variances. Gamma distributions are also discussed to
represent distributions of range and quasi-ranges in random samples drawn from a normal
population [8, p. 59]. Gamma distribution may be used in place of normal distribution as
parent distribution in expansions of Gram-Charlier type [8, p. 16].

A random variable (r.v.) X has a beta probability density function (pdf) with parameters
(a,b), denoted as X~B(a, b), and its pdf given by :

Xa—l(l _ X) b-1

f(x : a,b) = B@Db)

0 <x<1, (1.1)

where Q= {a,b : a > 0,b > 0} and B(a,b) = —rr(?iit(,?) :

A random variable (r.v.) X has a standard gamma probability density function:

fu:m::ﬁé;ﬁa>o,x>a (1.2)

For a = 1, this is an exponential distribution and if « is a positive integer, (1.2) represents
an Erlang distribution [8, p. 222]. In most applications, two parameter form is used and is
given by

fu:mmzﬁ%%gﬁ,a>ae>mx>a (1.3)

These beta and gamma distributions possess a number of statistical properties [8,12], a few
being: (i) members of Pearson family, (ii) exponential, (iif) monotone likelihood ratio, (iv)
unimodal.

We now consider the applications of the Cebysev’s integral inequality for synchronous
(asynchronous) mappings, Holder’s integral inequality and Gruss’s integral inequality to the
estimation of moments and moment ratios of the beta and gamma random variables.



2. APPLICATIONS TO THE BETA PROBABILITY
DISTRIBUTIONS

A distribution function determines a set of moments when they exist. The first moment
about origin, recognized as the mean or center of gravity and the second moment about mean,
a measure of the spread or dispersion of the population, are frequently studied parameters of a
population . Other properties such as skewness and kurtosis are defineq in terms of the higher
moments. The r' moment of the r.v. X about the origin is defined by u,(X) = E(X)", where E
denotes the mathematical expectation. The r" central moment of the r.v. X, ur(X) , can be
derived from

00 = 2D 1) e (0 00,7 = 1,2,..
i=0

2.1. Inequalities for Moments

We first present the following estimation of the moments of the beta random variables [5]:

Theorem 2.1. Letthe r.v. X and Y be such that X ~ B(p,q) and Y ~ B(m,n), p,g,m,n > 0.
Further, let the r.v. U and V be defined as U ~ B(p,n) and V ~ B(m,q). Then, for

(p-m@-n) = (0

ECO'ECN’ .y BB . _
EQEV) ~ O Be.gBm B @2

Proof. Choose the mappings
f(x) = xP™M g(x) = (1 —x)¢"and h(x) = xX"™ (1 -x)™1.  (2.3)

The inequalities (2.2) follows on substituting these mappings in the following Ceby3ev’s
integral inequality for synchronous (asynchronous) mappings:

b b b b
jah(x)dx j _heOfeOg00dx > (<) j _hGofxdx jah(x)g(x)dx, (2.4)
accordingas (p—m)(g—-n) < (»)0.

We further deduce some results on moments of the beta r.v.’s from (2.2):

Corollary 2.2. Forg = p , n = m > 0,we have from (2.2)



ECQX)"E(Y)" < I'(2p) I'(2m)

E"(U) E"(V) I2(p+m)

r=12.  (25)

Corollary 2.3. In (2.2), letting m
X ~ B(p,q), satisfies

n = 1, the r'» moment about the origin of beta r.v.

B(r+p,1)B(r+1,q)

1 (X) = EX)" > (2) B(r+ L.1) B(o.q) r=12..  (26)
accordingas (p—1)(g-1) <(») 0.
Corollary 2.4.Setq = p, n =m> 0in (2.5). Then
Ex) < LD g5 o

T T(r+p+m)I(p)

Remark. Estlmatlons for the absolute moments of a r.v. X, i.e,v,(X) = E | X |" and the
factorial moments, y(r)(X) = E(X)(” about origin, may be obtalned from Theorem 2.1, on
replacing . (.) by v:(.) and u,(.) , respectively. Similarly, corresponding inequalities for the
moment generating function, My(t) = E(e%), and characteristic function, ¢«(t) = E(e'™) may
be easily obtained from (2.2).

