An Inequality for Logarithms and Applications in Information Theory

S. S. Dragomir
School of Communications and Informatics
Victoria University of Technology
P.O. Box 14428, Melbourne City MC, Victoria 8001, Australia
sever@matilda.vut.edu.au
N. M. Dragomir
Department of Mathematics
University of Transkei, Private Bag X1, UNITRA
Umtata, 5117, South Africa
K. Pranesh
Department of Statistics
University of Transkei, Private Bag X1, UNITRA
Umtata, 5117, South Africa

(Received May 1998; revised and accepted March 1999)

Abstract

A new analytic inequality for logarithms which provides a converse to arithmetic meangeometric mean inequality and its applications in information theory are given. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords-Jensen's inequality, Analytic inequalities, Entropy mapping, Joint entropy.

1. INTRODUCTION

The present paper continues the investigations started in [1], where the main result is the following.

Theorem 1.1. Let $\xi_{k} \in(0, \infty), p_{k}>0, k=1, \ldots, n$ with $\sum_{k=1}^{n} p_{k}=1$ and $b>1$. Then

$$
\begin{align*}
0 & \leq \log _{b}\left(\sum_{k=1}^{n} p_{k} \xi_{k}\right)-\sum_{k=1}^{n} p_{k} \log _{b} \xi_{k} \\
& \leq \frac{1}{2 \ln b} \sum_{k, i=1}^{n} \frac{p_{k} p_{i}}{\xi_{k} \xi_{i}}\left(\xi_{i}-\xi_{k}\right)^{2} . \tag{1.1}
\end{align*}
$$

The equality holds in both inequalities simultaneously if and only if $\xi_{1}=\cdots=\xi_{n}$.

[^0]
2. A NEW ANALYTIC INEQUALITY FOR LOGARITHMS

We shall start to the following analytic inequality for logarithms which provides a different bound than the inequality of (1.1).
Theorem 2.1. Let $\xi_{k} \in[1, \infty)$ and $p_{k}>0$ with $\sum_{k=1}^{n} p_{k}=1$ and $b>1$. Then we have

$$
\begin{align*}
0 & \leq \log _{b}\left(\sum_{k=1}^{n} p_{k} \xi_{k}\right)-\sum_{k=1}^{n} p_{k} \log _{b} \xi_{k} \\
& \leq \frac{1}{4 \ln b} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\xi_{i}-\xi_{j}\right)^{2} . \tag{2.1}
\end{align*}
$$

The equality holds in both inequalities simultaneously if and only if $\xi_{1}=\cdots=\xi_{n}$.
Proof. We shall use the well-known Jensen's discrete inequality for convex mappings which states that

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right), \tag{2.2}
\end{equation*}
$$

for all $p_{i}>0, \sum_{i=1}^{n} p_{i}=1, f$ a convex mapping on a given interval I and $x_{i} \in I(i=1, \ldots, n)$.
Now, let consider the mapping $f:[1, \infty) \rightarrow \mathbf{R}, f(x)=x^{2} / 2+\ln x$. Then

$$
f^{\prime}(x)=x+\frac{1}{x}=\frac{x^{2}+1}{x}, \quad \text { for all } x \in[1, \infty)
$$

and

$$
f^{\prime \prime}(x)=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}, \quad \text { for all } x \in[1, \infty)
$$

i.e., f is a strictly convex mapping on $[1, \infty)$.

Applying Jensen's discrete inequality for convex mappings, we have

$$
\begin{equation*}
\frac{1}{2}\left(\sum_{i=1}^{n} p_{i} \xi_{i}\right)^{2}+\ln \left(\sum_{i=1}^{n} p_{i} \xi_{i}\right) \leq \frac{1}{2} \sum_{i=1}^{n} p_{i} \xi_{i}^{2}+\sum_{i=1}^{n} p_{i} \ln \xi_{i} \tag{2.3}
\end{equation*}
$$

which is equivalent to

$$
\ln \left(\sum_{i=1}^{n} p_{i} \xi_{i}\right)-\sum_{i=1}^{n} p_{i} \ln \xi_{i} \leq \frac{1}{2}\left[\sum_{i=1}^{n} p_{i} \xi_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} \xi_{i}\right)^{2}\right]
$$

