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Abstract
Some inequalities for beta and gamma functions, using fundamental inequalities, such as
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1. INTRODUCTION
We follow Weierstrass [8,p.9] in defining the function Γz:

1
Γz  1

Γz zez

n1


 1  z

n exp − z
n , 1.1

in which  is Euler’s constant, i.e.,  
n→
lim Hn − logn and Hn 

k1

n
∑ 1

k .
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Also is known that the function Γz in (1.1) is identical with the Euler’s integral, i.e.,

Γz 
0



 tz−1e−tdt,Rez  0. 1.2

Further it is known that [8, p. 11]:

Γz  1
z

n1


 1  1

n
z

1  z
n

−1 , 1.3

which is the Euler’s product for Γz. Note that for real x  0,Γx  0.

An important functional identity for Γ is [8, p. 12]:
Γz  1  zΓz, 1.4

which, in particular, gives
Γm  1  m!, 1.5

for any positive integer m.

Some other important properties of Γ mappings [8, p.21] are:
ΓzΓ1 − z  

2z−1n2
, 1.6

where z is non-integral.

We have Legendre’s duplication formula [8, p. 244],

Γ2z  2


ΓzΓ z  1
2 , 1.7

and

Γ3z  1
2 33z− 1

2 ΓzΓ z  1
3 Γ z  2

3 , 1.8

also
Γz 

k→
lim 1.2.3...k

zz  1...z  k k2, 1.9

where z ≠ 0,−1,−2, ... [8, p. 244].

Finally, we have the Gauss multiplication theorem [8, p. 26]:

s1

k
 Γ z   − 1

k  2
1
2 k−1k 1

2 −kzΓkz. 1.10

We define the beta function [8, p. 18]:

Bp,q 
0

1

 tp−11 − tq−1dt,Rep  0,Req  0. 1.11
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Another useful form for this function obtained by putting t  min2  is:

Bp,q  2
0


2

 min
2p−1

cos2q−1d,Rep  0,Req  0. 1.12

The connection between Γ and B is given by:

Bp,q  ΓpΓq
Γp  q , 1.13

for Rep  0 and Re q  0.

Some other functional properties of Beta and Gamma mappings are [8, p. 31]:
pBp,q  1  qBp  1,q, 1.14

Bp,q  Bp  1,q  Bp,q  1, 1.15
p  qBp,q  1  qBp,q, 1.16
Bp,qBp  q, r  Bq, rBq  r,p, 1.17

For other properties of the mappings of the Euler’s beta, reference is made to the Chapter 2
of the classical book by E.D. Rainville [8].

The main aim of this survey paper is to point out some inequalities for beta and gamma
mappings in the case when p, q, z are positive real numbers by using some fundamental
inequalities such as: C̆ebyšev’s integral inequality or synchronous (asynchronous) mappings,
Hölder’s integral inequality and Grüss integral inequality.

2. Inequalities via C̆ebys̆ev’s Integral Inequality

We start with the following result [2]:

Theorem 2.1. Let m, n, p, and q be positive real numbers, such that
p − mq − n ≤ ≥ 0. Then,

Bp,qBm,n ≥ ≤Bp,nBm,q, 2.1

and
Γp  nΓq  m ≤ ≥Γp  qΓm  n. 2.2

Proof. Define the mappings : f , g , h : 0,1 → 0,, given by
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fx  xp−m, gx  1 − xq−n and hx  xm−11 − xn−1. 2.3

As p − mq − n ≤ ≥0, the mappings f and g are the same (opposite) monotonic on
0,1 and h is non-negative on 0,1.

Applying the well known C̆ebys̆ev’s integral inequality for synchronous (asynchronous)
mappings [5] , i.e.,


a

b
hxdx 

a

b
hxfxgxdx ≥ ≤ 

a

b
hxfxdx 

a

b
hxgxdx, 2.4

according as p − mq − n ≤ (≥ 0, we can write the inequality


0

1
xm−11 − xn−1dx 

0

1
xm−11 − xn−1xp−m1 − xq−ndx ≥ ≤


0

1
xm−11 − xn−1xp−mdx 

0

1
xm−11 − xn−11 − xq−ndx,

i.e.,


0

1
xm−11 − xn−1dx 

0

1
xp−11 − xq−1dx ≥ ≤


0

1
xp−11 − xn−1dx 

0

1
xm−11 − xq−1dx. 2.5

Now using (1.11), the inequality (2.1) is proved.


