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Abstract—We establish Ostrowski type integral inequalities involving moments of a continuous
random variable defined on a finite interval. We also derive bounds for moments from these inequal-
ities. Further, we discuss applications of these bounds to the Euler’s beta mappings and illustrate
their behaviour. c© 2005 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Let X be a random variable whose probability density function is f : [a, b] → R and Mr(c)
represents the rth moment about c ∈ R of X defined as Mr(c) =

∫ b

a
(x − c)rf(x) dx, for any

positive integer r. It may be noted that for c = 0, Mr(0) produces moments about origin and for
c = M1(0) = µ, Mr(µ) generates the central moments of X.

Ostrowski [1] proved the following integral inequality which is well known in the literature as
the Ostrowski’s inequality.

Theorem 1.1. Let mapping f : [a, b] → R be continuous on [a, b] and differentiable on (a, b)
whose derivative f ′ : (a, b)→ R be bounded on (a, b), i.e., |f ′(x)|∞ := supt∈(a,b) |f ′(t) dt| ≤M(<
∞). Then, for all x ∈ [a, b]∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M

b− a

((
b− a

2

)2

+
(

x− a + b

2

)2
)

, (1.1)

Dragomir et al. [2] proved the following version of the Ostrowski’s inequality using the Grüss
inequality.
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Theorem 1.2. Let mapping f : I ⊆ R→ R be a differentiable mapping in the interior of I and

let a, b ∈ int(I) with a < b. If f ′ ∈ L1[a, b] and γ ≤ f ′(x) ≤ Γ for all x ∈ [(a, b], then for all

x ∈ [a, b] ∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt− f(b)− f(a)
b− a

(
x− a + b

2

)∣∣∣∣∣ ≤ 1
4
(b− a)(Γ− γ), (1.2)

Now, consider the following function p(x, t) of a variable t for constants A and B and any real
numbers a < b,

p(x, t) =
{

t− a + A, if a ≤ t < x,

t− b + B, if x < t ≤ b,

such that

(1) p(x, t) has the jump [p]x = (B − A) − (b − a) at the point t = x and (d/dt)p(x, t) =
1 + [p]xδ(t− x);

(2) let Mx := supt∈(a,b) p(x, t) and mx := inft∈(a,b) p(x, t), then
(a) For B −A ≤ 0, we have Mx −mx = −[p]x;
(b) For B −A > 0, Mx −mx can be evaluated as follows:

(i) If 0 ≤ B −A ≤ (b− a)/2,

Mx −mx =


−x + b, for a ≤ x ≤ a + (B −A),

−[p]x, for a + (B −A) < x ≤ b− (B −A),

x− a, for b− (B −A) < x ≤ b;

(ii) if ((b− a)/2) < B −A ≤ b− a,

Mx −mx =


−x + b, for a ≤ x < b− (B −A),

B −A, for b− (B −A) ≤ x < a + (B −A),

x− a, for a + (B −A) ≤ x ≤ b;

(iii) if B −A > b− a, then Mx −mx = B −A.

Fedotov et al. [3] proved the following generalization of the Ostrowski type inequality.

Theorem 1.3. Let mapping f : [a, b] → R be continuous on [a, b] and differentiable on (a, b)
with a < b, such that γ ≤ f ′(t) ≤ Γ for all t ∈ [(a, b), where γ and Γ are real numbers. Then, for

A, B, Mx and mx as above and for all x ∈ [a, b],∣∣∣∣∣(C(x)−A)f(a) + (B − C(x))f(b)− (b− a−B + A)f(x)−
∫ b

a

f(t) dt

∣∣∣∣∣
≤ 1

4
(b− a)(Γ− γ)(Mx −mx),

(1.3)

where

C(x) =
1

2(b− a)
[(x− a)(x− a + 2A)− (x− b)(x− b + 2B)].

Dragomir et al. [4] established some results on the weighted version of the Ostrowski’s inequality
for the Hölder type mappings and proved.