But

$$
\begin{aligned}
\sum_{i, j=1}^{n} p_{i} p_{j}\left(\xi_{i}-\xi_{j}\right)^{2} & =\sum_{i, j=1}^{n} p_{i} p_{j}\left[\xi_{i}^{2}+\xi_{j}^{2}-2 \xi_{i} \xi_{j}\right] \\
& =2\left[\sum_{i=1}^{n} p_{i} \sum_{i=1}^{n} p_{i} \xi_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} \xi_{i}\right)^{2}\right]=2\left[\sum_{i=1}^{n} p_{i} \xi_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} \xi_{i}\right)^{2}\right]
\end{aligned}
$$

and then the above inequality becomes

$$
\begin{equation*}
\ln \left(\sum_{i=1}^{n} p_{i} \xi_{i}\right)-\sum_{i=1}^{n} p_{i} \ln \xi_{i} \leq \frac{1}{4} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\xi_{i}-\xi_{j}\right)^{2} . \tag{2.4}
\end{equation*}
$$

Now, as $\log _{b} x=(\ln x / \ln b)$, inequality (2.4) is equivalent to the desired inequality (2.1). The case of equality follows by the strict convexity of f and we omit the details.

Remark 2.1. Define

$$
B_{1}:=\frac{1}{2 \ln b} \sum_{i, j=1}^{n} \frac{p_{i} p_{j}}{\xi_{i} \xi_{j}}\left(\xi_{i}-\xi_{j}\right)^{2}, \quad \text { (as in Theorem 1.1) }
$$

and

$$
B_{2}:=\frac{1}{4 \ln b} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\xi_{i}-\xi_{j}\right)^{2}, \quad \text { (as in Theorem 2.1) }
$$

and compute the difference

$$
\begin{aligned}
B_{1}-B_{2} & =\frac{1}{2 \ln b} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\xi_{i}-\xi_{j}\right)^{2}\left[\frac{1}{\xi_{i} \xi_{j}}-\frac{1}{2}\right] \\
& =\frac{1}{4 \ln b} \sum_{i, j=1}^{n} \frac{p_{i} p_{j}\left(\xi_{i}-\xi_{j}\right)^{2}}{\xi_{i} \xi_{j}}\left(2-\xi_{i} \xi_{j}\right)
\end{aligned}
$$

Consequently, if $\xi_{i} \in[1, \infty)$ so that $\xi_{i} \xi_{j} \leq 2$, for all $i, j \in\{1, \ldots, n\}$, then the bound B_{2} provided by Theorem 2.1 is better than the bound B_{1} provided by Theorem 1.1. If $\xi_{i} \in[1, \infty)$ so that $\xi_{i} \xi_{j} \geq 2$, for all $i, j \in\{1, \ldots, n\}$, then Theorem 1.1 provides a better result than Theorem 2.1.

We give now some applications of the above results for arithmetic mean-geometric mean inequality.

Recall that for $q_{i}>0$ with $Q_{n}:=\sum_{i=1}^{n} q_{i}$, the arithmetic mean of x_{i} with the weights $q_{i}, i \in$ $\{1, \ldots, n\}$ is

$$
\begin{equation*}
A_{n}(\bar{q}, \bar{x}):=\frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i} x_{i} \tag{A}
\end{equation*}
$$

and the geometric mean of x_{i} with the weights $q_{i}, i \in\{1, \ldots, n\}$, is

$$
\begin{equation*}
G_{n}(\bar{q}, \bar{x}):=\left(\prod_{i=1}^{n} x_{i}^{q_{i}}\right)^{1 / Q_{n}} \tag{G}
\end{equation*}
$$