The following inequality for moments of two beta r.v.’s also holds [5]:

Theorem 2.5. Let the r.v. X and Y be such that X ~ B(p,q) and Y ~ B(p,n). Then for
p,q,m,n > 0,

EX)"
ECY)

C'(p+I'(m+n)
F(p+nmI'(m+q)’

— > (9) r=12. (2.8

accordingas (p—m)(q—n) < (>) 0.

Proof. We choose in (2.3) the mappings,
f(x) = x™ ™ g(x) = (1 -x)¢"and h(x) = x™1(1 - x)"L.

Then, substituting these mappings in (2.4) results in the desired inequality (2.8).

Theorem 2.5 also leads to the following corollary:

Corollary 2.6. Forg=p, n=m > 0in (3.8),



EQX)T2(p+m) < ECY)' T(2p) T2m), r=1,2,.. (2.9)

2.2. Inequalities For Harmonic Means

We start with the following result on the harmonic means of two beta r.v.’s [5]:

Theorem 2.7. Let the r.v. X and Y be such that X ~ B(p,q) and Y ~ B(p,n). Denote the
harmonic means of r.v. X and Y by HM(X) = E(5) and HM(Y) = E(+-). Then, for

p,g,m,n > 0,

HMOO - B(.mB(m.0)
MY = OBpgsmny ¢ O

accordingas (p—m)(q—n) < (>) 0.
Proof. We choose in (2.3),
f(x) = x M g(x) = (1 -x)%"and h(x) = x™(1-x)"t.  (2.11)
Then , on substituting these mappings in éebyéev’s integral inequality (2.4), we get the

desired inequalities (2.10).
|

Theorem 2.7 further results in the following corollary:

Corollary 2.8. For g = m,n = m > 0, inequality (2.10) yields

HM(X) _ T'(2p) F(2m)
HM®Y) = T%(p+m) °

(2.12)

2.3. Inequalities For Variances
The following inequality holds for the variances of two beta r.v.’s [5]:
Theorem 2.9. Let the r.v. X and Y be such that X ~ B(p,q) and/Y ~ B(p, n). Denote the

variances of r.v. X and Y by V(X) = u;(X) — u2(X) and V(Y) = u,(Y) — u2(Y). Then, for
p,g,m,n > 0,

V(X) B(m,n) B(p,q) — V(Y) B(m,q) B(p,n) = (<)



B(m ) B*(p+1,n) B(mn)B*p+10)
B(p,n) B(p.a)

o (213)

accordingas (p—m)(q—n) < (> 0.

Proof. We choose r = 2 in the inequality (2.8) and rewrite 1,(.) in terms of V/(.). Then,
we get

[V(X) + u2(X)]B(M, MB(p,g) = (S)IV(Y) + u2(Y)]B(M, q)B(p,n).

Since for beta r.v.'s X and Y, u;(X) = -5 and p;(Y) = -5 , we prove the desired
inequality (2.13).
[ |

The inequality involving coefficients of variation of two beta r.v.’s also follows from
(2.13):

Corollary 2.10. Denoting coefficients of variation of the r.v.X and Y by CV(X) and CV(Y)
where CV(.) = W , ineqalities hold

()
CV2(X) +1
CV2(Y)+1 ~

P+PI'm+ml(p+g+1)
P+MI(m+qgl(P+n+1)’

=

(2.14)

accordingas (p—m)(q—n) < (>») 0.

Proof. From (2.13), we have for (p —m)(q—n) < (>) 0,

V(X) l
w200 HM e+ u(Y)
\{(Y) +1  T(m+q(p+n) ‘u/lz(X)

,Ulz(Y)

Now substituting ui(X) = p—fq and ﬂi(Y) = prn in the above expression, we prove the
corollary.
Another interesting case follows from Corollary 2.10 as :

Corollary 2.11. Forg = pand n = min (2.14),

cviX)+1 _ 4p2 - '(2p)I"(2m)
CV2(Y)+1 ~ MPE+m+1)’

(2.15)

Now from [5], using the logarithmic convexity of beta function on [0,00)2,i.e.,



Bla(p,q) + b(m,m] < [B(p,)]*[B(m,n)]°,
we prove the following theorem:

Theorem 2.12. Let (p,q), (m,n) € [0,0)2and a,b > 0, with a + b = 1. Define the beta
rv.'sU ~ B(ap + bm,aq +bn) and V ~ B(p,q). Then

EWV* _ [BEOPBMM®  _
[E(V)T* = Blap+bmag+bmy '~ 2 (210

Proof. We choose the mappings
f(t) = [t"P (1 -)*]3, gt) = "L -)™1]°, h() = 1,

forp=+4,9=+, (5 +5 =1andp > 1).
Substituting these mappings in the Holder’s integral inequality,
u u 1 u 1 b
J foaohdt < [ (o} thmdoe(] (gm} Fhodd®

we obtain the desired inequality (2.16).