Theorem 1.4. Let mappings f, w : (a, b) ⊆ R → R be such that w(s) ≥ 0, w is integrable on

(a, b),
∫ b

a
w(s) ds > 0, f is of R−H Hölder type, i.e., |f(x)− f(y)| ≤ H|x− y|R for all x ∈ (a, b)

where H > 0 and R ∈ (0, 1]. If wf ∈ L1[a, b], then for all x ∈ [a, b]∣∣∣∣∣f(x)− 1∫ b

a
w(s) ds

∫ b

a

w(s)f(s) ds

∣∣∣∣∣ ≤ H
1∫ b

a
w(s) ds

∫ b

a

|x− s|Rw(s) ds. (1.4)
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The constant factor C = 1 in the right-hand side is sharp in the sense that this cannot be replaced

by a smaller one.

If R = 1, i.e., the mapping f is Lipschitzian with constant L > 0, then from (1.4)∣∣∣∣∣f(x)− 1∫ b

a
w(s) ds

∫ b

a

w(s)f(s) ds

∣∣∣∣∣ ≤ L
1∫ b

a
w(s) ds

∫ b

a

|x− s|w(s) ds. (1.5)

Kumar [5–7] applied integral inequalities of Grüss, Hölder and Hermite-Hadamard and Korkine
to establish inequalities involving moments and to evaluate bounds for moments of continuous
random variables defined over a finite interval. In what follows now, we prove some results for
the Ostrowski type integral inequalities involving moments.

2. OSTROWSKI TYPE INEQUALITIES INVOLVING
MOMENTS Mr(c)

An inequality which provides estimation of Mr(c) follows from (1.1).

Theorem 2.1. Let X be a random variable whose probability density function f : [a, b]→ R is

an absolutely continuous mapping with c ∈ R and |f ′(x)| ≤M for all x ∈ [a, b], a < b. Then, for

any positive integer r,

Mr(c) ≤M

(
b− a

2
+

1
M(b− a)

) (
(b− c)r+1 − (a− c)r+1

r + 1

)
−M

(
(b− c)r+2 + (a− c)r+2

(r + 1)(r + 2)

)
+

2M

(b− a)

(
(b− c)r+3 − (a− c)r+3

(r + 1)(r + 2)(r + 3)

)
.

(2.1)

Proof. The reverse inequality from (1.1) provides for all x ∈ [a, b],

f(x)− 1
b− a

∫ b

a

f(t) dt ≤ M

b− a

((
b− a

2

)2

+
(

x− a + b

2

)2
)

. (2.2)

Multiplying both sides of (2.2) by (x− c)r and integrating and since
∫ b

a
f(t) dt = 1, f being the

probability density function, we get∫ b

a

(x− c)rf(x) dx− 1
b− a

∫ b

a

(x− c)r dx ≤ M(b− a)
4

∫ b

a

(x− c)r dx

+
M

b− a

∫ b

a

(x− c)r

(
x− a + b

2

)2

dx.

(2.3)

Setting

I :=
∫ b

a

(x− c)r

(
x− a + b

2

)2

dx,

and integrating by parts, we get

I =
(

b− a

2

)2 (
(b− c)r+1 − (a− c)r+1

r + 1

)
− (b− a)

(
(b− c)r+2 + (a− c)r+2

(r + 1)(r + 2)

)
+

(b− c)r+3 − (a− c)r+3

(r + 1)(r + 2)(r + 3)
.

Thus, (2.3) simplifies to

Mr(c)−
1

b− a

(
(b− c)r+1 − (a− c)r+1

r + 1

)
≤ M(b− a)

4

(
(b− c)r+1 − (a− c)r+1

r + 1

)
+

M

(b− a)

[(
b− a

2

)2 (
(b− c)r+1 − (a− c)r+1

r + 1

)
−(b− a)

(
(b− c)r+2 + (a− c)r+2

(r + 1)(r + 2)

)
+

(b− c)r+3 − (a− c)r+3

(r + 1)(r + 2)(r + 3)

]
,

which results in (2.1) and proves the theorem.
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The rth moment about origin, Mr(0), is obtained by taking c = 0 in (2.1) and is given by.

Corollary 2.1. Let X be a random variable whose probability function f : [a, b] → R is an

absolutely continuous mapping with |f ′(x)| ≤ M for all x ∈ [a, b], a < b. Then, for any positive

integer r,

Mr(0) ≤M

(
b− a

2
+

1
M(b− a)

) (
br+1 − ar+1

r + 1

)
−M

(
br+2 + ar+2

(r + 1)(r + 2)

)
+

2M

(b− a)

(
br+3 − ar+3

(r + 1)(r + 2)(r + 3)

)
.

