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Abstract

_Some inequalities for beta and gamma functions, using fundamental inequalities, such as
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1. INTRODUCTION

We follow Weierstrass [8,p.9] in defining the function I'(z):
1 _ 1 2 T z 2z
ro Tt I [+ &E)exp(-5)] @D

n
in which y is Euler’s constant, i.e., y =lim (H, —logn) and Hn =)_ %
k=1

N—oo



Also is known that the function I'(z) in (1.1) is identical with the Euler’s integral, i.e.,

r@) =[ tle'dRez) > 0. (1.2)

0

Further it is known that [8, p. 11]:
roo=+n[(1+3)@+&)"] @3

which is the Euler’s product for I'(z). Note that for real x > 0,I'(x) > 0.

An important functional identity for I" is [8, p. 12]:
I'z+1)=1zu(2), (1.4)

which, in particular, gives
I'm+1) =ml, (1.5)
for any positive integer m.

Some other important properties of I mappings [8, p.21] are:

F(Z)F(l - Z) = ﬁ(ﬂ:z), (16)

where z is non-integral.

We have Legendre’s duplication formula [8, p. 244],

r(2z) = ﬁl‘(z)l‘(z+ %) (1.7)

and

['(32) = %332-%r(z)r(z + %)F(z + %) (1.8)

also

i 1.2.3..k
F@ =im 5ok A9

k—)OO

where z # 0,-1,-2,... [8, p. 244].

Finally, we have the Gauss multiplication theorem [8, p. 26]:

k 1 1
Il r(z+ 21 ) = 1) DkERrkz).  (1.10)
s=1

We define the beta function [8, p. 18]:

1
B(p.q) =| t**(1 - )" dt,Re(p) > O,Re(q) > 0. (1.11)
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Another useful form for this function obtained by putting t = min29 is:

T

2 2p-1
B(p,q) = 2 j min6cos2-1d,Re(p) > O,Re(q) > 0. (1.12)
0

The connection between I" and B is given by:

B.O) = T (L13)

for Re(p) > 0 and Re (q) > O.
Some other functional properties of Beta and Gamma mappings are [8, p. 31]:
PB(p.g+1) =aB(p+1,q), (1.14)
B(p.a) = B(p+1,0)+B(p.a+1), (1.15)
(P+q)B(p,q+1) =0B(p,q),  (1.16)
B(p,q)B(p+0a.r) = B(a,NB(q+r,p), (1L.17)

For other properties of the mappings of the Euler’s beta, reference is made to the Chapter 2
of the classical book by E.D. Rainville [8].

The main aim of this survey paper is to point out some inequalities for beta and gamma
mappings in the case when p, g, z are positive real numbers by using some fundamental
inequalities such as: CebySev’s integral inequality or synchronous (asynchronous) mappings,
Holder’s integral inequality and Griss integral inequality.

2. Inequalities via éebyéev’s Integral Inequality

We start with the following result [2]:

Theorem 2.1. Letm, n, p, and q be positive real numbers, such that
(p-m)(@-n) < (>) 0. Then,

B(p,q)B(m,n) > ()B(p,n)B(m,q),  (2.1)

and
F(p+mI(g+m) < EI(p+gl(m+n). (2.2)

Proof. Define the mappings : f, g, h: [0,1] - [0,), given by



f(x) = xP™, g(x) = (1 —x)%" and h(x) = x™*(1 - x)"1, (2.3)

As (p—m)(q—n) < (=)0, the mappings f and g are the same (opposite) monotonic on
[0,1] and h is non-negative on [0, 1].

Applying the well known Cebysev’s integral inequality for synchronous (asynchronous)
mappings [5] , i.e.,

b b b b
[ hoodx [ hoofeogeadx = ) [ heofegdx [ heogoodx, — (2.4)

according as (p —m)(g —n) <(>) 0, we can write the inequality

1 1
j xm1(1 - x)”‘ldxj XM1(1 — x)™IxPM(1 — x)4"dx > (<)
0 0

1 1
I x™1(1 - x) n‘1x|°‘mdxj X™1(1 - x)"1(1 - x)"dx,
0 0

1 1
f x™1(1 - x)“‘ldxj XPL(1 - x)%tdx > (<)
0 0

[ " xP1(1 - x)™Ldx jl x™L(1-x)*dx.  (2.5)
0 0

Now using (1.11), the inequality (2.1) is proved.