2.4. Inequalities For Mean Deviation

Gruss (1935) established an integral inequality which provides an estimation for integral of
a product in terms of the product of integrals [11, p. 293] as :

Theorem 2.13. Let f and g be two functions defined and integrable on [a, b]. If

Y<fx)<® y<gx=<I, (217

for each x € [a,b] where W, ®,y and I are given real constants, then

s [ oo iy [ o gy [ o

< 2(@-¥) [T-y), (218)

and the constant % is the best possible.

Now, an application of the Griiss’s integral inequality (2.18) results in the following



estimation of the mean deviation of a beta random variable [16]:

Theorem 2.14. Let p,q > 1 and x € [0, 1]. Then, for the mean deviation of a r.v.
X ~ B(p,q), holds

2pPqY 1
+

2pPQs 1
(0 + Q)7 [ﬁ < MD(X) < . -

= o+ qre [p_lq , forpg < 4. (2.19)

N
| S—

il

Proof. Consider in (2.18) the mappings
f(x) = xPtand g(x) = (1 - x)*%, p,g,> 1.  (2.20)

Since

Y =inf f(x) =0, y =inf g(x) =0,
xee[0,1] x€[0,1]

and
® =sup f(x) =1, =sup g(x),

xe[0,1] xe[0,1]
we deduce from (2.18)
| Il xP1(1 - x)%tdx — jl xP-1dx _[1(1 -X)dx |< 1 (2.21)
0 0 0 -4
or

| B - py <7 (222

Since, forar.v. X ~ B(p,q), mean deviation is

_ 2pPq¢
MDOO_'BmQXp+qW”’92@

the inequality (2.22) through (2.23) leads to (2.19) and hence the theorem.
|

Another estimation for the mean deviation of a beta r.v. is established in the following
theorem [16]:

Theorem 2.15. Let p and g be positive real numbers. Then, for the mean deviation of a r.v.
X~ B(p,Q),



2p p+1q g+1

MD(X) = (S)W.

(2.24)

accordingas (p—1)(g-1) > (<) 0.

Proof. Define the mappings : f,g,h : [0,1] - [0, ), given by

f(x) = xP1, g(x) = (1 —x)¢tand h(x) = 1. (2.25)

As (p-1)(g-1) > (<) 0, the mappings f and g are the same (opposite) monotonic on
[0,1] and h is non-negative on [0, 1].

Applying the well known Ceby3ev’s integral inequality, we write

1 1 1 1
[ 10k [ xer@-xrtdx < @) [ xtdx | @i, (2.26)
0 0 0 0
or,
B(p.o) < &) pg- (227

Now, by virtue of (2.23), the inequality (2.24) follows from (2.27).
[ |
In what follows now, another estimation for the mean deviation of a beta r.v. is obtained
[16]:

Theorem 2.16. Let p and g be real numbers with p,q > 0. Then, ifp—q—-1 > (<) 0, the
mean deviation of a r.v.X ~ B(p, q) satisfies

2pPq? I'(p+0q)
MD(X) < () P10 Th_DrarD" (2.28)

Proof. Define the mappings
f(x) = xP¢1, g(x) = xand h(x) = x41e™*, (2.29)
for x € [0,).
As the mappings f and g are similarly (oppositely) ordered and h is non-negative, we can

apply the well known CebysSev’s integral inequality for synchronous (asynchronous)
mappings. Forp—q -1 > (<) 0, we can write the inequality

JOO x9-1e*dx Jm xP-lexdx > (<) Iw XP-2e~*dx Jm x9e~*dx,
0 0 0 0
or

r@re) =z SQre-nr@+1). (2.30)



Noting that B(p,q) = rr(?;ié‘;) , we rewrite (2.30) as

I'p-Dr@+1
F(p+0a)

B(p.a) = () . (2.31)

accordingasp-q-1> (<)0.

Now, from (2.23) and (2.31), we prove the inequality (2.28).