(2.4)

Taking r = 1 in (2.4), the mean µ on the random variable X has an upper bound

M1(0) = µ ≤
(

a + b

2

) (
1 +

M(b− a)2

3

)
, (2.5a)

and r = 2, c = µ in (2.1), the variance σ2 has the upper bound

M2(µ) = σ2 ≤M

(
b− a

2
+

1
M(b− a)

) (
(b− µ)3 − (a− µ)3

3

)
−M

(
(b− µ)4 + (a− µ)4

4

)
+ M

(
(b− µ)5 − (a− µ)5

30(b− a)

)
.

(2.5b)

Note that, the following inequality which provides the lower bound for Mr(c) follows immediately

from inequality (1.1) and (2.1).

Theorem 2.2. Let X be a random variable whose probability density function f : [a, b]→ R is

an absolutely continuous mapping with c ∈ R and |f ′(x)| ≤M for all x ∈ [a, b], a < b. Then, for

any positive integer r,

Mr(c) ≥M

(
(b− c)r+2 + (a− c)r+2

(r + 1)(r + 2)

)
−M

(
b− a

2
+

1
M(b− a)

) (
(b− c)r+1 − (a− c)r+1

r + 1

)
− 2M

(b− a)

(
(b− c)r+3 − (a− c)r+3

(r + 1)(r + 2)(r + 3)

)
.

(2.6)

Now, we present an inequality for moments Mr(c) by using the Ostrowski and Grüss inequali-
ties (1.2).

Theorem 2.3. Let X be a random variable whose probability density function f : [a, b]→ R is

an absolutely continuous mapping with c ∈ R and γ ≤ f ′(x) ≤ Γ for all x ∈ [a, b], a < b. Then,

for any positive integer r,

Mr(c) ≤
[

1
b− a

+
(b− a)(Γ− γ)

4
−

(
a + b

2

) (
f(b)− f(a)

(b− a)

)] (
(b− c)r+1 − (a− c)r+1

r + 1

)
(

f(b)− f(a)
(b− a)

) (
b(b− c)r+1 − a(a− c)r+1

(r + 1)
− (b− c)r+2 − (a− c)r+2

(r + 1)(r + 2)

)
.

(2.7)

Proof. From (1.2), we have for all x ∈ [a, b],

f(x)− 1
b− a

∫ b

a

f(t) dt− f(b)− f(a)
b− a

(
x− a + b

2

)
≤ 1

4
(b− a)(Γ− γ),

or

f(x) ≤
[

1
b− a

+
1
4
(b− a)(Γ− γ)− f(b)− f(a)

b− a

(
a + b

2

)]
+

f(b)− f(a)
b− a

x. (2.8)
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Multiplying both sides of (2.8) by (x− c)r and integrating and since
∫ b

a
f(t) dt = 1, we get

∫ b

a

(x− c)rf(x) dx ≤
[

1
b− a

+
1
4
(b− a)(Γ− γ)− f(b)− f(a)

b− a

(
a + b

2

)] ∫ b

a

(x− c)r dx

+
f(b)− f(a)

b− a

∫ b

a

x(x− c)r dx.

or,

Mr(c) ≤
[

1
b− a

+
1
4
(b− a)(Γ− γ)− f(b)− f(a)

b− a

(
a + b

2

)] (
(b− c)r+1 − (a− c)r+1

r + 1

)
+

f(b)− f(a)
b− a

[(
b(b− c)r+1 − a(a− c)r+1

r + 1

)
−

(
(b− c)r+2 + (a− c)r+2

(r + 1)(r + 2)

)]
,

which proves the theorem.

The rth moment about origin, Mr(0), is obtained in the following corollary by taking c = 0
in (2.7).

Corollary 2.2. Let X be a random variable whose probability function f : [a, b] → R is an

absolutely continuous mapping with γ ≤ f ′(x) ≤ Γ for all x ∈ [a, b], a < b. Then, for any positive

integer r,

Mr(0) ≤
(

1
b− a

+
(b− a)(Γ− γ)

4

) (
br+1 − ar+1

r + 1

)
−f(b)− f(a)

(b− a)

(
(a + b)(br+1 − ar+1)

2(r + 1)
− br+2 − ar+2

r + 2

)
.