The inequality (2.2) is established from (2.1) by taking into account (1.13) that

Bp,q  ΓpΓq
Γp  q ,

for all p,q  0. We shall omit the details.

The following interesting corollaries from Theorem 2.1 may be noted as well:

Corollary 2.2. Let p,m  0. Then, we have the inequalities
Bp,pBm,m ≤ B2p,m, 2.6

and
Γ2p  m ≤ Γ2pΓ2m. 2.7

Proof. In the above theorem 2.1, if we choose q  p, and n  m, we have
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p − mq − n  p − m2 ≥ 0, and thus,

Bp,pBm,m ≤ Bp,mBm,p

which proves the inequality (2.6).The inequality (2.7) follows from (2.6) through (1.13).


Corollary 2.3. For two positive real numbers u, v  0, the geometric mean of Γ(u) and
Γ(v) is greater than or equal to Γarithmetic mean of u and v).

By setting 2p  u and 2m  v in (2.7), we obtain
Γ u  v

2  ≤ ΓuΓv ,

and hence, the corollary.

We continue with the following theorem [6]:

Theorem 2.4. Let m, p, and k be real numbers with m, p  0, and p  k  −m. Then, if k
p − m − k ≥ ≤ 0, we have

Γp Γm ≥ ≤ Γp − k Γm  k, 2.8

and
Bp,m ≥ ≤ Bp − k,m  k. 2.9

Proof. Define the mappings
fx  xp−k−m, gx  xk and hx  xm−1e−x, 2.10

for x ∈ 0,. As the mappings f and g are similarly (oppositely) ordered and h is
non-negative, we apply the well known C̆ebys̆ev’s integral inequality for synchronous
(asynchronous) mappings , i.e., the inequality (2.4). Then, for kp − m − k ≥ ≤ 0, we can
write the inequality


0


xm−1e−xdx 

0


xp−k−mxkxm−1e−xdx ≥ ≤


0


xp−k−mxm−1e−xdx 

0


xkxm−1e−xdx, 2.11

i.e.,


0


xm−1e−xdx 

0


xp−1e−xdx ≥ ≤ 

0


xp−k−1e−xdx 

0


xmk−1e−xdx,

hence, the inequality (2.8).

On the other hand, since
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Bp,m  ΓpΓm
Γp  m and Bp − k,m  k  Γp − kΓm  k

Γp  m ,

we deduce the inequality (2.9) from (2.8).


The following corollaries arise from Theorem 2.4 and may be noted as well:

Corollary 2.5. Let p  0 and q ∈ R with ∣ q ∣ p. Then , we have the inequalities
Γ2p ≤ Γp − q Γp  q, 2.12

and
Bp,p ≤ Bp − q,p  q. 2.13

Proof. In the above Theorem 2.4, if we choose m  p, and q  k, we have
kp − m − k ≤ 0, and thus, the inequality (2.12) is proved.


The inequality (2.13) follows from (2.9).

Corollary 2.6. Let p and q be as above. Then, the geometric mean of Γp  q and
Γp − q is greater than Γarithmetic mean of p  q and p − q.

Proof. From (2.12), we have

Γp  Γ p − q  p  q
2  ≤ Γp − qΓp  q , 2.14

and hence, the corollary.


Let us consider the following definition :

Definition 2.7. The positive real numbers a and b will be called similarly ( oppositely )
unitary, if a − 1b − 1 ≥ ≤ 0.

We now prove the following theorem:

Theorem 2.8. Let a,b  0 be similarly ( oppositely ) unitary. Then, we have the
inequalities

Γa  b ≥ ≤ ab Γa Γb, 2.15

and
Ba,b ≤ ≥ 1

ab . 2.16

Proof. Define the mappings
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ft  ta−1, gt  tb−1 and ht  te−t, 2.17

for t ∈ 0,. As the mappings f and g are similarly (oppositely) ordered and h is
non-negative, by applying the well known C̆ebys̆ev’s integral inequality for synchronous
(asynchronous) mappings , i.e.,


l

u
htdt 

l

u
htftgtdt ≥ ≤ 

l

u
htftdt 

l

u
htgtdt,

for a − 1b − 1 ≥ ≤ 0, we can write the inequality


0


te−tdt 

0


tab−1e−tdt ≥ ≤ 

0


tae−tdt 

0


tbe−tdt, 2.18

i.e.,
Γ2 Γa  b ≥ ≤ Γa  1 Γb  1.