The inequality (2.2) is established from (2.1) by taking into account (1.13) that
I'(p)I'(q)
B 1 = =L N
(J1)) T(p+q)
for all p,q > 0. We shall omit the details.
The following interesting corollaries from Theorem 2.1 may be noted as well:

Corollary 2.2. Let p,m > 0. Then, we have the inequalities
B(p,p)B(m,m) < B?(p,m), (2.6)

and
I'?(p+m) < T(2p)'(2m). 2.7)

Proof. In the above theorem 2.1, if we choose g = p, and n = m, we have



(p—m)(q-n) = (p—m)2> 0, and thus,

B(p,p)B(m,m) < B(p,m)B(m,p)

which proves the inequality (2.6).The inequality (2.7) follows from (2.6) through (1.13).

O

Corollary 2.3. For two positive real numbers u, v > 0, the geometric mean of I'(u) and
I'(v) is greater than or equal to I"(arithmetic mean of u and v).

By setting 2p = uand 2m = v in (2.7), we obtain
F(H54) < JTre),

and hence, the corollary.
We continue with the following theorem [6]:

Theorem 2.4. Let m, p, and k be real numbers withm, p > 0, and p > k > —m. Then, if k
(p-m—k) > (<) 0, we have

[(p) (M) > () T'(p — k) T'(m + k), (2.8)

and
B(p,m) > () B(p-k,m+k). (2.9

Proof. Define the mappings
f(x) = xP* ™ g(x) = x€and h(x) = x™1e™, (2.10)

for x € [0,00). As the mappings f and g are similarly (oppositely) ordered and h is
non-negative, we apply the well known CebySev’s integral inequality for synchronous
(asynchronous) mappings , i.e., the inequality (2.4). Then, for k(p — m —k) > (<) 0, we can
write the inequality

o0 o0
J x™-1e~Xdx J xPk-mykyxm-le=Xdx > (<)
0 0

j ” xpemym-Lexy f Cxkxmlexdx,  (2.11)
0 0

jw xMLa—Xdyx jw xP-la—Xdx > (S) Jmo xP*k-1a—Xdx jw Xm+k_1e_XdX,
0 0 0 0
hence, the inequality (2.8).

On the other hand, since



I'(p—kK)I'(m+ k)
I'(p+m)

B(p,m) = %and B(p-k,m+k) =

we deduce the inequality (2.9) from (2.8).

The following corollaries arise from Theorem 2.4 and may be noted as well:

Corollary 2.5. Letp > 0Oand q € Rwith | g |< p. Then, we have the inequalities
() <Tp-q)Tp+a), (212

and
B(p,p) <B(p-q,p+q). (2.13)

Proof. In the above Theorem 2.4, if we choose m = p, and q = k, we have
k(p —m —Kk) < 0, and thus, the inequality (2.12) is proved.
The inequality (2.13) follows from (2.9).

Corollary 2.6. Let p and g be as above. Then, the geometric mean of I'(p + q) and
I'(p — q) is greater than I'[arithmetic mean of (p + g) and (p —q)].

Proof. From (2.12), we have
rp) ==L 00 < Fp-grprag,  (214)

and hence, the corollary.
Let us consider the following definition :

Definition 2.7. The positive real numbers a and b will be called similarly ( oppositely )
unitary,if (@—-1)(b-1) > (<) 0.