(2.9)

Taking r = 1 in (2.9), the mean µ of X follows

µ ≤ a + b

2
+

(b− a)2(a + b)(Γ− γ)
8

+
(

f(b)− f(a)
b− a

) (
b3 − a3

3
− (b− a)(a + b)2

4

)
, (2.10a)

and r = 2, c = µ in (2.7), the variance σ2

σ2 ≤
[

1
b− a

+
(b− a)(Γ− γ)

4
−

(
a + b

2

) (
f(b)− f(a)

(b− a)

)] (
(b− µ)3 − (a− µ)3

3

)
+

(
f(b)− f(a)

(b− a)

) (
b(b− µ)3 − a(a− µ)3

3
− (b− µ)4 − (a− µ)4

12

)
.

(2.10b)

The following inequality which provides the lower bound for Mr(c) follows immediately from
inequality (1.2) and (2.7).

Theorem 2.4. Let X be a random variable whose probability density function f : [a, b]→ R is

an absolutely continuous mapping with c ∈ R and γ ≤ f ′(x) ≤ Γ for all x ∈ [a, b], a < b. Then,

for any positive integer r,

Mr(c) ≥
[(

a + b

2

) (
f(b)− f(a)

(b− a)

)
− 1

b− a
− (b− a)(Γ− γ)

4

] (
(b− c)r+1 − (a− c)r+1

r + 1

)
+

(
f(b)− f(a)

(b− a)

) (
(b− c)r+2 − (a− c)r+2

(r + 1)(r + 2)
− b(b− c)r+1 − a(a− c)r+1

(r + 1)

)
.

(2.11)

Now, using the generalized Ostrowski type inequality (1.3), we have the following results.
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Theorem 2.5. Let X be a random variable whose probability density function f : [a, b]→ R is

an absolutely continuous mapping with c ∈ R and γ ≤ f ′(x) ≤ Γ for all x ∈ [a, b], a < b. Then,

for any positive integer r,

(b− a−B + A)Mr(c) ≤ R1

(
(b− c)r+1 + (a− c)r+1

r + 1

)
+R2

[
(b− a)2

(
(b− c)r+1 − (a− c)r+1

r + 1

)
− 2(b− a)

(
(b− c)r+2 − (a− c)r+2

(r + 1)(r + 2)

)
−2(B −A)

{
(b− a)

(
(b− c)r+1 − (a− c)r+1

r + 1

)
− (b− c)r+2 − (a− c)r+2

(r + 1)(r + 2)

}]
,

(2.12)

where

R1 = 1 +
(Mx −mx)(b− a)(Γ− γ)

4
−Bf(b) + Af(a), R2 =

f(b)− f(a)
2(b− a)

,

and A, B, Mx and mx are as above.

Proof. From (1.3) and since
∫ b

a
f(t) dt = 1, we have

(b− a−B + A)f(x) ≤
[
1 + Af(a)−Bf(b) +

1
4
(b− a)(Γ− γ)(Mx −mx)

]
+[f(b)− f(a)]C(x).

(2.13)

Multiplying (2.13) by (x− c)r and integrating, we get

(b− a−B + A)
∫ b

a

(x− c)rf(x) dx ≤
[
1 + Af(a)−Bf(b) +

1
4
(b− a)(Γ− γ)(Mx −mx)

]
×

∫ b

a

(x− c)r dx + [f(b)− f(a)]
∫ b

a

C(x)(x− c)r dx,

or

(b− a−B + A)Mr(c) ≤
[
1 + Af(a)−Bf(b) +

1
4
(b− a)(Γ− γ)(Mx −mx)

]
×

(
(b− c)r+1 + (a− c)r+1

r + 1

)
+ [f(b)− f(a)]I,

where

I :=
∫ b

a

C(x)(x− c)r dx

=
∫ b

a

[
1

2(b− a)
[(x− a)(x− a + 2A)− (x− b)(x− b + 2B)]

]
(x− c)r dx

=
1

2(b− a)

[∫ b

a

(x− a)2(x− c)r dx−
∫ b

a

(x− b)2(x− c)r dx

+2A

∫ b

a

(x− a)(x− c)r dx + 2B

∫ b

a

(x− b)(x− c)r dx

]
.