Now using the functional identities (1.4) and (1.5) of Γ, we have
Γa  1 Γb  1

Γ2  ab Γa Γb,

and hence, the inequality (2.15).

On the other hand, since Ba,b  ΓaΓb
Γab , we obtain the inequality (2.16) from (2.15).



The following interesting corollaries may also be seen from Theorem 2.8:

Corollary 2.9. The mapping ln Γ is superadditive on the interval 1,.

Proof. For every a,b ∈ 1, in Theorem 2.8, we have from (2.15)
lnΓa  b ≥ lna  lnb  lnΓa  lnΓb ≥ lnΓa  lnΓb, 2.19

and hence, the corollary 2.9.


Corollary 2.10. Let a and b be as above. Then, it follows from (2.19) that the arithmetic
mean of ln Γa and ln Γb has the upper bound ln Γa  b 1

2 .

Corollary 2.11. For every n ∈ N,n ≥ 1 and a  0, we have
Γna ≥ n − 1! a2n−1 Γan. 2.20

Proof. We can write from (2.15)
Γ2a ≥ a2 Γa Γa

Γ3a ≥ 2 a2 Γ2a Γa

........................................
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Γna ≥ n − 1! a2 Γn − 1a Γa.

By multiplying these inequalities, we reach at (2.20).


Corollary 2.12. For all a  0,we obtain

Γa ≤ 22a−1

 a2 Γa  1
2 . 2.21

Proof. We refer to the identity [4, p. 45]:
22a−1 Γa Γa  1

2    Γ2a, a  0.

Since Γ2a ≥ a2 Γ2a, we reach at
22a−1 Γa Γa  1

2  ≥  Γ2a, a  0,

and hence, the desired inequality (2.21).


3. Inequalities via Hölder’s Inequality

We now prove the following result for gamma functions [5]:

Theorem 3.1. Let a,b ≥ 0 with a  b  1 and x,y  0. Then,
Γax  by ≤ Γxa Γyb, 3.1

implying, that the mapping Γ is logarithmically convex on 0,).

Proof. Define the non-negative mappings f, g and h given by
ft  tax−1, gt  tby−1 and ht  e−t, for t ∈ 0,. 3.2

Denote by p  1
a and q  1

b . Then p ≥ 1 and 1
p  1

q  1. Now applying the Hölder’s
integral inequality for p and q as above, we can write


l

u
ftgthtdt ≤ 

l

u
ft 1

a htdta 
l

u
gt 1

b htdtb, 3.3

i.e.,


0


tax−1by−1e−tdt ≤ 

0


tx−1e−tdta

0


ty−1e−tdtb,

and hence, the inequality (3.1), which implies that the mapping Γ is logarithmically convex on
0,.



Remark 3.2. Γ being logarithmically convex on 0, is obviously convex on 0,.
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We now prove the following theorems for beta functions:

Theorem 3.3. The mapping B is logarithmically convex on 0,2 as a function of two
variables.

Proof. Let p,q, m,n ∈ 0,2 and a,b ≥ 0, with a  b  1. Then
Bap,q  bm,n  Bap  bm,aq  bn

 
0

1
tapbm−11 − taqbn−1dt  

0

1
tap−1bm−11 − taq−1bn−1dt

 
0

1
tp−11 − tq−1atp−11 − tq−1bdt. 3.4

Define the non-negative mappings

ft  tp−11 − tq−1a, gt  tm−11 − tn−1b and ht  1,

for p  1
a , q  1

b ,  1
p  1

q  1 and p ≥ 1.

Now applying the Hölder’s integral inequality (3.3), we have


0

1
tp−11 − tq−1atp−11 − tq−1bdt

≤ 
0

1
tp−11 − tq−1dta

0

1
tm−11 − tn−1dtb, 3.5

and, thus, from (1.11)
Bap,q  bm,n ≤ Bp,qa Bm,nb, 3.6

which shows the logarithmic convexity of B on 0,)2.


Now the following result on the logarithmic derivative of the Γ function [3]:

Theorem 3.4. Define the mapping  : 0, → 0, , given by x  Γ
′
x

Γx and called
it the logarithmic derivative of the Γ function. Then,  is monotonic non-decreasing and
concave on 0,).