We now prove the following theorem:

Theorem 2.8. Let a,b > 0 be similarly ( oppositely ) unitary. Then, we have the
inequalities
I'A+b) > (=)abTI'(a) I'(b), (2.15)
and
1
B(a,b) < (») b (2.16)

Proof. Define the mappings



f(t) = t&1, g(t) = t>* and h(t) = te ™, (2.17)

fort € [0,0). As the mappings f and g are similarly (oppositely) ordered and h is
non-negative, by applying the well known CebySev’s integral inequality for synchronous

(asynchronous) mappings , i.e.,
f | h(tydt . hOIHgDdt > (<) . h(tyfydt [ . h(g(b)dt,
for (a—1)(b—1) > (<) 0, we can write the inequality
j " tett jw tah-letgt > (<) jw tagtdt j “toetdt,  (2.18)
0 0 0 0

re)r@+hb) > r@+1)rbo+1).

Now using the functional identities (1.4) and (1.5) of I", we have
ra+1)rbo+1)
I'(2)

=abT'(a) I'(b),
and hence, the inequality (2.15).

On the other hand, since B(a,b) = rr(?ié?) , we obtain the inequality (2.16) from (2.15).

O

The following interesting corollaries may also be seen from Theorem 2.8:
Corollary 2.9. The mapping In I' is superadditive on the interval [1, ).

Proof. For every a,b € [1,0) in Theorem 2.8, we have from (2.15)

InT"(@a+b) >Ina+Inb+Inl'(@) + InT'(b) > InT"(a) + InT"(b), (2.19)
and hence, the corollary 2.9.

|

Corollary 2.10. Let a and b be as above. Then, it follows from (2.19) that the arithmetic
mean of In I"(a) and In I"(b) has the upper bound In [I"(a + b)] 7.

Corollary 2.11. Foreveryn € N,n > 1 and a > 0, we have
I'(na) > (n—-1!a2™bd [@)]". (2.20)

Proof. We can write from (2.15)
I'(2a) > a?TI'(a) I'(a)
I'(3a) > 2 a’I'(2a) I'(a)



I'(na) > (n—1)!a?T'[(n-1)a] I'(a).

By multiplying these inequalities, we reach at (2.20).

Corollary 2.12. For all a > 0,we obtain
I'(@) < J_ 22 F(a+ ). (2.21)

Proof. We refer to the identity [4, p. 45]:
2221 T'(a) T'(a + %) = /T T(2a), a > 0.

Since I'(2a) > a2 I'?(a), we reach at
221 () ['(a + %) > Jz ['(2a), a > 0,

and hence, the desired inequality (2.21).

. Inequalities via Hdlder’s Inequality

We now prove the following result for gamma functions [5]:

Theorem 3.1. Leta,b> Owitha+b = 1 and x,y > 0. Then,

[(ax+by) < [T [CYI° (B
implying, that the mapping I" is logarithmically convex on [0,00).

Proof. Define the non-negative mappings f, g and h given by
f(t) = t2a&D g(t) = t°0-D and h(t) = e, fort e [0,0). (3.2)

Denote by p = 4 andq = +. Thenp > 1and + + ¢ = 1. Now applying the Hélder’s

integral inequality for p and g as above, we can write

[ 1ogondt < [f ) Fhodae [f Gy o, (63)

J-oo ta(x_1)+b(y—1)e—tdt < [J'OO tx_le—tdt] a[J"’O ty_le_tdt] b’
0 o 0

and hence, the inequality (3.1), which implies that the mapping I" is logarithmically convex on

[0,0).

O

Remark 3.2. T" being logarithmically convex on [0,0) is obviously convex on [0, o).



We now prove the following theorems for beta functions:

Theorem 3.3. The mapping B is logarithmically convex on [0,00)? as a function of two
variables.

Proof. Let (p,q), (m,n) € [0,00)? and a,b > 0, witha+b = 1. Then
Bla(p,q) + b(m,n)] = B(ap + bm,aq + bn)

_ J.l tap+bm71(1 _ t) aq+bnfldt _ J.l ta(p71)+b(m71)(l _ t) a(qfl)+b(n71)dt
0 0

- [ra-orrrra-yerd. G4
Define the non-negative mappings
f(t) = [tPH(1 - %2, g = " (L -"*]°and h(t) = 1,

forp=4,09=+, (5 +5 =1andp>1).