(2.14)
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Integrating by parts, we evaluate integrals in (2.14) as

I1 :=
∫ b

a

(x− a)2(x− c)r dx =
(b− a)2(b− c)r+1

r + 1

− 2
r + 1

[
(b− a)(b− c)r+2

r + 2
−

(
(b− c)r+3 − (a− c)r+3

(r + 2)(r + 3)

)]

I2 :=
∫ b

a

(x− b)2(x− c)r dx = − (b− a)2(a− c)r+1

r + 1

− 2
r + 1

[
(b− a)(a− c)r+2

r + 2
−

(
(b− c)r+3 − (a− c)r+3

(r + 2)(r + 3)

)]

I3 := 2A
∫ b

a

(x− a)(x− c)r dx = 2A

[
(b− a)(b− c)r+1

r + 1
−

(
(b− c)r+2 − (a− c)r+2

(r + 1)(r + 2)

)]

I4 := 2B
∫ b

a

(x− b)(x− c)r dx = 2B

[
(b− a)(a− c)r+1

r + 1
−

(
(b− c)r+2 − (a− c)r+2

(r + 1)(r + 2)

)]
.

Substituting the values of the above integrals in (2.14), we arrive at (2.12), and hence, the
theorem.

The inequality involving the rth moment about origin, Mr(0), follows from Theorem 2.3 by
setting c = 0.

Corollary 2.3. Let X be a random variable whose probability density function f : [a, b]→ R
is an absolutely continuous mapping γ ≤ f ′(x) ≤ Γ for all x ∈ [a, b], a < b. Then, for any positive

integer r,

(b− a−B + A)Mr(0) ≤ R1

(
br+1 + ar+1

r + 1

)
+R2

[(
br+1 − ar+1

r + 1
• (b− a)2

)
− 2

(
br+2 − ar+2

(r + 1)(r + 2)
• (b− a)

)
−2(B −A)

{
br+1 − ar+1

r + 1
• (b− a)− br+2 − ar+2

(r + 1)(r + 2)

}]
,

(2.15)

where R1, R2, A, B, Mx and mx are defined above.

Setting r = 1 in (2.15), the mean µ of X has the upper bound

µ ≤
(

a2 + b2

2

)
R1 +

[
(b− a)3(a + b)

2
− (b− a)(b3 − a3)

3

−2(B −A)
(

(b− a)2(a + b)
2

− (b3 − a3)
6

)]
R2,

(2.16a)

and r = 2, c = µ in (2.12), the upper bound for the variance σ2 is

(b− a−B + A)σ2 ≤ R1

(
(b− µ)3 + (a− µ)3

3

)
+R2

[
(b− a)2

(
(b− µ)3 − (a− µ)3

3

)
− 2(b− a)

(
(b− µ)4 − (a− µ)4

12

)
−2(B −A)

{
(b− a)

(
(b− µ)3 − (a− µ)3

3

)
− (b− µ)4 − (a− µ)4

12

}]
.

(2.16b)

Note that, the following inequality which provides the lower bound for Mr(c) follows immediately
from inequality (1.3) and (2.12).
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Theorem 2.6. Let X be a random variable whose probability density function f : [a, b]→ R is

an absolutely continuous mapping with c ∈ R and γ ≤ f ′(x) ≤ Γ for all x ∈ [a, b], a < b. Then,

for any positive integer r,

(b− a−B + A)Mr(c)

≥ R2

[
2(b− a)

(
(b− c)r+2 − (a− c)r+2

(r + 1)(r + 2)

)
− (b− a)2

(
(b− c)r+1 − (a− c)r+1

r + 1

)
+2(B −A)

{
(b− a)

(
(b− c)r+1 − (a− c)r+1

r + 1

)
− (b− c)r+2 − (a− c)r+2

(r + 1)(r + 2)

}]
−R1

(
(b− c)r+1 + (a− c)r+1

r + 1

)
,

(2.17)

where R1, R2, A, B, Mx and mx are defined above.

We apply the weighted Ostrowski inequality for the Lipschitzian mappings of Hölder type (1.5)
to prove the following theorem.