Proof. In Theorem 3.1, we have proved that Γax  by ≤ Γxa Γyb, where x,y  0
and a,b ≥ 0 with a  b  1, which shows that the mapping ln Γ is convex. From this result
follows that its derivative is monotonic non-decreasing. Further, since d

dt lnΓt 
Γ
′
t

Γt  t, t  0, the monotonicity of  is proved.

To prove the concavity of , we use the following known representation of  [4, p. 21]:
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x    
0

1 1 − tx−1

1 − t dt

for x  0 , where  is the Euler’s constant.

Now, let x,y  0 and a,b ≥ 0 with a  b  1. Then

ax  by    
0

1 1 − taxby−1

1 − t dt  
0

1 1 − tax−1by−1

1 − t dt.

As the mapping R  x  ax ∈ 0, is convex for a ∈ 0,1, we have
tax−1by−1 ≤ atx−1  bty−1, for t ∈ 0,1, x,y  0.

Thus,


0

1 1 − taxby−1

1 − t dt ≥ 
0

1 1 − atx−1  bty−1
1 − t dt

 
0

1 a1 − tx−1  b1 − ty−1
1 − t dt  a 

0

1 1 − tx−1

1 − t dt  b 
0

1 1 − ty−1

1 − t dt

 aax  by    bax  by    ax  by  ,

from where follows the concavity of the mapping .


We now present the following for gamma functions [7]:

Theorem 3.5. For m  0 and x,y ≥ 0,
Γm Γx  y  m ≥ Γx  m Γy  m, 3.7

implying, that the mapping Γm is supremultiplicative on 0,, where

Γmz  Γz  m
Γm . 3.8

Proof. Define the mappings ft  tx and gt  ty, which are monotonic non-decreasing
on 0,) and ht  tm−1e−t, non-negative on 0,, for t ∈ 0,.

Now applying the C̆ebys̆ev’s integral inequality for f and g with the weight h, we can write


0


tm−1e−tdt 

0


txym−1e−tdt ≥ 

0


txm−1e−tdt 

0


tym−1e−tdt, 3.9

and hence, the inequality (3.7) and the desired result that the mapping Γm is
supremultiplicative on 0,.

Using (3.8), the inequality (3.7) can be expressed in terms of the mapping Γm as
Γmx  y ≥ ΓmxΓmy. 3.10
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4. Some Properties of the Mapping la,b

Let a,b  0 and la,b : 0,1 → R, la,bx  xa1 − xb. Then
la,b
′
x  xa−11 − xb−1a − a  bx, 4.1

ma,b : inf
x∈a,b

la,bx  0, 4.2

and

Ma,b : sup
x∈a,b

la,bx  la,b a
a  b  

aabb

a  bab . 4.3

Also, we have

‖la,b‖  aabb

a  bab ,a,b  0, 4.4

‖la,b‖  Ba  1,b  1,a,b  0, 4.5
and

‖la,b‖p  Bpa  1, pb  1 1
p ,p  1,a,b  0. 4.6

Now observe that
‖la,b

′
x‖ ≤ xa−11 − xb−1 ∣ a − a  bx ∣

≤ maxa,bla−1,b−1x,a,b  0,x ∈ 0.1.

Then we have the estimations

‖la,b
′ ‖  maxa,b a − 1a−1b − 1b−1

a  b − 2ab−2 , if a,b  1, 4.7

‖la,b
′ ‖1  maxa,bBa,b, if a,b  0, 4.8

‖la,b
′ ‖p  maxa,bBpa − 1  1, pb − 1  1 1

p , if p  1 and a,b  1 4.9.

Now let observe that
la,b
′′
x  la−1,b−1x

′a − a  bx − la−1,b−1xa  b

 la−2,b−2x a − 1 − a − 1  b − 1x − la−1,b−1xa  b
 la−2,b−2x a  bx2 − 2a  b − 1x  a − 1.

Consider the mapping ga,b : 0,1 → R given by
ga,bx : a  bx2 − 2a  b − 1x  a − 1.

We have
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ga,b0  a − 1 and ga,b1  1 − b.

If a  1,b  1, then ga,b has a solution on the interval 0,1 and other one in 1,. Also
the coordinates of the vertices are

xv 
2a  b − 1

2a  b  a  b − 1
a  b  1,

yv  − b2  ab − a − b  1
a  b  −b − 1  1

a  b .

