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ABSTRACT

Fundamental inequalities, such as C̆ebyšev’s integral inequality for synchronous
(asynchronous) mappings, Hölder’s integral inequality and Grüss’s integral inequality, are
applied to the estimation of moments and moment ratios of the beta and gamma random
variables.
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1. INTRODUCTION

The beta and gamma distributions have shown useful representations of many physical
situations. For example - these distributions are being applied in the statistical analysis of
reliability and life testing models [1] and to make realistic adjustments to exponential
distributions in representing life-testing situations; in the theory of random counters and other
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topics associated with random processes in time, in particular in meteorological precipitation
processes [ 3,9]. The use of gamma distribution in approximating the distribution of quadratic
forms ( in particular positive definite quadratic forms), in multi-normally distributed random
variables is well-established and widespread. One of the earliest examples refers to its use in
approximating the distribution of the denominator in a test criterion for difference between
values of two populations with unequal variances. Gamma distributions are also discussed to
represent distributions of range and quasi-ranges in random samples drawn from a normal
population [8, p. 59]. Gamma distribution may be used in place of normal distribution as
parent distribution in expansions of Gram-Charlier type [8, p. 16].

A random variable (r.v.) X has a beta probability density function (pdf) with parameters
(a,b), denoted as X~Ba,b, and its pdf given by :

fx : a,b  xa−11 − xb−1

Ba,b ; 0  x  1, 1.1

where   a,b : a  0,b  0 and Ba,b  ΓaΓb
Γab .

A random variable r.v. X has a standard gamma probability density function:

fx :   x−1e−x
Γ

,   0, x  0. 1.2

For   1, this is an exponential distribution and if  is a positive integer, (1.2) represents
an Erlang distribution [8, p. 222]. In most applications, two parameter form is used and is
given by

fx : ,  x−1e−x
Γ

,   0,   0; x  0. 1.3

These beta and gamma distributions possess a number of statistical properties [8,12], a few
being: (i) members of Pearson family, (ii) exponential, (iii) monotone likelihood ratio, (iv)
unimodal.

We now consider the applications of the C̆ebyšev’s integral inequality for synchronous
(asynchronous) mappings, Hölder’s integral inequality and Grüss’s integral inequality to the
estimation of moments and moment ratios of the beta and gamma random variables.
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2. APPLICATIONS TO THE BETA PROBABILITY
DISTRIBUTIONS

A distribution function determines a set of moments when they exist. The first moment
about origin, recognized as the mean or center of gravity and the second moment about mean,
a measure of the spread or dispersion of the population, are frequently studied parameters of a
population . Other properties such as skewness and kurtosis are defined in terms of the higher
moments. The rth moment of the r.v. X about the origin is defined by r

′
X  EXr, where E

denotes the mathematical expectation. The rth central moment of the r.v. X , rX , can be
derived from

rX ∑
i0

r

−1 i r
i r−1

′

X1
′i
X, r  1,2, ...

2.1. Inequalities for Moments

We first present the following estimation of the moments of the beta random variables [5]:

Theorem 2.1. Let the r.v. X and Y be such that X  Bp,q and Y  Bm,n, p,q,m,n  0.
Further, let the r.v. U and V be defined as U  Bp,n and V  Bm,q. Then, for
p − mq − n ≤ ≥ 0,

EXrEYr

EUrEVr ≥ ≤
Bp,nBm,q
Bp,qBm,n , r  1,2, ... 2.2

Proof. Choose the mappings

fx  xp−m,gx  1 − xq−n and hx  xrm−11 − xn−1. 2.3

The inequalities (2.2) follows on substituting these mappings in the following C̆ebys̆ev’s
integral inequality for synchronous (asynchronous) mappings:


a

b
hxdx 

a

b
hxfxgxdx ≥ ≤ 

a

b
hxfxdx 

a

b
hxgxdx, 2.4

according as p − mq − n ≤ ≥ 0.


We further deduce some results on moments of the beta r.v.’s from (2.2):

Corollary 2.2. For q  p , n  m  0,we have from (2.2)
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EXrEYr

ErU ErV
≤ Γ2p Γ2m

Γ2p  m
, r  1,2, ... 2.5

Corollary 2.3. In (2.2), letting m  n  1, the rth moment about the origin of beta r.v.
X  Bp,q, satisfies

r
′
X  EXr ≥ ≤ Br  p, 1 Br  1,q

Br  1,1 Bp,q
, r  1,2, ... 2.6

according as p − 1q − 1 ≤ (≥ 0.