It is well known that the following inequality so-called arithmetic mean-geometric mean inequality, holds

$$
\begin{equation*}
A_{n}(\bar{q}, \bar{x}) \geq G_{n}(\bar{q}, \bar{x}) \tag{2.5}
\end{equation*}
$$

with equality if and only if $x_{1}=\cdots=x_{n}$.
Now, using Theorem 1.1, we can state the following proposition containing a counterpart of the arithmetic mean-geometric mean inequality (2.5).
Proposition 2.2. With the above assumptions for \bar{q} and \bar{x}, we have

$$
\begin{equation*}
1 \leq \frac{A_{n}(\bar{q}, \bar{x})}{G_{n}(\bar{q}, \bar{x})} \leq \exp _{b}\left[\frac{1}{2 Q_{n}^{2} \ln b} \sum_{i, j=1}^{n} \frac{q_{i} q_{j}}{x_{i} x_{j}}\left(x_{i}-x_{j}\right)^{2}\right] \tag{2.6}
\end{equation*}
$$

where $\exp _{b}(x)=b^{x},(b>1)$. The equality holds in both inequalities simultaneously if and only if $x_{1}=\cdots=x_{n}$.

Also, using Theorem 2.1, we have another converse inequality for (2.5).
Proposition 2.3. Let \bar{q} be as above and $\bar{x} \in \mathbf{R}^{n}$ with $x_{i} \geq 1, i=1, \ldots, n$. Then we have the inequality

$$
\begin{equation*}
1 \leq \frac{A_{n}(\bar{q}, \bar{x})}{G_{n}(\bar{q}, \bar{x})} \leq \exp _{b}\left[\frac{1}{4 Q_{n}^{2} \ln b} \sum_{i, j=1}^{n} \frac{q_{i} q_{j}}{x_{i} x_{j}}\left(x_{i}-x_{j}\right)^{2}\right], \tag{2.7}
\end{equation*}
$$

where $b>1$. The equality holds in both inequalities simultaneously if and only if $x_{1}=\cdots=x_{n}$. Remark 2.2. As in the previous remark, if $1 \leq x_{i} x_{j} \leq 2$ then bound (2.7) is better than (2.6). If $x_{i} x_{j} \geq 2$, then (2.6) is better than (2.7).

3. APPLICATIONS FOR THE ENTROPY MAPPING

Let us consider now, the b-entropy mapping of the discrete random variable X with n possible outcomes and having the probability distribution $p=\left(p_{i}\right), i=\{1, \ldots, n\}$,

$$
H_{b}(X)=\sum_{i=1}^{n} p_{i} \log _{b}\left(\frac{1}{p_{i}}\right)
$$

We know (see [1]) that the following converse inequality holds:

$$
\begin{equation*}
0 \leq \log _{b} n-H_{b}(X) \leq \frac{1}{2 \ln b} \sum_{i, j=1}^{n}\left(p_{i}-p_{j}\right)^{2} \tag{3.1}
\end{equation*}
$$

with equality if and only if $p_{i}=1 / n$, for all $i \in\{1, \ldots, n\}$.
The following similar result also holds.
Theorem 3.1. Let X be as above. Then we have

$$
\begin{equation*}
0 \leq \log _{b} n-H_{b}(X) \leq \frac{1}{4 \ln b} \sum_{i, j=1}^{n} \frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}} \tag{3.2}
\end{equation*}
$$

The equality holds if and only if $p_{i}=1 / n$, for all $i \in\{1, \ldots, n\}$.
Proof. As $p_{i} \in(0,1]$, then $\xi_{i}=1 / p_{i} \in[1, \infty)$ and we can apply Theorem 2.1 to get

$$
\begin{align*}
0 & \leq \log _{b} n-H_{b}(X) \leq \frac{1}{4 \ln b} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\frac{1}{p_{i}}-\frac{1}{p_{j}}\right)^{2} \\
& =\frac{1}{4 \ln b} \sum_{i, j=1}^{n} \frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}} \tag{3.3}
\end{align*}
$$

The equality holds iff $\xi_{i}=\xi_{j}$, for all $i, j \in\{1, \ldots, n\}$ which is equivalent to $p_{i}=p_{j}$, for all $i, j \in\{1, \ldots, n\}$, i.e., $p_{i}=1 / n$, for all $i \in\{1, \ldots, n\}$.