Theorem 2.7. Let mapping f be Lipschitzian with constant L > 0 and f, w : (a, b) ⊆ R → R
be such that w(s) ≥ 0, w is integrable on (a, b),

∫ b

a
w(s) ds > 0. If wf ∈ L1[a, b], then for all

x ∈ [a, b] and for any positive integer r

Mr(c) ≤
(

(b− c)r+1 − (a− c)r+1

(r + 1)

) ∫ b

a
w(s)f(s) ds∫ b

a
w(s) ds

+
L

∫ b

a
|x− s|(x− c)rw(s) ds∫ b

a
w(s) ds

. (2.18)

Proof. From (1.5), we can write the inequality

f(x) ≤
∫ b

a
w(s)f(s) ds∫ b

a
w(s) ds

+
L

∫ b

a
|x− s|w(s) ds∫ b

a
w(s) ds

.

Multiplying it by (x− c)r and integrating we obtain (2.18).

Corollary 2.4. If f is differentiable on (a, b) and its derivative f ′ is bounded on (a, b), i.e.,

‖f ′‖∞ := supt∈(a,b) |f ′(t)| <∞, then L = ‖f ′‖∞ and for any positive integer r

Mr(c) ≤
(

(b− c)r+1 − (a− c)r+1

(r + 1)

) ∫ b

a
w(s)f(s) ds∫ b

a
w(s) ds

+ ‖f ′‖∞
∫ b

a
|x− s|(x− c)rw(s) ds∫ b

a
w(s) ds

. (2.19)

The inequality for the rth moment about origin, Mr(0), follows by setting c = 0 in (2.19).

Corollary 2.5. If f is differentiable on (a, b) and its derivative f ′ is bounded on (a, b), i.e.,

‖f ′‖∞ := supt∈(a,b) |f ′(t)| <∞, then L = ‖f ′‖∞ and for any positive integer r

Mr(0) ≤
(

br+1 − ar+1

(r + 1)

) ∫ b

a
w(s)f(s) ds∫ b

a
w(s) ds

+ ‖f ′‖∞

∫ (∫ b

a
|x− s|w(s) ds

)
xr dx∫ b

a
w(s) ds

. (2.20)

The following inequality which provides the lower bound for Mr(c) follows immediately from
inequality (1.5) and (2.18).

Theorem 2.8. Let mapping f be Lipschitzian with constant L > 0 and f, w : (a, b) ⊆ R → R
be such that w(s) ≥ 0, w is integrable on (a, b),

∫ b

a
w(s) ds > 0. If wf ∈ L1[a, b], then for all

x ∈ [a, b] and for any positive integer r

Mr(c) ≥
(

(a− c)r+1 − (b− c)r+1

(r + 1)

) ∫ b

a
w(s)f(s) ds∫ b

a
w(s) ds

− L
∫ b

a
|x− s|(x− c)rw(s) ds∫ b

a
w(s) ds

. (2.21)

In what follows now, we provide results for some commonly employed weight functions.
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2.1.1. Mapping w(s) = 1

Corollary 2.1.1. We obtain inequality in Theorem 2.1.

2.1.2. Logarithmic mapping w(s) = ln(1/s)

Corollary 2.1.2. Let f : (0, 1) → R be a differentiable mapping whose derivative is bounded

and for which the integral
∫ 1

0
ln(1/s)f(s) ds is finite. Then, from for all x ∈ (0, 1) and for any

positive integer r

Mr(0) ≤
∫ 1

0
ln(1/s)f(s) ds

(r + 1)
+ ‖f ′‖∞

(
1

4(r + 1)
− 1

r + 2
+

3
2(r + 3)

)
. (2.22)

Proof. We have w(s) = ln(1/s), a = 0, b = 1. Thus,
∫ 1

0
ln(1/s) ds = 1, and for all x ∈ (0, 1)∫ 1

0

|x− s| ln
(

1
s

)
ds =

∫ x

0

(s− x) ln s ds +
∫ 1

x

(x− s) ln s ds = x2

(
3
2
− lnx

)
− x +

1
4
.

Substituting these values in (2.19), we get (2.22).

2.1.3. Jacobi mapping w(s) = 1/
√

s

Corollary 2.1.3. Let f : (0, 1) → R be a differentiable mapping whose derivative is bounded

and for which the integral
∫ 1

0
(f(s)/

√
s) ds is finite. Then, for all x ∈ (0, 1) and for any positive

integer r

Mr(0) ≤
∫ 1

0
(f(s)/

√
s) ds

(r + 1)
+

2‖f ′‖∞
3

(
1

r + 1
− 3

r + 2
+

8
2r + 5

)
. (2.23)

Proof. We are given w(s) = 1/
√

s, a = 0, b = 1. Thus,
∫ 1

0
(1/
√

s) ds = 1, and for all x ∈ (0, 1)∫ 1

0

|x− s|√
s

ds =
8x3/2 − 6x + 2

3
.