Corollary 2.4. Set q  p, n  m  0 in (2.5). Then

EXr ≤ Γr  p Γ2p
Γr  p  m Γp

, r  1,2, ... 2.7

Remark. Estimations for the absolute moments of a r.v. X , i.e, rX  E ∣ X ∣r and the
factorial moments, r

′
X  EXr, about origin, may be obtained from Theorem 2.1, on

replacing r
′ . by r. and r

′ . , respectively. Similarly, corresponding inequalities for the
moment generating function, Mxt  Eetx, and characteristic function, xt  Eeitx may
be easily obtained from (2.2).

The following inequality for moments of two beta r.v.′s also holds [5]:

Theorem 2.5. Let the r.v. X and Y be such that X  Bp,q and Y  Bp,n. Then for
p,q,m,n  0,

EXr

EYr ≥ ≤
Γp  qΓm  n
Γp  nΓm  q , r  1,2, ... 2.8

according as p − mq − n ≤ ≥ 0.

Proof. We choose in (2.3) the mappings,
fx  xrp−m, gx  1 − xq−n and hx  xm−11 − xn−1.

Then, substituting these mappings in (2.4) results in the desired inequality (2.8).


Theorem 2.5 also leads to the following corollary:

Corollary 2.6. For q  p, n  m ≥ 0 in (3.8),
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EXr Γ2p  m ≤ EYr Γ2p Γ2m, r  1,2, ... 2.9

2.2. Inequalities For Harmonic Means

We start with the following result on the harmonic means of two beta r.v.′s [5]:

Theorem 2.7. Let the r.v. X and Y be such that X  Bp,q and Y  Bp,n. Denote the
harmonic means of r.v. X and Y by HMX  E 1

X  and HMY  E 1
Y . Then, for

p,q,m,n  0,

HMX
HMY ≥ ≤

Bp,nBm,q
Bp,qBm,n , 2.10

according as p − mq − n ≤ ≥ 0.

Proof. We choose in (2.3),

fx  x−1p−m, gx  1 − xq−n and hx  xm−11 − xn−1. 2.11

Then , on substituting these mappings in C̆ebys̆ev’s integral inequality (2.4), we get the
desired inequalities (2.10).



Theorem 2.7 further results in the following corollary:

Corollary 2.8. For q  m,n  m  0, inequality (2.10) yields

HMX
HMY ≤

Γ2p Γ2m
Γ2p  m

. 2.12

2.3. Inequalities For Variances

The following inequality holds for the variances of two beta r.v.′s [5]:

Theorem 2.9. Let the r.v. X and Y be such that X  Bp,q and Y  Bp,n. Denote the
variances of r.v. X and Y by VX  2

′

X − 1
′2X and VY  2

′

Y − 1
′2Y. Then, for

p,q,m,n  0,

VX Bm,n Bp,q − VY Bm,q Bp,n ≥ ≤
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Bm,q B2p  1,n
Bp,n − Bm,n B2p  1,q

Bp,q , 2.13

according as p − mq − n ≤ ≥ 0.

Proof. We choose r  2 in the inequality (2.8) and rewrite 2
′
. in terms of V.. Then,

we get

VX  1
′2XBm,nBp,q ≥ ≤VY  1

′2YBm,qBp,n.

Since for beta r.v.′s X and Y, 1
′
X  p

pq and 1
′
Y  p

pn , we prove the desired
inequality (2.13).



The inequality involving coefficients of variation of two beta r.v.′s also follows from
(2.13):

Corollary 2.10. Denoting coefficients of variation of the r.v.X and Y by CVX and CVY
where CV.  V.

1
′
.

, ineqalities hold

CV2X  1
CV2Y  1

≥ ≤ p  qΓm  nΓp  q  1
p  nΓm  qΓp  n  1 . 2.14

according as p − mq − n ≤ ≥ 0.

Proof. From (2.13), we have for p − mq − n ≤ ≥ 0,

VX

1
′
2X

 1

VY

1
′
2Y

 1
≥ ≤ Γm  nΓp  q

Γm  qΓp  n
1

′2Y
1

′2X
.

Now substituting 1
′

X  p
pq and 1

′

Y  p
pn in the above expression, we prove the

corollary.