Consequently
∣ ga,bx ∣≤ maxga,ba,∣ yv ∣  maxa − 1,b − 1  1

a  b   maxa,b  1
a  b  − 1,

and then we get
‖la,b

′′
x‖ ≤ maxa,b  1

a  b  − 1 la−2,b−2x, a,b  1, x ∈ 0,1. 4.10

If a,b  2, we have

‖la,b
′′ ‖ ≤ maxa,b  1

a  b  − 1 a − 2b−2b − 2b−2

a  b − 4ab−4 . 4.11

From (4.10), if a,b  1, we get
‖la,b

′′ ‖1 ≤ maxa,b  1
a  b  − 1 Ba − 1,b − 1, 4.12

and, if a,b  2,
‖la,b

′′ ‖p ≤ maxa,b  1
a  b  − 1 Bpa − 2  1,pb − 2  1 1

p . 4.13

5. Grüss’s Integral Inequality and Beta and Gamma
Mappings

Grüss (1935) established an integral inequality which provides an estimation for the
integral of a product in terms of the product of integrals [5, p. 296]. We provide the inequality
with its proof in the following lemma:

Lemma 5.1. Let f and g be two functions defined and integrable on a,b. If
 ≤ fx ≤ , ≤ gx ≤ Γ, for each x ∈ a,b, 5.1

where ,, and Γ are given real constants, then
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∣ 1
b − a a

b
fxgxdx − 1

b − a a

b
fxdx  1

b − a a

b
gxdx ∣

≤ 1
4  − Γ − , 5.2

and the constant 1
4 is the best possible.

Proof. Let us note that the following equality is valid :
1

b − a a

b
fxgxdx − 1

b − a a

b
fxdx 1

b − a a

b
gxdx

 1
2b − a2 a

b 
a

b
fx − fygx − gydxdy.

Applying Cauchy-Buniakowski-Schwartz’s integral inequality for double integrals, we
have

 1
2b − a2 a

b 
a

b
fx − fygx − gydxdy2

≤ 1
2b − a2 a

b 
a

b
fx − fy2dxdy 

1
2b − a2 a

b 
a

b
gx − gy2dxdy

  1
b − a a

b
f2xdx −  1

b − a a

b
fxdx2 

 1
b − a a

b
g2xdx −  1

b − a a

b
gxdx2 5.3

The following equality also holds :
1

b − a a

b
f2xdx −  1

b − a a

b
fxdx2

  − 1
b − a a

b
fxdx 1

b − a a

b
fxdx −  −

1
b − a a

b
 − fxfx − dx.

Since by (5.1),  − fxfx −  ≥ 0, for each x ∈ a,b, we have
1

b − a a

b
f2xdx −  1

b − a a

b
fxdx2 ≤

 − 1
b − a a

b
fxdx 1

b − a a

b
fxdx − , 5.4

and
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1
b − a a

b
g2xdx −  1

b − a a

b
gxdx2 ≤

Γ − 1
b − a a

b
gxdx 1

b − a a

b
gxdx − . 5.5

Now from (5.3) through (5.5),

∣ 1
b − a a

b
fxgxdx − 1

b − a a

b
fxdx 1

b − a a

b
gxdx ∣

≤  − 1
b − a a

b
fxdx 1

b − a a

b
fxdx − 

Γ − 1
b − a a

b
gxdx 1

b − a a

b
gxdx − . 5.6

Using the elementary inequality for real numbers 4pq ≤ p  q2, p,q ∈ R, we can state
that

4 − 1
b − a a

b
fxdx 1

b − a a

b
fxdx −  ≤  − 2, 5.7

and

4Γ − 1
b − a a

b
gxdx 1

b − a a

b
gxdx −  ≤ Γ − 2. 5.8

Combining (5.6) with (5.7) and (5.8), we prove the lemma.