3. APPLICATIONS TO GAMMA PROBABILITY
DISTRIBUTIONS

3.1. Inequalities for Moments

We start with a theorem on the moments of the gamma random variables [6]:

Theorem 3.1. Let the r.v. X be such that X ~ G(a + b), where a,b > 0 and are similarly
(oppositely) unitary. Further, define therv.’sUandVasU ~ G(a+1)andV ~ G(b + 1).
Then, if (a—1)(b-1) > (<) 0,

CEXT @+ I+
EOEV) - Trryrasn 0 .

Proof. We choose mappings
f(t) = t&1, g(t) = t>1 and h(t) = t™le™, (3.4)
On substituting these mappings in Cebysev’s integral inequality, we obtain

joo tr+1e—tdt J‘OO tr+a+b—le—tdt > (S) J‘OO tr+ae—tdt on t”be‘tdt,
0 0 0 0

I(r+2)T@+b)EX)' > () T(@a+1) EU) Th+1)ENVT r=12,..

according as (a—1)(b —1) > (<) 0, and hence, the theorem.
[
Another result which establishes an inequality for moments of two gamma r. v.’s follows
from this theorem as:

10



Corollary 3.2. For b = a > 0, inequality (3.3) becomes
rayr(r+2)EX)">r@+1HEMU)", r=1,2,.. (3.5)

We obtain another estimation for moment ratios of two gamma r. v. [14] as:

Theorem 3.3. Lettherv. X ~ G(a+b)andZ~ G(a—1). Then,if (a-1)(b-1) > (<) 0,

I'a-DI'(b-1)
I'(a+b)

M>(§)

o 2 r=12,.. (36)

Proof. We choose

f(t) = t*21 g(t) = t>Tand h(t) = tet.  (3.7)

Then , substituting these mappings in the Cebysev’s integral inequality gives (3.6) and
hence, completes the proof.

Another estimation of moment ratios of Gamma r. v.’s is [14]:

Theorem 3.4. Let the r.v. X and Y be such that X ~ G(p — k) and Y ~ G(m + k), for the
real numbers p, m,k such that p,m > 0 and p > k > —m. Further, let the r.v. U and V be
defined as U ~ G(p) and V ~ G(m). Then, if k(p — m —k) > ()0,

EWEM"

T(p-KCm+k
EQX)E(Y)" ~ r=>,2,.. (38)

rerm -

&)

Proof. Choose the mappings as
f(x) = xP* ™M g(x) = xand h(x) = x*™le*, (3.9

Then, on substituting these mappings in inequality due to Ceby§ev, we obtain the desired

expression (3.8).
|

An interesting corollary arises from this theorem as :

Corollary 3.5. Form = p > 0in (3.8),

T2(p)E2(U)F < T'(p — KIT(M + EX)EMY), r=1,2,...  (3.10)

Another estimation of moment ratios of two Gamma r.v.’s follows as [14]:

11



Theorem 3.6. Let the r.v. U and Y be as above, i.e., U ~ G(p) and Y ~ G(m + k). Then, if
k(p-m-k) = ()0,

F'(e)I(MEMU)" > QIr(p-kI'm+kEM, r=12,.. (3.11)

Proof. Consider the mappings
f(x) = xP*M g(x) = x**and h(x) = x™le*.  (3.12)

Then , substitution of these mappings in the éebyéev’s integral inequality completes the

proof.
[

Functional properties of gamma mappings [6].i.e.,

I'(ax +by) < [T(x)]? [C(y)]°,

a,b>0witha+b =1andx,y > 0,implying, that the mapping I" is logarithmically convex on
[0,00), result in the following estimation for moments of two gamma r.v.’s:

Theorem 3.7. Let the r.v. U and V be such that U ~ G(ax + by) and V ~ G(x), where a,b
> 0Qwitha+b=1andx,y > 0. Then

EW* _ T2ere(y)
E3(V)" = T'(ax+hy)’

r=12,. (313

Proof. We choose
f(t) = tb7ar g(t) = POV and h(t) = e,  (3.14)

for t € [0, ]. On substituting these mappings in Holder’s integral inequality, we obtain

IOO tar+a(x—1)+b(y—l)e—tdt < [J‘OO '[H'(X_l)e_tdt] a[J“’O ty_le_tdt] b1
0 Yo 0

i.e.,
I'(ax + by)[E(U)*] < [T)EV)2[C(W)]°, r=1,2,...,

and hence, the theorem.