Another interesting case follows from Corollary 2.10 as :

Corollary 2.11. For q  p and n  m in (2.14),

CV2X  1
CV2Y  1

≤ 4p2  Γ2pΓ2m
Γ2p  m  1

. 2.15

Now from [5], using the logarithmic convexity of beta function on 0,2,i.e.,
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Bap,q  bm,n ≤ Bp,qaBm,nb,

we prove the following theorem:

Theorem 2.12. Let p,q, m,n ∈ 0,2and a,b ≥ 0, with a  b  1. Define the beta
r.v.′s U  Bap  bm,aq  bn and V  Bp,q. Then

EUar

EVra
≤ Bp,qaBm,nb

Bap  bm,aq  bn , r  1,2, ... 2.16

Proof. We choose the mappings
ft  trp−11 − tq−1a, gt  tm−11 − tn−1b, ht  1,

for p  1
a , q  1

b ,  1
p  1

q  1 and p ≥ 1.

Substituting these mappings in the Hölder’s integral inequality,


l

u
ftgthtdt ≤ 

l

u
ft 1

a htdta
l

u
gt 1

b htdtb,

we obtain the desired inequality (2.16).


2.4. Inequalities For Mean Deviation

Grüss (1935) established an integral inequality which provides an estimation for integral of
a product in terms of the product of integrals [11, p. 293] as :

Theorem 2.13. Let f and g be two functions defined and integrable on a,b. If

 ≤ fx ≤ ,  ≤ gx ≤ Γ, 2.17

for each x ∈ a,b where ,, and Γ are given real constants, then

∣ 1
b − a a

b
fx gx dx − 1

b − a a

b
fx dx  1

b − a a

b
gx dx ∣

≤ 1
4  −  Γ − , 2.18

and the constant 1
4 is the best possible.

Now, an application of the Grüss’s integral inequality (2.18) results in the following
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estimation of the mean deviation of a beta random variable [16]:

Theorem 2.14. Let p,q  1 and x ∈ 0,1. Then, for the mean deviation of a r.v.
X  Bp,q, holds

2ppqq

p  qpq  1
 1

pq  1
4 
≤ MDX ≤ 2ppqq

p  qpq  1
 1

pq − 1
4 

, for pq  4. 2.19

Proof. Consider in (2.18) the mappings

fx  xp−1and gx  1 − xq−1, p,q, 1. 2.20

Since
 

x∈∈0,1
inf fx  0,  

x∈0,1
inf gx  0,

and
 

x∈0,1
sup fx  1,Γ 

x∈0,1
sup gx,

we deduce from (2.18)

∣ 
0

1
xp−11 − xq−1dx − 

0

1
xp−1dx 

0

1
1 − xq−1dx ∣≤ 1

4 , 2.21

or
∣ Bp,q − 1

pq ∣≤
1
4 . 2.22

Since, for a r.v. X  Bp,q, mean deviation is

MDX  2ppqq

Bp,qp  qpq , 2.23

the inequality (2.22) through (2.23) leads to (2.19) and hence the theorem.


Another estimation for the mean deviation of a beta r.v. is established in the following
theorem [16]:

Theorem 2.15. Let p and q be positive real numbers. Then, for the mean deviation of a r.v.
X  Bp,q,
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MDX ≥ ≤ 2pp1qq1

p  qpq , 2.24

according as p − 1q − 1 ≥ ≤ 0.

Proof. Define the mappings : f,g,h : 0,1 → 0,, given by

fx  xp−1, gx  1 − xq−1 and hx  1. 2.25

As p − 1q − 1 ≥ ≤ 0, the mappings f and g are the same (opposite) monotonic on
0,1 and h is non-negative on 0,1.

Applying the well known C̆ebys̆ev’s integral inequality, we write


0

1
1dx 

0

1
xp−11 − xq−1dx ≤ ≥ 

0

1
xp−1dx 

0

1
1 − xq−1dx, 2.26

or,
Bp,q ≤ ≥ 1

pq . 2.27

Now, by virtue of (2.23), the inequality (2.24) follows from (2.27).


In what follows now, another estimation for the mean deviation of a beta r.v. is obtained
[16]:

Theorem 2.16. Let p and q be real numbers with p,q  0. Then, if p − q − 1 ≥ ≤ 0, the
mean deviation of a r.v.X  Bp,q satisfies

MDX ≤ ≥ 2ppqq

p  qpq  Γp  q
Γp − 1Γq  1 . 2.28

Proof. Define the mappings
fx  xp−q−1, gx  x and hx  xq−1e−x, 2.29

for x ∈ 0,.