Now applying the Holder’s integral inequality (3.3), we have
1
| Lt R R S CRLL
1 1
<[] vra-pridge([ ma-pridg,  (35)
0 0

and, thus, from (1.11)
Bla(p,q) + b(m,m] < [B(p,)]* [B(M,n)]°,  (3.6)

which shows the logarithmic convexity of B on [0, )?.

Now the following result on the logarithmic derivative of the I" function [3]:

Theorem 3.4. Define the mapping ¥ : [0,0) —» [0,) , given by W(x) = Fr(—(xx)’ and called
it the logarithmic derivative of the I" function. Then, ¥ is monotonic non-decreasing and
concave on [0, ).

Proof. In Theorem 3.1, we have proved that I'(ax + by) < [['(x)]2 [['(y)]®, where X,y > 0
and a,b > 0 witha + b = 1, which shows that the mapping In I" is convex. From this result
follows that its derivative is monotonic non-decreasing. Further, since %[In re] =

r'ey _ C :
To = Y(1), t > 0, the monotonicity of W is proved.

To prove the concavity of W, we use the following known representation of ¥ [4, p. 21]:



_txl

dt

w0+ - [ s

for x > 0, where v is the Euler’s constant.

Now, letx,y > 0and a,b > Owitha+b = 1. Then
_ 1-— tax+by 1 1- ta(x 1)+b(y-1)
Y(@x+hy)+y = J BT d—f 11
As the mapping R > x — a* € [0, ) is convex for a € (0,1), we have

ta0-D+00-1) < gt 4 ptyL, fort e [0,1], X,y > O.

dt.

Thus,
1 — paxby-1 taX+by— 11— (at*?! + bt¥ 1)
.[ _J.o 1-t at
_ ! a(l—tx‘1)+b(1—ty‘1) 1—t 1y 1—ty1
‘jo 1t dt‘aj bf

= a[VY(ax + by) + y] + b[W¥Y(ax + by) + y] = a¥(x) + b (y) + 7,

from where follows the concavity of the mapping V.

We now present the following for gamma functions [7]:

Theorem 3.5. Form > 0 and x,y > 0,
rm I'x+y+m)>ITXx+m)I(y+m), (3.7)

implying, that the mapping I', is supremultiplicative on [0, ), where

(@) = % (3.8)

Proof. Define the mappings f(t) = t* and g(t) = t¥, which are monotonic non-decreasing
on [0,) and h(t) = t™!e, non-negative on [0, ], fort e [0, ).

Now applying the Cebysev’s integral inequality for f and g with the weight h, we can write

j tm-le-tdt I tx+y+m—le—‘dtzj prem-le-td j pr-letdt (3.9)
0 0 0 0

and hence, the inequality (3.7) and the desired result that the mapping I', is
supremultiplicative on [0, ).

Using (3.8), the inequality (3.7) can be expressed in terms of the mapping I', as
Fn(X+y) = Ta()Cn(y).  (3.10)

10



4. Some Properties of the Mapping lap

Leta,b > 0and lap :[0,1] » R, lap(X) = x3(1 —x)®. Then
LX) = x* 11 -x)"1[a—(a+b)x], (41)

Map = iInf lap(X) =0, (4.2)
xe[a,b]

and
Map = ngl’?)]la,b(x) = lap( aib) = (a‘fg;m . (43)
Also, we have
Masllor = %,a,b >0,  (44)
Ilaplle = B(@a+1,b+1),a,b >0, (4.5)
and

Iapllp = [B(pa+1, pp+1)]7,p>1,ab>0. (4.6)

Now observe that
Nap )| < X311 =%t | a—(a+b)x |

< max<{a,b}la1p-1(x),a,b > 0,x € (0.1).