Substituting these values in (2.19) provides (2.23) and hence the corollary.

2.1.4. Chebyshev mapping w(s) = 1/
√

1− s2

Corollary 2.1.4. Let f : (−1, 1)→ R be a differentiable mapping whose derivative is bounded

and for which the integral
∫ 1

−1
(f(s))/

√
1− s2 ds is finite. Then, for all x ∈ (−1, 1) and for any

positive integer r

Mr(0) ≤ ((−1)r+1 − 1)
(r + 1)π

∫ 1

−1

f(s)√
1− s2

ds + 2‖f ′‖∞
∫ 1

−1

(
xr+1 arcsin x + xr

√
1− x2

)
dx. (2.24)

Proof. We have w(s) = 1/
√

1− s2, a = 0, b = 1. Thus,
∫ 1

−1
(1/
√

1− s2) ds = π, and for all
x ∈ (−1, 1) ∫ 1

−1

|x− s|√
1− s2

ds = 2
(
arcsin x +

√
1− x2

)
.

Substituting these values in (2.19) proves the corollary.

Further, note the following from (2.23).

Remark 1. Let f : (−1, 1)→ R be a differentiable mapping whose derivative is bounded and for
which the integral

∫ 1

−1
((f(s)/

√
1− s2) ds is finite. Then, for all x ∈ (−1, 1) and any odd positive

integer r

Mr(0) ≤ 2‖f ′‖∞
∫ 1

−1

(
xr+1 arcsinx + xr

√
1− x2

)
dx. (2.25)
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Remark 2. Let f : (−1, 1) → R be a differentiable mapping whose derivative is bounded and
for which the integral

∫ 1

−1
((f(s)/

√
1− s2) ds is finite. Then, for all x ∈ (−1, 1) and any even

positive integer r

Mr(0) ≤ −2
(r + 1)π

∫ 1

−1

f(s)√
1− s2

ds + 2‖f ′‖∞
∫ 1

−1

(
xr+1 arcsin x + xr

√
1− x2

)
dx. (2.26)

The first four moments about the origin from (2.25) and (2.26) may be evaluated as

M1(0) = M3(0) ≤ 0,

M2(0) ≤ 0.88357− 0.21221
∫ 1

−1

f(s)√
1− s2

ds,

M4(0) ≤ 0.55362− 0.12732
∫ 1

−1

f(s)√
1− s2

ds.

3. APPLICATIONS TO THE EULER’S BETA MAPPINGS

The Beta mapping for real numbers is

B(m, n) :=
∫ 1

0

sm−1(1− s)n−1 ds, m, n > 0 and s ∈ [0, 1].

Set hm,n(s) = sm−1(1− s)n−1, s ∈ [0, 1]. For m, n > 1,

h′m,n(s) = hm−1,n−1(s)[m− 1− (m + n− 2)s].

We note that,

h′m,n(s)



> 0, if s ∈
[
0,

m− 1
m + n− 2

)
,

= 0, if s =
m− 1

m + n− 2
,

< 0, if s ∈
(

m− 1
m + n− 2

, 1
]

,

which shows that hm,n(s) has a maximum at s = (m− 1)/(m + n− 2) and

sup
s∈[0,1]

hm,n(s) =
(m− 1)m−1(n− 1)n−1

(m + n− 2)m+n−2
, m, n > 1.

Then, for all s ∈ [0, 1],

|h′m,n(s)| ≤ max
s∈[0,1]

|m− 1− (m + n− 2)s| (m− 2)m−2(n− 2)n−2

(m + n− 4)m+n−4

= max(m− 1, n− 1)
(m− 2)m−2(n− 2)n−2

(m + n− 4)m+n−4
, m, n > 2,

and

‖h′m,n‖∞ ≤ max(m− 1, n− 1)
(m− 2)m−2(n− 2)n−2

(m + n− 4)m+n−4
, m, n > 2.