As the mappings f and g are similarly (oppositely) ordered and h is non-negative, we can
apply the well known C̆ebys̆ev’s integral inequality for synchronous (asynchronous)
mappings. For p − q − 1 ≥ ≤ 0, we can write the inequality


0


xq−1e−xdx 

0


xp−1e−xdx ≥ ≤ 

0


xp−2e−xdx 

0


xqe−xdx,

or
ΓqΓp ≥ ≤Γp − 1Γq  1. 2.30
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Noting that Bp,q  ΓpΓq
Γpq , we rewrite (2.30) as

Bp,q ≥ ≤ Γp − 1Γq  1
Γp  q , 2.31

according as p − q − 1 ≥ ≤ 0.

Now, from (2.23) and (2.31), we prove the inequality (2.28).


3. APPLICATIONS TO GAMMA PROBABILITY
DISTRIBUTIONS

3.1. Inequalities for Moments

We start with a theorem on the moments of the gamma random variables [6]:

Theorem 3.1. Let the r.v. X be such that X  Ga  b, where a,b  0 and are similarly
(oppositely) unitary. Further, define the r.v.’s U and V as U  Ga  1 and V  Gb  1.
Then, if a − 1b − 1 ≥ ≤ 0,

EXr

EUrEVr ≥ ≤
Γa  1 Γb  1
Γr  2 Γa  b

, r  1,2, ... 3.3

Proof. We choose mappings

ft  ta−1, gt  tb−1 and ht  tr1e−t. 3.4

On substituting these mappings in C̆ebys̆ev’s integral inequality, we obtain


0


tr1e−tdt 

0


trab−1e−tdt ≥ ≤ 

0


trae−tdt 

0


trbe−tdt,

i.e.,
Γr  2 Γa  b EXr ≥ ≤ Γa  1 EUr Γb  1 EVr, r  1,2, ...

according as a − 1b − 1 ≥ (≤ 0, and hence, the theorem.


Another result which establishes an inequality for moments of two gamma r. v.’s follows
from this theorem as:
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Corollary 3.2. For b  a  0, inequality (3.3) becomes

Γ2aΓr  2EXr ≥ Γa  1EUr, r  1,2, ... 3.5

We obtain another estimation for moment ratios of two gamma r. v. [14] as:

Theorem 3.3. Let the r.v. X  Ga  b and Z  Ga − 1. Then, if a − 1b − 1 ≥ ≤ 0,

EXr

EZr ≥ ≤
Γa − 1Γb − 1

Γa  b , r  1,2, ... 3.6

Proof. We choose

ft  tra−1, gt  tb−1 and ht  te−t. 3.7

Then , substituting these mappings in the C̆ebys̆ev’s integral inequality gives (3.6) and
hence, completes the proof.


Another estimation of moment ratios of Gamma r. v.’s is [14]:

Theorem 3.4. Let the r.v. X and Y be such that X  Gp − k and Y  Gm  k, for the
real numbers p,m,k such that p,m  0 and p  k  −m. Further, let the r.v. U and V be
defined as U  Gp and V  Gm. Then, if kp − m − k ≥ ≤0,

EUrEVr

EXrEYr ≥ ≤
Γp − kΓm  k

ΓpΓm , r  1,2, ... 3.8

Proof. Choose the mappings as

fx  xp−k−m, gx  xk and hx  xrm−1e−x. 3.9

Then, on substituting these mappings in inequality due to C̆ebys̆ev, we obtain the desired
expression (3.8).


An interesting corollary arises from this theorem as :

Corollary 3.5. For m  p  0 in (3.8),

Γ2pE2Ur ≤ Γp − kΓm  kEXrEYr, r  1,2, ... 3.10

Another estimation of moment ratios of two Gamma r.v.’s follows as [14]:
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Theorem 3.6. Let the r.v. U and Y be as above, i.e., U  Gp and Y  Gm  k. Then, if
kp − m − k ≥ ≤ 0,

ΓpΓmEUr ≥ ≤Γp − kΓm  kEYr, r  1,2, ... 3.11

Proof. Consider the mappings
fx  xp−k−m, gx  xrk and hx  xm−1e−x. 3.12

Then , substitution of these mappings in the C̆ebys̆ev’s integral inequality completes the
proof.