Now the following application of the Grüss integral inequality for the beta mappings holds
[1]:

Theorem 5.2. Let m,n,p and q  0. Then holds the inequality for the beta mappings
∣ Bm  p  1,n  q  1 − Bm  1,n  1Bp  1,q  1 ∣

≤ 1
4  ppqq

p  qpq  mmnn

m  nmn . 5.9

Proof. Consider the mappings
lm,nx  xm1 − xn, lp,qx  xp1 − xq,x ∈ 0,1. 5.10

Then from (4.3),we have
0 ≤ lm,nx ≤ mmnn

m  nmn ,x ∈ 0,1,

and

0 ≤ lp,qx ≤ ppqq

p  qpq ,x ∈ 0,1.
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Applying the Gruss’s integral inequality for the mappings lm,nx and lp,qx , we get

∣ 
0

1
lmp,nqxdx − 

0

1
lm,nxdx  

0

1
lp,qxdx ∣

≤ 1
4  ppqq

p  qpq  mmnn

m  nmn ,

which is exactly the desired inequality (5.9).


Another estimation for Euler’s beta function is obtained as [1]:

Theorem 5.3. Let p,q  0. Then, we have the inequality
∣ Bp  1,q  1 − 1

p − 1q − 1 ∣≤
1
4 , 5.11

or, equivalently

max0, 3 − pq − p − q
p − 1q − 1  ≤ Bp − 1,q − 1 ≤ pq  p  q  5

p − 1q − 1 . 5.12

Proof. Consider the mappings
fx  xp, gx  1 − xq,p,q  0. 5.13

Then

0 ≤ fx ≤ 1, 0 ≤ gx ≤ 1,
0

1
fxdx  1

p  1 ,
0

1
gxdx  1

q  1 .

Using the Grüss’s integral inequality for fx and gx, we reach at

∣ 
0

1
fxgxdx − 

0

1
fxdx  

0

1
gxdx ∣≤ 1

4 ,

which is equal to (5.11). The second inequality (5.12) follows from (5.11) by simple
computation.


Remark 5.4. Taking into account that Bp,q  Γpq

ΓpΓq , the inequality (5.11) can be
written as

∣ Γp  q  2
Γp  1Γq  1 −

1
p  1q  1 ∣≤

1
4 ,

and as Γp  1  p  1Γp, Γq  1  q  1Γq, we deduce
∣ Γp  q  2 − ΓpΓq ∣≤ 1

4 Γp  1Γq  1. 5.14

From (5.12), we obtain
max0,3 − pq − p − qΓpΓq ≤ Γp  q  2 ≤ pq  p  q  5ΓpΓq. 5.15
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The weighted version of Grüss integral inequality states that if
m1 ≤ f1x ≤ M1,m2 ≤ f2x ≤ M2 for all x ∈ a,b,

and h : a,b → 0, is integrable, then

∣ 
a

b
hxdx 

a

b
hxf1xf2xdx − 

a

b
hxf1xdx 

a

b
hxf2xdx ∣

≤ 1
4 M1 − m1M2 − m2

a

b
hxdx2, 5.16

and using (5.16) we can state the following:

Theorem 5.5. Let m,n,p,q  0 and r, s  −1. Then we have
∣ Br  1, s  1Bm  p  r  1,n  q  s  1 − Bm  r  1,n  s  1

Bp  r  1,q  s  1 ∣ ≤ 1
4  ppqq

p  qpq  mmnn

m  nmn  B2r  1, s  1. 5.17

The proof follows from the inequality (5.16) by letting
hx  lr,sx, f1x  lm,nx, f2x  lp,qx.

Now applying the same inequality (5.16) but to the mappings
hx  lr,sx, f1x  xp, f2x  1 − xq,

we deduce the following generalization:

Theorem 5.6. Let p,q  0 and r, s  −1. Then holds the inequality
∣ Br  1, s  1Bp  r  1,q  s  1 − Br  1,q  s  1Bp  r  1, s  1 ∣

≤ 1
4  B2r  1, s  1. 5.18

6. C̆ebys̆ev’s Type Inequalities and Beta and Gamma
Mappings

The following results are interesting to note from the C̆ebys̆ev’s type inequalities:

Theorem 6.1. Let m,n,p,q  1 and r, s  −1. Then we have the inequality
∣ Br  1, s  1Bm  p  r  1,n  q  s  1 − Bm  r  1,n  s  1Bp  r  1,q  s  1 ∣

≤ M
′ p,qM

′ m,nBr  3, s  1Br  1, s  1 − B2r  2, s  1, 6.1
where

16



M
′ p,q  maxp,q  p − 1p−1q − 1q−1

p  q − 2pq−2 , p,q  1.