Consider the Beta probability density function f(s) with parameters m and n,

f(s) =
sm−1(1− s)n−1

B(m, n)
, m, n > 0 and s ∈ [0, 1],
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where B(m, n) = (Γ(m)Γ(n))/(Γ(m + n)). Then, for m, n > 2,

‖f ′‖∞ = L ≤ max(m− 1, n− 1)
(m− 2)m−2(n− 2)n−2

(m + n− 4)m+n−4B(m, n)
. (3.1)

We can evaluate the upper bounds for the moments of the beta density function by substituting
for ‖f ′‖∞ = L from (3.1) into the inequalities given in (2.1), (2.4), (2.18), (2.19) and (2.21).

As an example, we consider applications of (2.24) and (2.21) where weight function is a Jacobi
mapping with w(s) = 1/

√
s for all s ∈ [0, 1]. Then,∫ 1

0

f(s)√
s

ds =
∫ 1

0

sm−1(1− s)n−1

√
sB(m, n)

ds =
∫ 1

0

s(m−1/2)−1(1− s)n−1

B(m, n)
ds

=
B(m− 1/2, n)

B(m, n)
=

Γ(m− 1/2)Γ(m + n)
Γ(m)Γ(m + n− 1/2)

.

Thus, from (2.21), for m, n > 2, any integer r and L given by (3.1),

Mr(0) ≤ B(m− 1/2, n)
(r + 1)B(m, n)

+
2L

3

(
1

r + 1
− 3

r + 2
+

8
2r + 5

)
, (3.2)

and from (2.4) for m, n > 2, any integer r and L given by (3.1),

Mr(0) ≤ 1
r + 1

(
1 + L

(
1
2
− r + 1

(r + 2)(r + 3)

))
. (3.3)

To get an insight to the behaviour of these bounds, exact values of M1, M2, M3, M4, and their
upper bounds from (2.4), (2.21) and from the inequality (7.7) of Kumar [7], for some choices of α

and β are evaluated in Table 1.

Table 1. Exact values of M1, M2, M3, M4 and upper bounds (m, n = 3, 4, 5).

M1 M̂1 M̂1 M̂1 M2 M̂2 M̂2 M̂2

m n (2.4) (2.21) (7.7) (2.4) (2.21) (7.7)

3 3 0.50 0.5028 0.77 0.57 0.29 0.3353 0.51 0.41

4 4 0.50 0.5002 0.75 0.57 0.28 0.3335 0.50 0.41

3 4 0.43 0.5012 0.83 0.56 0.21 0.3342 0.56 0.39

4 5 0.44 0.5001 0.80 0.56 0.22 0.3334 0.53 0.40

M3 M̂3 M̂3 M̂3 M4 M̂4 M̂4 M̂4

m n (2.4) (2.21) (7.7) (2.4) (2.21) (7.7)

3 3 0.18 0.2515 0.39 0.32 0.12 0.2013 0.31 0.27

4 4 0.17 0.2501 0.37 0.32 0.11 0.2001 0.30 0.27

3 4 0.12 0.2507 0.42 0.31 0.07 0.2006 0.33 0.25

4 5 0.12 0.2500 0.40 0.31 0.07 0.2000 0.32 0.26
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pings of Hölder type and applications in numerical analysis, RGMIA: Research Report Collection [ONLINE]
http://rgmia.vu.edu.au/v1n2.html 2, 111–122, (1999).

3. I. Fedotov and S.S. Dragomir, An inequality of Ostrowski type and its applications for Simpson’s rule and
special means, RGMIA: Research Report Collection [ONLINE] http://rgmia.vu.edu.au/v1n2.html 2 (1), 15–
24, (1999).



12 P. Kumar

4. S.S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimations
of error bounds for some special means and for some numerical quadrature rules, Computer Math. with
Applications 33 (11), 15–20, (1997).

5. P. Kumar, Moment inequalities of a random variable defined over a finite interval, Jour. Inequalities Pure &
Appl. Math. 3 (3), 1–11, (2002).

6. P. Kumar, Hermite-Hadamard inequalities and their applications in estimating moments, Mathematical In-
equalities and Applications, (2002).

7. P. Kumar, Inequalities involving moments of a continuous random variable defined over a finite interval,
Jour. Computers and Mathematics with Applications, (2003) (to appear).