The following corollary is important in applications as it provides a sufficient condition on the probability p so that $\log _{b} n-H_{b}(X)$ is small enough.
Corollary 3.2. Let X be as above and $\varepsilon>0$. If the probabilities $p_{i}, i=1, \ldots, n$, satisfy the conditions

$$
\begin{equation*}
\frac{1}{2}[2+k-\sqrt{k(k+4)}] \leq \frac{p_{i}}{p_{j}} \leq \frac{1}{2}[2+k+\sqrt{k(k+4)}], \tag{3.4}
\end{equation*}
$$

for all $1 \leq i<j \leq n$, where

$$
k=\frac{4 \varepsilon \ln b}{n(n-1)}, \quad(n \geq 2)
$$

then we have the estimation

$$
\begin{equation*}
0 \leq \log _{b} n-H_{b}(X) \leq \varepsilon \tag{3.5}
\end{equation*}
$$

Proof. Observe that

$$
\frac{1}{4 \ln b} \sum_{i, j=1}^{n} \frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}}=\frac{1}{2 \ln b} \sum_{1 \leq i<j \leq n} \frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}}
$$

Suppose that

$$
\frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}} \leq k, \quad \text { for } 1 \leq i<j \leq n
$$

Then

$$
p_{i}^{2}-(2+k) p_{i} p_{j}+p_{j}^{2} \leq 0, \quad \text { for } 1 \leq i<j \leq n .
$$

Denoting $t=p_{i} / p_{j}$, the above inequality is equivalent to $t^{2}-(2+k) t+1 \leq 0$, i.e., $t \in\left[t_{1}, t_{2}\right]$, where

$$
t_{1}=\frac{2+k-\sqrt{k(k+4)}}{2} \text { and } t_{2}=\frac{2+k+\sqrt{k(k+4)}}{2}
$$

If we choose $k=(4 \varepsilon \ln b / n(n-1))$, then by (3.3) we have

$$
\begin{aligned}
0 & \leq \log _{b} n-H_{b}(X) \leq \frac{1}{4 \ln b} \sum_{i, j=1}^{n} \frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}} \\
& =\frac{1}{2 \ln b} \sum_{1 \leq i<j \leq n} \frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}} \\
& \leq \frac{1}{2 \ln b} \sum_{1 \leq i<j \leq n} k=\frac{n(n-1)}{4 \ln b} \cdot \frac{4 \varepsilon \ln b}{n(n-1)}=\varepsilon,
\end{aligned}
$$

and the corollary is proved.
Now, consider the bounds

$$
\left.M_{1}:=\frac{1}{2 \ln b} \sum_{i, j=1}^{n}\left(p_{i}-p_{j}\right)^{2}, \quad \text { (given by }(3.1)\right)
$$

and

$$
M_{2}:=\frac{1}{4 \ln b} \sum_{i, j=1}^{n} \frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}}, \quad \text { (given by (3.3)). }
$$

We give an example for which M_{1} is less than M_{2} and another example for which M_{2} is less than M_{1} which will suggest that we can use both of them to estimate the above difference $\log _{b} n-H_{b}(X)$.
Example 3.1. Consider the probability distribution

$$
\begin{array}{lll}
p_{1}=0.3475, & p_{2}=0.2398, & p_{3}=0.1654, \\
p_{4}=0.1142, & p_{5}=0.0788, & p_{6}=0.0544 .
\end{array}
$$

In this case,

$$
\overline{M_{1}}=6.5119, \quad \bar{M}_{2}=12.1166,
$$

where

$$
\bar{M}_{1}:=\frac{1}{2} \sum_{i, j=1}^{n}\left(p_{i}-p_{j}\right)^{2}, \quad \bar{M}_{2}:=\frac{1}{4} \sum_{i, j=1}^{n} \frac{\left(p_{i}-p_{j}\right)^{2}}{p_{i} p_{j}}, \quad \text { and } \quad n=6 .
$$

Example 3.2. Consider the probability distribution

$$
\begin{array}{lll}
p_{1}=0.2468, & p_{2}=0.2072, & p_{3}=0.1740, \\
p_{4}=0.1461, & p_{5}=0.1227, & p_{6}=0.1031 .
\end{array}
$$