Proof. Recall the following inequality generalizing C̆ebys̆ev’s inequality:

∣ 
a

b
hxdx 

a

b
hxf1xf2xdx − 

a

b
hxf1xdx 

a

b
hxf2xdx ∣

≤ ∥ f ′ ∥ ∥ g ′ ∥ 
a

b
x2hxdx 

a

b
hxdx − 

a

b
xhxdx2, 6.2

provided that hx  0 and f ′ ,g ′ are differentiable and noticing that the first derivatives are
bounded on a,b.

Now applying the above inequality to the following mappings:
hx  lr,sx, f1x  lm,nx, f2x  lp,qx

and taking into account
∥ lm,n

′ ∥ ≤ M
′ m,n, ∥ lp,q

′ ∥ ≤ M
′ p,q,

for all m,n,p,q  1, we deduce the desired inequality ( 6.1).


The following particular case also holds good:

Corollary 6.2. Let m,n,p,q  1. Then holds the inequality
∣ Bm  p  1,n  q  1 − Bm  1,n  1Bp  1,q  1 ∣≤ M

′ p,qM
′ m,n. 6.3

The proof follows from (6.1) on choosing r  s  0.

Another result on beta mapping follows as:

Theorem 6.3. Let p,q  1 and r, s  −1. Then
∣ Br  1, s  1Bp  r  1,q  s  1 − Bp  r  1, s  1Br  1,q  s  1 ∣
≤ pqBr  3, s  1Br  1, s  1 − B2r  2, s  1. 6.4

Proof. Consider the mappings
hx  lr,sx, fx  xp, gx  1 − xq.

Then
f ′x  pxp−1, g ′x  −q1 − xq, ∥ f ′ ∥  p, ∥ g ′ ∥  q.

17



Applying the inequality (6.2) to the mappings h, f,g as above, we can state that

∣ 
0

1
lr,sxdx 

0

1
lrp,sqxdx − 

0

1
lrp,sxdx 

0

1
lr,sqxdx ∣

≤ pq
0

1
lr,sxdx 

0

1
lr2,sxdx − 

0

1
lr1,sxdx2,

which is equivalent to (6.4).


The following corollary for the beta mapping is interesting:

Corollary 6.4. Let p,q  1. Then from (6.4) by letting r  s  0, we have the inequality
∣ Bp  1,q  1 − 1

p  1q  1 ∣≤
pq
12 . 6.5

Note that the above inequality is equivalent to

max0, 11 − p2q2 − p2q − pq2 − pq
12p  1q  1 

≤ Bp  1,q  1

≤ 1  p2q2  p2q  pq2  pq
12p  1q  1 , p,q  1. 6.6

Further, the inequality (6.5) is equivalent to the following one for the gamma mapping:
∣ Γp  q  2 − ΓpΓq ∣≤ pq

12 Γp  1Γq  1. 6.7

7. Some Other Inequalities for Beta Mappings
The following inequality for beta mappings is based on the Grüss integral inequality:

Theorem 7.1. Let m,n  1 and p,q  0. Then

∣ Bm  p  1,n  q  1 − Bm  1,n  1Bp  1,q  1 ∣

≤

M
′ m,nBp  1,q  1

 2
12 

1
 M

′ m,nBp  1,q  1
1
 , if  1, 1

  1
  1; 7.1

1
3 M

′ m,n ppqq

pqpq

where

M
′ m,n  maxm,n  m − 1m−1n − 1n−1

m  n − 2mn−2 , m,n  1.
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Proof. We use the following inequality [3] which says: if f is differentiable on a,b, then