Another result may be noted from this theorem as well :

Corollary 3.8. For a,b(=a) > 0,

12



[C{a(x + y)}E(U)*]+ < TOCGEM)', r=1,2,..  (3.15)

The following theorem applying properties of Gamma functions also holds:

Theorem 3.9. For x,y > 0 and m > 0, let there be Gammar.v.’s U ~ G(m),
V~GX+y+m), W~ GX+m)andZ ~ G(y + m). Then,

EW'ENV) o TnCn@) . _
EW)EQD)T = Tty '~ b2 (19

Proof. We choose the mappings
f(t) = t¥, g(t) = t*and h(t) = t*mle™, (3.17)

fort € [0,).
On substituting these mappings in Ceby3ev’s integral inequality, we obtain
[CMEMU)TX+y+mEN)T] > [T(xX+mEMW)TY+mE®@)], r=12,..

and hence the theorem.
[ |
Following theorem provides estimation of moment ratios of two Gamma r.v.’s:

Theorem 3.10. For x, y> 0 and m > 0, let there be gammar.v.’sV ~ G(x +y + m) and
Z ~ G(y +m). Then,

rmrx+y+mEeN)">I'x+mICy+mEZ)", r=1,2,.. (3.18)
Proof. The mappings
f(t) = t¥, g(t) = t"*and h(t) = t™1et, t € [0,0),

in the Cebysev’s integral inequality results in the deisred inequalities.
3.2. Inequalities For Harmonic Means

We now discuss some estimations for the harmonic means of gamma r.v. which are based
on the applications of CebySev’s and Holder’s integral inequalities. The following theorem is
on the moment ratios:

Theorem 3.11. Letther.v. X ~ G(a+b) and Z~ G(a—1). Then, if (a—-1)(b-1) > (<)0,

13



EWX)" - (o
E(1/2)” ~

I'a-1)Ir'b-1)
I'(a+hb)

,r=12,.. (3.19)

Proof. On substituting the mappings
f(t) =t g(t) = t>Land h(t) = te™!, t € [0,0), (3.20)

in the Cebysev’s integral inequality, we have the desired estimation (3.19).
[
The following theorem also holds for the harmonic means of two gamma r.v.’s [14]:

Theorem 3.12. Let the r.v. U and Y be such that U ~ G(p) and Y ~ G(m + k). Then, if
k(p—-m-k) > ()0,

EQWU)"

E@/Y)" ~

I'(p—K)I'(m+Kk)
r(erm

< =1,2,... (3.21)

Proof. Choose the mappings,
f(x) = xP* ™ g(x) = x "k and h(x) = x™ e,

which applied to the Cebyéev’s integral inequality results in (3.21).
[ |

An application of Holder’s integral inequality provides the following estimation for the
harmonic means of two gamma r.v.’s:

Theorem 3.13. Letthe r.v. U ~ G(ax + by) and V ~ G(x), wherea, b>Owitha+b =1
and x,y > 0. Then,

I'(ax + by)[E(%)""] < [F(X)E(%)r]a[F(Y)]b, r=12.. (322

Proof. We consider mappings
f(t) = ta-b+ar g(t) = tP0-D and h(t) = e, t € [0, ), (3.23)

and apply the Holder’s integral inequality to prove the estimation (3.22).
|

Finally, we also have the following estimation from the application of the Cebysev’s
integral inequality to Gamma functions:

Theorem 3.14. Let the r.v.’s V and Z be such thatV ~ G(x +y+m) and Z ~ G(y + m).

14



Then,

EGD)" . Ta(®)Cn(y)

EQ) = Taxty ' hEe G2

The proof follows from (3.18).

3.3. Inequalities For Variances

The Cebysev’s integral inequality for synchronous (asynchronous) mappings, Holder’s
integral inequality and Griss’s integral inequality have been applied to obtain estimation of
variances for gamma random variables. We start with the following result:

Theorem 3.15. Letther.v.’s X ~ G(a+ b) and Z ~ G(a — 1). Denote the variances of
r.v.’s X and Z by V(X) = E(X)? — [E(X)]? and V(Z) = E(2)? — [E(Z)]?, respectively. Then, if
@a-1(b-1) > ()0,

Fra+b)VviX)-T@-DIr'b-1)V(2) > )a-DI'@I'(b-1)-(a+b)'(a+b+1) (3.25)