Then we have the estimations

Iyl = max{a, by B= Db — 1)

(a+b—2)xb2
Ilapll1 = max{a,b}B(a,b), ifa,b >0,  (4.8)
HI;,b”p = max{a,b}[B(p(a-1)+1, p(b-1) + 1)]%, ifp>2landab>1 (4.9).

Jifab>1,  (47)

Now let observe that
lap() = [la1p-100] [a = @+ b)x] — la1p-1()(@ + b)
= lazp2() [a-1-(@-1+b-1)X] - laapa(X)(@+b)
= la2p2(X) [(@+b)Xx2-2(a+b-1)x+a-1].

!

Consider the mapping gap : [0,1) — R given by
Jap(X) == (@+b)x?-2(@+b-1)x+a-1.

We have

11



gap(0) =a—-21and gap(l) = 1-bh.

Ifa> 1,b > 1,then gap has a solution on the interval (0, 1) and other one in (1,). Also
the coordinates of the vertices are

_2@+b-1) a+b-1

Xv= 2(a+b)  a+b <1
_ _b?+ab-a-b+1 _ __ 1
Yv = a+b (b lJra+b)'
Consequently
1

| gap(X) |< max{gap(@),| yv |} =max{a—1,b-1+

+ = max{a,b + al F =1,

a+b +b

and then we get

2500l < [max{a,b + L} =1 lazo2(0, ab > 1, x € (0,1).  (4.10)

Ifa,b > 2, we have
(a—2)"2(b—2)b2

(a+b—4)xb4 (4.1

Mapll < [max{a,b+ ﬁ} ~1]

From (4.10), ifa,b > 1, we get

il < [max{a,b + a-lr =}-11B@-1b-1), (412

and, ifa,b > 2,

Ianllp < Imax{ab+ o) 1] [B(p@-2) + 1,pb-2) + DIF.  (4.13)

5. Griss's Integral Inequality and Beta and Gamma
Mappings
Griss (1935) established an integral inequality which provides an estimation for the

integral of a product in terms of the product of integrals [5, p. 296]. We provide the inequality
with its proof in the following lemma:

Lemma 5.1. Let f and g be two functions defined and integrable on [a, b]. If
Y <f(x) < d,7r <gx) <T, foreach x € [a,b], (5.1)
where W, ®, 7 and I" are given real constants, then

12



1 b
f ——| f
51 [ 000k w2 [ 1000k 1 [ gox |
< %((D—‘P)(F—r), (5.2)
and the constant % is the best possible.

Proof. Let us note that the following equality is valid :

b— j f)g(X)dx — —L— j 0ok j " 9(x)dx

~ 2(b- a)2 j I [f(x) — fF(y)I[9(x) — g(y)]dxdy.

Applying Cauchy-Buniakowski-Schwartz’s integral inequality for double integrals, we
have

1 b b 2
ETE f J {600~ f}{g00 ~ g)y dxdy]
< 2(b a)2 j j £F(x) — f(y)) 2dxdly x
s ). ] 1900~ g} oy
=[(b_a) jafz - (b_a) jaf(x)dx}qx

1 b 2
ey ], 900007 (5.3)
The following equality also holds :
1 b 1 (P
) j f2 Ty jaf(x)olx}2
_ 1 (P g
=[D- (b— ) f(x)dx (b ) af(x)dx Y]

= a)j [® — f()][F(X) — W]dx

Since by (5.1), [® — f(x)][f(x) — ¥] > 0, for each x € [a,b], we have
1 b b
=y j f2 j f00de2 <

f(x)dx

1
NCED

b
[D - j fodx— W],  (5.4)

1
(b— a) (b-a)

and

13



(b E a) J.: g2(x)dx — { ® E 2 j: gx)dx}2 <

b b
J_geoaxr | gwax-71. (55

__1 1
(b-a) (b-a)

Now from (5.3) through (5.5),
| b— j‘ f)g(x)dx — —— I f(x)dx

b
L] g0odx |
<[D-

f(x)dx

=y =y Lf(x)dx—‘P]

b
- i | 9omig Lo [Taod-1. 56

Using the elementary inequality for real numbers 4pq < (p +q)?, p,q € R, we can state
that

4D -

f(x)dx

1 j "f0dx — W] < (@ —W)2,  (5.7)
(b—) —a) a a ’

and

A[T -

_[: g(x)dx][ _[: gx)dx—y] < T -y)2.  (5.8)

1 1
(b-a) (b-a)

Combining (5.6) with (5.7) and (5.8), we prove the lemma.