∣ 1
b − a a

b
fxgxdx − 1

b − a a

b
fxdx  1

b − a a

b
gxdx ∣

≤

∥ f ′ ∥ ∥ g ∥1 , provided g ∈ L1a,b, f ′ ∈ La,b
 2
12 

1
 b − a 1

 ∥ f ′ ∥ ∥ g ∥ , provided g ∈ La,b, f ′ ∈ La,b,  1, 1
  1

  1
b−a
3 ∥ f ′ ∥ ∥ g ∥ , provided f ′ ,g ∈ La,b

Now we choose the mappings
fx  lm,nx, gx  lp,qx, x ∈ 0,1,

and then

∣ 
0

1
lmp,nqxdx − 

0

1
lm,nxdx  

0

1
lp,qxdx ∣

≤

∥ lm,n
′ ∥ ∥ lp,q ∥1 , m,n  1, p,q  0

 2
12 

1
 ∥ lm,n

′ ∥ ∥ lp,q ∥ , m,n  1, p,q  0,  1, 1
  1

  1
1
3 M ′

m,n ∥ lp,q ∥ , m,n  1, p,q  0

≤

M ′
m,nBp  1,q  1 , m,n  1, p,q  0

 2
12 

1
 M ′

m,nBp  1,q  1  1
q , m,n  1, p,q  0,  1, 1

  1
  1

1
3 M ′

m,n ppqq

pqpq , m,n  1, p,q  0

We also prove the following inequality for beta mappings:

Theorem 7.2. Let m,n  1 and p,q  0. Then
∣ Bp  1,q  1 − 1

p1q1 ∣

≤

p
q−1 , m,n  1, if p  1,q  −1

 2
12 

1


p

21
1


, p  1, q  0,  1, 1
  1

  1 7.3

1
3 p, p  1, q  0

Proof. Consider the mappings
fx  xp,gx  1 − xq.

We note that
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f ′x  pxp−1,∥ f ′′ ∥ pp  1,∥ g ∥1  
0

1
1 − xqdx  1

q − 1 q  −1,

∥ g ∥  
0

1
1 − xqdx

1
   1

q  1 
1
 ,∥ g ∥  1q  0.

Now applying the inequality (7.2) for the above mappings, we deduce the desired
inequality (7.3).

The following inequality of Grüss type has been established [1]:

∣ 1
b − a a

b
fxgxdx − 1

b − a a

b
fxdx  1

b − a a

b
gxdx ∣

≤ 1
6 ∥ f ′′ ∥ ∥ g ′′ ∥ b − a, 7.4

provided that f ′ ∈ La,b and g ′ ∈ La,b where   1 and 1
  1

  1.


Using inequality (7.4), we can state the following result for the beta mappings:

Theorem 7.3. Let m,n,p,q  0. Then
∣ Bm  p  1,n  q  1 − Bm  1,n  1Bp  1,q  1 ∣

≤ 1
6 maxm,nmaxp,qBm − 1  1, n − 1  1 1

 Bp − 1  1, q − 1  1
1
 , 7.5

where   1, 1
  1

  1.

Proof. The proof follows from (7.4) by choosing
fx  xm1 − xn, gx  xp1 − xq, m,n,p,q  0,

and using the fact that
∥ f ′′ ∥ ≤ maxm,nBm − 1  1, n − 1  1 1

 ,

and
∥ g ′′ ∥ ≤ maxp,q Bp − 1  1, q − 1  1

1
 ,

proved in [1].


Further, we have from [1]
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∣ 1
b − a a

b
fxgxdx − 1

b − a a

b
fxdx  1

b − a a

b
gxdx ∣

≤ 1
6 ∥ f ′′ ∥ ∥ g ′′ ∥1 b − a, 7.6

Using this inequality, we can state another result on the beta mappings:

Theorem 7.4. Let m,n  1 and p,q  0. Then
∣ Bm  p  1,n  q  1 − Bm  1,n  1Bp  1,q  1 ∣

≤ 1
6 maxm,nmaxp,q m − 1m−1n − 1n−1

m  n − 2mn−2 Bp,q. 7.7

Now using (7.4) and (7.6), we can point out the following estimation for the beta
mappings:

Theorem 7.5. The inequalities for beta mappings that hold good:
∣ Bp  1,q  1 − 1

p  1q  1 ∣

≤ 1
6 pq 1

p − 1  1 
1
  1
q − 1  1 

1
 ,  1, 1

  1
  1,p,q  1, 7.8

and
∣ Bp  1,q  1 − 1

p  1q  1 ∣≤
1
6 p, p  1. 7.9

Proof. Choose fx  xp, gx  1 − xq. Then for p,q  1, we note that

∥ f
′
∥  p 1

p − 1  1 
1
 ,∥ g ′ ∥  q 1

q − 1  1 
1
 .

Now using (7.4), we reach at (7.8).

∥ f
′
∥  p 1

p − 1  1 
1
 ,∥ g ′ ∥  q 1

q − 1  1 
1
 .

Further, as ∥ f
′
∥   p and ∥ g ′ ∥1  1, (7.6) gives the inequality (7.9).
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