Proof. We consider (3.6)

Lx)r>(5)

E@)" ~

I'(a—1)(b—1)

I'(a+b) r=52..

and choosing r = 2. On rewriting E(.) in terms of V(.), we get
[V(X) + E2(X)IC(a+b) > ([V(2) + E2(2)IT(a— I'(b-1).  (3.26)

Now, since X and Z are gamma r.v.’s with parameters (a + b) and (a — 1), respectively,
E(X) =a+b, and E(Z) = a— 1. On substituting these values in (3.26), we reach at the desired

inequality (3.25).
|

Another inequality for the coefficients of variation of r.v.’s X and Z follows immediately
from this theorem as:

Corollary 3.16. Denoting coefficients of variation of the r.v. X and Z by CV(X) and CV(Z)

where CV(.) = \/g/(T)) , the inequalities for CV(X) and CV(Z) is

15



1+ CV3(X) -
1+CV2(2) =

(a— @b - 1)

(@+b)r'a+b+1) " (3.27)

)

accordingas (a—1)(b-1) > (<) 0.

Proof. From (3.26), we have

V9
E2(X) > (<) F'a-Hrko-1)  E2)
EVZ(—(ZZ))+1 - I'(a+b) E2(X)

Since E(X) = a+b, and E(Z) = a— 1, we reach at (3.27) and hence the corollary.
[ |

The following result also holds for variances of two gamma r.v.’s [14]:

Theorem 3.17. Letthe r.v.’s U ~ G(p) and Y ~ G(m + k). Denote the variances of r.v.’s U
and Y by V(U) = E(U)? - [E(U)]? and V(Y) = E(Y)? — [E(Y)]?, respectively. Then, if k
(P-m-k= (90,

rE)rmvU) —TE-KIM+kVEY) > (<) m+KCpE-KI'M+k+1)—pl(m)C(p+1).

Proof. We consider inequality (3.11)
T(P)T(MEWU)’ > ()T(p - KM +KENY), r=1,2,..
and choose r = 2. Rewriting E(.) in terms of V/(.), we obtain
[V(U) + EZU)IT(P)I(m) = (S[V(Y) + E2(NIC(p - KT(m+k).  (3.29)

Now substituting E(U) = p and E(Y) = m + k in the above expression (3.29), we reach at
the desired inequality (3.28).

Another estimation for the coefficients of variation of r.v.’s U and Y follows from this
theorem as :

Corollary 3.18. Denoting coefficients of variation of the r.v. U and Y by CV(U) and CV(Y)

where CV(.) = g , the inequality for CV(U) and CV(Y), for k(p —m—-k) > (<) 0, is

1+CV2(U) -

v 2 ) (m+kK)I'(m+k+1DI'(p—k) _ (3.30)

(£
pr(mI(p+1)

Proof. Rewriting (3.29) as
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and since E(U) = p, E(Y)(m + k), we prove the corollary.
[

The following inequality using properties of gamma functions also holds for variances of
gammar.v.’s [6]:

Theorem 3.19. Let the r.v.’s U ~ G(ax + by) and V ~ G(x) be as above. Denote the
variances of r.v.’s U and V by Var(U) = E(U)? — [E(U)]? and Var(V) = E(V)? - [E(V)]?,
respectively. Then,

I(ax + by)[Var(U?) + E2(U3)] < T2(x)I°(y)[Var(V) +x2]2.  (3.31)

Proof. We consider the inequality (3.13). Choose r = 2 and rewrite E(.) in terms of Var(.).

On substituting E(V) = x in (3.13), we reach at the desired inequality (3.31).
|

Finally, we can also state another inequality for the variances of two gamma r.v's:

Theorem 3.20. Letthe r.v.’sV ~ G(x +y +m) and Z ~ G(y + m) be as above. Denote the
variances of r.v.’s V and Z by Var(V) = E(V)2 — [E(V )]%and Var(Z) = E(2)? - [E(2)]?,
respectively. Then,

Var(V) + x+y+m? _ Tx+mI(y+m) (3.32)
Var(Z)+ (y+m)2  ~  T(x+y+m) '

V

Proof. We consider the inequality (3.18), choose r = 2 and rewrite E(.) in terms of Var(.).

On substituting E(V) =x+y+m, and E(Z) = y+m, in (3.18), we prove the theorem.
|
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