O

Now the following application of the Griiss integral inequality for the beta mappings holds

[1]:

Theorem 5.2. Let m,n,p and q > 0. Then holds the inequality for the beta mappings
| B((m+p+1n+g+1)-Bm+1,n+1)B(p+1,g+1) |

1 . ppqq . mm™nn
=4 e memrn O

Proof. Consider the mappings
Inn(X) = XL =x)", lpq(x) = xP(1 -x)9,x € [0,1]. (5.10)

Then from (4.3),we have

0 < Imn(x) < %,X € [0,1],

and

P
0= 1ot = B ins

) ,X € [0,1].

14



Applying the Gruss’s integral inequality for the mappings Imn(x) and 1, 4(X) , we get

| I: Impnaq (X)X — J.; Imn(X)dX - I: lp.q(X)dX |

<1, P9t mmp
4 (prgPt (memmn
which is exactly the desired inequality (5.9).

Another estimation for Euler’s beta function is obtained as [1]:

Theorem 5.3. Let p,q > 0. Then, we have the inequality

| B(p+1,q+1)—(p_1)1(q_1) <L, e

or, equivalently

3-pg-p—q 1q_ Pg+p+Qg+5
max {0, (p—l)(q—l)} <B(p-1,q 1)S(p—1)(q—1)' (5.12)

Proof. Consider the mappings
f(x) = xP, g(x) = (1 —x)4,p,q > 0. (5.13)

Then

1 1 1 1
0<f(x)<10<g(x < 1,f0f(x)dx = m’jog(x)dx -5 T

Using the Griss’s integral inequality for f(x) and g(x), we reach at

| ] foogoodx - [ foodx- [ g |< 4,

which is equal to (5.11). The second inequality (5.12) follows from (5.11) by simple
computation.

O

Remark 5.4. Taking into account that B(p,q) = L@ the inequality (5.11) can be

C(pra) '
written as
| F'(p+9+2) _ 1 <l
Fp+DI'(q+1) (p+D(@+1) — 4°

andasT'(p+1) =(p+DLI((p), I'(g+1) = (g+1)I(g), we deduce
| T(p+q+2)-T'(PI(Q) |< %F(p +Dr@@+1). (5.14)

From (5.12), we obtain
max{0,3-pq—-p-qI'(MI(@) <T(P+q+2) <(pg+p+9g+3CEI@).(5.15)

15



The weighted version of Grdss integral inequality states that if
m; < fi1(X) < Mp,m;, < f(X) < M; forall x € [a,b],

and h : [a,b] - (0,%) is integrable, then
b b b b
| j h0odx j _hOOR00R000x - j _h0of100d j _h0ofz00dx |

< %(M1 —m1) (M, — mz)[j: h)dx]2,  (5.16)

and using (5.16) we can state the following:

Theorem 5.5. Let m,n,p,q > 0 and r,s > —1. Then we have
| Br+1,s+1)B(Mm+p+r+1in+gq+s+1)-Bm+r+1n+s+1)

1._pPP@Y . m™" g2
Blp+r+1,q+s+1) |§4 D+ (m+n)™ B(r+1,5s+1). (5.17)

The proof follows from the inequality (5.16) by letting
h(X) = Ir’s(X), fl(x) = Im’n(X), fZ(X) = Ip’q(X)

Now applying the same inequality (5.16) but to the mappings
h(x) = lrs(x), f1(x) = xP, f2(x) = (L —x)9,
we deduce the following generalization:

Theorem 5.6. Let p,q > 0 and r,s > —1. Then holds the inequality
| Br+1,s+1)B(p+r+1,qg+s+1)-B(r+1,g+s+1)B(p+r+1,s+1) |