Functional properties of gamma mappings [6],i.e.,

Γax  by ≤ Γxa Γyb,

a,b ≥ 0 with a  b  1 and x,y  0, implying, that the mapping Γ is logarithmically convex on
[0,, result in the following estimation for moments of two gamma r.v.’s:

Theorem 3.7. Let the r.v. U and V be such that U  Gax  by and V  Gx, where a,b
≥ 0 with a  b  1 and x,y  0. Then

EUar

EaVr ≤
ΓaxΓby
Γax  by , r  1,2, ... 3.13

Proof. We choose
ft  tax−1ar, gt  tby−1 and ht  e−t, 3.14

for t ∈ 0,. On substituting these mappings in Hölder’s integral inequality, we obtain


0


tarax−1by−1e−tdt ≤ 

0


trx−1e−tdta

0


ty−1e−tdtb,

i.e.,
Γax  byEUar ≤ ΓxEVraΓyb, r  1,2, ...,

and hence, the theorem.


Another result may be noted from this theorem as well :

Corollary 3.8. For a,b a  0,
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Γax  yEUar
1
a ≤ ΓxΓyEVr, r  1,2, ... 3.15

The following theorem applying properties of Gamma functions also holds:

Theorem 3.9. For x,y ≥ 0 and m  0, let there be Gamma r.v.’s U  Gm,
V  Gx  y  m, W  Gx  m and Z  Gy  m. Then,

EUrEVr

EWrEZr ≥
ΓmxΓmy
Γmx  y , r  1,2, ... 3.16

Proof. We choose the mappings
ft  ty, gt  tx and ht  trm−1e−t, 3.17

for t ∈ 0,.

On substituting these mappings in C̆ebys̆ev’s integral inequality, we obtain

ΓmEUrΓx  y  mEVr ≥ Γx  mEWrΓy  mEZr, r  1,2, ...

and hence the theorem.


Following theorem provides estimation of moment ratios of two Gamma r.v.’s:

Theorem 3.10. For x, y ≥ 0 and m  0, let there be gamma r.v.’s V  Gx  y  m and
Z  Gy  m. Then,

ΓmΓx  y  mEVr ≥ Γx  mΓy  mEZr, r  1,2, ... 3.18

Proof. The mappings
ft  ty, gt  trx and ht  tm−1e−t , t ∈ 0,,

in the C̆ebys̆ev’s integral inequality results in the deisred inequalities.


3.2. Inequalities For Harmonic Means

We now discuss some estimations for the harmonic means of gamma r.v. which are based
on the applications of C̆ebys̆ev’s and Hölder’s integral inequalities. The following theorem is
on the moment ratios:

Theorem 3.11. Let the r.v. X  Ga  b and Z Ga − 1. Then, if a − 1b − 1 ≥ ≤0,
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E1/Xr

E1/Zr ≥ ≤
Γa − 1Γb − 1

Γa  b , r  1,2, ... 3.19

Proof. On substituting the mappings

ft  t−ra−1, gt  tb−1 and ht  te−t, t ∈ 0,, 3.20

in the C̆ebys̆ev’s integral inequality, we have the desired estimation (3.19).


The following theorem also holds for the harmonic means of two gamma r.v.’s [14]:

Theorem 3.12. Let the r.v. U and Y be such that U  Gp and Y  Gm  k. Then, if
kp − m − k ≥ ≤ 0,

E1/Ur

E1/Yr ≥ ≤
Γp − kΓm  k

ΓpΓm , r  1,2, ... 3.21

Proof. Choose the mappings,

fx  xp−k−m,gx  x−rk and hx  xm−1e−x,

which applied to the C̆ebys̆ev’s integral inequality results in (3.21).


An application of Hölder’s integral inequality provides the following estimation for the
harmonic means of two gamma r.v.’s:

Theorem 3.13. Let the r.v. U  Gax  by and V  Gx, where a, b ≥ 0 with a  b  1
and x,y  0. Then,

Γax  byE 1
U ra ≤ ΓxE 1

V raΓyb, r  1,2, ... 3.22

Proof. We consider mappings

ft  tax−1ar, gt  tby−1 and ht  e−t, t ∈ 0,, 3.23

and apply the Holder’s integral inequality to prove the estimation (3.22).


Finally, we also have the following estimation from the application of the C̆ebys̆ev’s
integral inequality to Gamma functions:

Theorem 3.14. Let the r.v.’s V and Z be such that V  Gx  y  m and Z  Gy  m.
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Then,

E 1
V 

r

E 1
Z 

r ≥
ΓmxΓmy
Γmx  y , r  1,2, ... 3.24

The proof follows from (3.18).