< %- B2(r+1,s+1). (5.18)

6. Cebyéev’s Type Inequalities and Beta and Gamma
Mappings

The following results are interesting to note from the Cebysev’s type inequalities:

Theorem 6.1. Letm,n,p,q > 1 and r,s > —1. Then we have the inequality
| Br+1,s+1)B(Mm+p+r+in+gq+s+1)-Bm+r+1,n+s+1)B(p+r+1,q+s+1) |

< Moo (p, Mo (m,N[B(r + 3,5+ 1)B(r+ 1,5+ 1) — B2(r + 2,5 + 1)], (6.1)

where
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(p-1P7 Q-1
(p+q-2)ra=

M..(p,q) = max{p,q} - , pa>1

Proof. Recall the following inequality generalizing Ceby3ev’s inequality:

b b b b
| j h(odx Iah(x)fl(x)fz(x)dx— j hGof: (0 j _h0of200dx |

, , b b b
<SIE 0o g Il [ eh0odk [ heodx = (] xhoodo?),  (6.2)

provided that h(x) > 0 and f',g are differentiable and noticing that the first derivatives are
bounded on (a,b).

Now applying the above inequality to the following mappings:
h(x) = lrs(x), f1(X) = Imn(X), f200) = lpq(X)

and taking into account
I mn e < Moo(M,n), | lpgq = < Moo(p, ),
for all m,n,p,q > 1, we deduce the desired inequality ( 6.1).

The following particular case also holds good:

Corollary 6.2. Let m,n,p,q > 1. Then holds the inequality
| BMm+p+1n+q+1)—-Bm+1,n+1BpE+1,q+1) |<M.(pgM.,(m,n). (6.3)

The proof follows from (6.1) on choosingr = s = 0.
Another result on beta mapping follows as:

Theorem 6.3. Letp,q > 1andr,s > —1. Then
| Br+1,s+1)B(p+r+1,g+s+1)-B(p+r+1,s+1)B(r+1,g+s+1) |
< pq[B(r+3,s+1)B(r+1,s+1)-B2(r+2,s+1)]. (6.4)

Proof. Consider the mappings
h(x) = lrs(x), f(x) = xP, g(x) = (1 —x)1.
Then

o) =pxPL g () ==q1-x% [ f e =p, 9 = =0
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Applying the inequality (6.2) to the mappings h, f, g as above, we can state that
1 1 1 1
| _[ . Iy s(x)dx J.O lripsiq(X)dX — _[ . Irips(X)dX IO Irseq(X)dX |

< Pl 105000 [ 120000 = {[ 111150007

which is equivalent to (6.4).

The following corollary for the beta mapping is interesting:

Corollary 6.4. Letp,q > 1. Then from (6.4) by letting r = s = 0, we have the inequality

1 Pq
| B(p+1,9+1)- CESNCES < (65

Note that the above inequality is equivalent to
11 - p?9® — p*q — pg® — pq
X0 e a1y
B(p+1,q+1)
1 +p®9® + p?q +pg® + pq
< ooy parl (68
Further, the inequality (6.5) is equivalent to the following one for the gamma mapping:

| T(p+9+2)-TEI@ < B reE+Dra+1). 67

IN

. Some Other Inequalities for Beta Mappings
The following inequality for beta mappings is based on the Griss integral inequality:

Theorem 7.1. Letm,n > 1 and p,q > 0. Then

| Bm+p+1n+g+1)-Bm+1,n+1)B(p+1,9+1) |
M., (m,n)B(p + 1,9+ 1)

2 Lpg 1 1 1 _ 4.
< [m] o Moo(m, n)[B(ﬂp + 1,ﬁq + l)] B, |f(X > 1, - T ? = 1, (71)
! Pgd
M
where
I _ m-1 _ n-1
M, (m,n) = max{m,n} « (m-1D™(n—1) ,mn > 1.