3.3. Inequalities For Variances

The C̆ebyšev’s integral inequality for synchronous (asynchronous) mappings, Hölder’s
integral inequality and Grüss’s integral inequality have been applied to obtain estimation of
variances for gamma random variables. We start with the following result:

Theorem 3.15. Let the r.v.’s X  Ga  b and Z  Ga − 1. Denote the variances of
r.v.’s X and Z by VX  EX2 − EX2 and VZ  EZ2 − EZ2, respectively. Then, if
a − 1b − 1 ≥ ≤ 0,

Γa  bVX − Γa − 1Γb − 1VZ ≥ ≤a − 1ΓaΓb − 1 − a  bΓa  b  1 3.25

Proof. We consider (3.6)
EXr

EZr ≥ ≤
Γa − 1Γb − 1

Γa  b , r  1,2, ...

and choosing r  2. On rewriting E. in terms of V(.), we get

VX  E2XΓa  b ≥ ≤VZ  E2ZΓa − 1Γb − 1. 3.26

Now, since X and Z are gamma r.v.’s with parameters a  b and a − 1, respectively,
EX  a  b, and EZ  a − 1. On substituting these values in (3.26), we reach at the desired
inequality (3.25).



Another inequality for the coefficients of variation of r.v.’s X and Z follows immediately
from this theorem as:

Corollary 3.16. Denoting coefficients of variation of the r.v. X and Z by CVX and CVZ
where CV.  V.

E. , the inequalities for CV(X) and CV(Z) is
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1  CV2X
1  CV2Z

≥ ≤ a − 1ΓaΓb − 1
a  bΓa  b  1 . 3.27

according as a − 1b − 1 ≥ ≤ 0.

Proof. From (3.26), we have

VX
E2X

 1
VZ
E2Z

 1
≥ ≤ Γa − 1Γb − 1

Γa  b  E2Z
E2X

.

Since EX  a  b, and EZ  a − 1, we reach at (3.27) and hence the corollary.


The following result also holds for variances of two gamma r.v.’s [14]:

Theorem 3.17. Let the r.v.’s U  Gp and Y  Gm  k. Denote the variances of r.v.’s U
and Y by VU  EU2 − EU2 and VY  EY2 − EY2, respectively. Then, if k
p − m − k ≥ ≤ 0,

ΓpΓmVU − Γp − kΓm  kVY ≥ ≤ m  kΓp − kΓm  k  1 − pΓmΓp  1. 3.28

Proof. We consider inequality (3.11)

ΓpΓmEUr ≥ ≤Γp − kΓm  kEYr, r  1,2, ...

and choose r  2. Rewriting E. in terms of V., we obtain

VU  E2UΓpΓm ≥ ≤VY  E2YΓp − kΓm  k. 3.29

Now substituting EU  p and EY  m  k in the above expression (3.29), we reach at
the desired inequality (3.28).

Another estimation for the coefficients of variation of r.v.’s U and Y follows from this
theorem as :

Corollary 3.18. Denoting coefficients of variation of the r.v. U and Y by CVU and CVY
where CV.  V.

E. , the inequality for CVU and CVY, for kp − m − k ≥ ≤ 0, is

1  CV2U
1  CV2Y

≥ ≤ m  kΓm  k  1Γp − k
pΓmΓp  1 . 3.30

Proof. Rewriting (3.29) as
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VU
E2U

 1
VY
E2Y

 1
≥ ≤ Γm  kΓp − k

Γm  qΓp  n 
E2Y
E2U

,

and since EU  p, EYm  k, we prove the corollary.


The following inequality using properties of gamma functions also holds for variances of
gamma r.v.’s [6]:

Theorem 3.19. Let the r.v.’s U  Gax  by and V  Gx be as above. Denote the
variances of r.v.’s U and V by VarU  EU2 − EU2 and VarV  EV2 − EV2,
respectively. Then,

Γax  byVarUa  E2Ua ≤ ΓaxΓbyVarV  x2a. 3.31

Proof. We consider the inequality (3.13). Choose r  2 and rewrite E. in terms of Var..
On substituting EV  x in (3.13), we reach at the desired inequality (3.31).


Finally, we can also state another inequality for the variances of two gamma r.v ′s:

Theorem 3.20. Let the r.v.’s V  Gx  y  m and Z  Gy  m be as above. Denote the
variances of r.v.’s V and Z by VarV  EV2 − EV 2and VarZ  EZ2 − EZ2,
respectively. Then,

VarV  x  y  m2

VarZ  y  m2 ≥ Γx  mΓy  m
Γx  y  m . 3.32

Proof. We consider the inequality (3.18), choose r  2 and rewrite E. in terms of Var..
On substituting EV  x  y  m, and EZ  y  m, in (3.18), we prove the theorem.
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