(m+n—2)mn-2
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Proof. We use the following inequality [3] which sayS' if f is differentiable on (a,b), then
_1 _ 1
- j f00g0dx - -1 j f(x)dx - j g()dx |

I f oo |l g |1, provided g € Li[a,b], f € Lo(a,b)

VAN

[ D |
22 1 f o || g ll, provided f,g € Lo(a,b)

Now we choose the mappings
f) = Imn(X), 9(X) = lpq(x), x € [0,1],
and then

] Toiania®90x = [ 1naGdx - 1pq(0x |

e /
I on I Il lpg Iz, mn>1,p,q>0

2 1 /
<< lemazl™ Ilmalle Tlpgllp ,mn>1pg>0a>14+4 =1

L L Momn) || lhg o . mn>1pq>0

( M'.(mn)B(p+1qg+1),mn>1pqg>0

1

<< loitmzlt M'w(m mBPp+1,q+1) 1%, mn>1pqg>0a>1++4 =1
1 M. (m,n)
-

(pw)pw ,mn>1pqg>0

We also prove the following inequality for beta mappings:

Theorem 7.2. Letmn>1and p,q > 0. Then
| B(p+1,0+1)— m |
q—fl,m,n>1,|fp>1,q>—1

2

< [ enen® =1 (73

— — p>1,9>0a>1<+

1
(2p+1) P b

+pp>19>0
Proof. Consider the mappings

f(x) = xP,g(x) = (1 —x)q.
We note that

19
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! n 1
(00 =pe | F = p > 1.l g I = [ @-0%dx= Lr@> D),

- p - 7 -

lols = @-0%d0F = (cLpblgl. =1@>0).
Now applying the inequality (7.2) for the above mappings, we deduce the desired

inequality (7.3).

The following inequality of Griss type has been established [1]:

| b—j f(x)g(x)dx——_[ f(x)dx - j g)dx |
<30t e 19" llp b-a), (7:4)

provided thatf e L,(a,b)andg e Ls(a,b) wherea > 1and < + % = 1.

Using inequality (7.4), we can state the following result for the beta mappings:

Theorem 7.3. Letm,n,p,q > 0. Then
| Bm+p+1,n+q+1)-B(m+1,n+1)B(p+1,9+1) |

< % max{m, n* max{p, q+[B((M - V)& + 1,(n — ) + D]F[B((p - 1)B + 1,(q-1)B + 1)]7

where a > 1, %4—%:1.

Proof. The proof follows from (7.4) by choosing
f(x) =x"(1 -x)", g(x) = xP(1 -x)9, m,n,p,q > 0,

and using the fact that
I [l < max{m,n}B((m=1a+1,{N-21a+1)]+,

and

m|~

I'g" llp < max{p,q} B(p-1)B+1,(q-1)5+1)]

proved in [1].

Further, we have from [1]

20
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| b—.[ f(x)g(x)dx——I f(x)dx - I g(x)dx |
<& 10 Ig" I (b-a), (7.6)

Using this inequality, we can state another result on the beta mappings:

Theorem 7.4. Let m,n > 1 and p,q > 0. Then
| B(m+p+1n+g+1)-Bm+1,n+1)B(p+1,g+1) |

c ?:_1(;)&%_)2”1 B(p.a).  (7.7)

< % max<{m, n} max<{p, q} (

Now using (7.4) and (7.6), we can point out the following estimation for the beta
mappings:

Theorem 7.5. The inequalities for beta mappings that hold good:

1
1 1 1 1 1 1.1 _
and
1 1
| B(p+1,9+1) - CEENCES) < &P p>1 (79

Proof. Choose f(x) = xP, g(x) = (1 —x)9. Then for p,q > 1, we note that

==

C 1 P 1
[P —p[m] A9 s _q[ﬁ(q—l)+l]

Now using (7.4), we reach at (7.8).

‘m|»—\

L 1 Lo 1
I lle =Pl =) P 8 s = a7t

Further,as | f || . =pand | g ||z =1, (7.6) gives the inequality (7.9).
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