In this case,

$$
\bar{M}_{1}=5.2095, \quad \bar{M}_{2}=2.3706
$$

4. BOUNDS FOR JOINT ENTROPY

Consider the joint entropy of two random variable X and $Y[2$, p. 25]

$$
H_{b}(X, Y):=\sum_{x, y} p(x, y) \log _{b} \frac{1}{p(x, y)}
$$

where the joint probability $p(x, y)=P\{X=x, Y=y\}$.
In [3], Dragomir and Goh have proved the following result using Theorem 1.1.
Theorem 4.1. With the above assumptions, we have that

$$
\begin{equation*}
0 \leq \log _{b}(r s)-H_{b}(X, Y) \leq \frac{1}{2 \ln b} \sum_{x, y} \sum_{u, v}(p(x, y)-p(u, v))^{2}, \tag{4.1}
\end{equation*}
$$

where the range of X contains r elements and the range of Y contains s elements. Equality holds in both inequalities simultaneously if and only if $p(x, y)=p(u, v)$, for all $(x, y),(u, v)$.

The following corollary is useful in practice.
Corollary 4.2. With the above assumptions and if

$$
\max _{(x, y),(u, v)}|p(x, y)-p(u, v)| \leq \sqrt{\frac{2 \varepsilon \ln b}{r s}}, \quad \varepsilon>0
$$

then we have the estimation

$$
0 \leq \log _{b}(r, s)-H_{b}(X, Y) \leq \varepsilon .
$$

Now, using the second converse inequality embodied in Theorem 2.1, we are able to prove another upper bound for the difference $\log _{b}(r s)-H_{b}(X, Y)$.

Theorem 4.3. With the above assumptions, we have

$$
\begin{equation*}
0 \leq \log _{b}(r s)-H_{b}(X, Y) \leq \frac{1}{4 \ln b} \sum_{x, y} \sum_{u, v} \frac{(p(x, y)-p(u, v))^{2}}{p(x, y) p(u, v)} \tag{4.2}
\end{equation*}
$$

where the range of X and Y are as above. Equality holds in both inequalities simultaneously iff $p(x, y)=p(u, v)$, for all (x, y) and (u, v).
Proof. Using Theorem 2.1, we have for $p_{i}=p(x, y)$ and $\xi_{i}=(1 / p(x, y))$,

$$
\begin{aligned}
0 & \leq \log _{b}\left(\sum_{x, y} p(x, y) \cdot \frac{1}{p(x, y)}\right)-\sum_{x, y} p(x, y) \log _{b} \frac{1}{p(x, y)} \\
& \leq \frac{1}{4 \ln b} \sum_{x, y} \sum_{u, v} p(x, y) p(u, v)\left(\frac{1}{p(x, y)}-\frac{1}{p(u, v)}\right)^{2} \\
& =\frac{1}{4 \ln b} \sum_{x, y} \sum_{u, v} \frac{(p(x, y)-p(u, v))^{2}}{p(x, y) p(u, v)},
\end{aligned}
$$

which is clearly equal to the desired result. The case of equality is obvious by Theorem 2.1.
The following corollary is important in practical applications.

Corollary 4.4. Let X and Y be as above and $\varepsilon>0$. Denote $P=\max p(x, y)$ and $p=$ $\min p(x, y)$. If

$$
\begin{equation*}
\frac{P}{p} \leq 1+k+\sqrt{k(k+2)}, \tag{4.3}
\end{equation*}
$$

where

$$
k:=\frac{2 \varepsilon \ln b}{(r s)^{2}}
$$

then we have the bound

$$
0 \leq \log _{b}(r s)-H_{b}(X, Y) \leq \varepsilon
$$

Proof. At the beginning, let us consider the inequality

$$
\frac{(a-b)^{2}}{2 a b} \leq k, \quad \text { for } a, b>0, \text { and } k \geq 0 .
$$

This inequality is clearly equivalent to

$$
a^{2}-2(1+k) a b+b^{2} \leq 0
$$

or denoting $t:=a / b$, to

$$
t^{2}-2(1+k) t+1 \leq 0
$$

i.e.,

$$
1+k-\sqrt{k(k+2)} \leq t \leq 1+k+\sqrt{k(k+2)} .
$$

Now, let suppose that

$$
\begin{equation*}
1+k-\sqrt{k(k+2)} \leq \frac{p(x, y)}{p(u, v)} \leq 1+k+\sqrt{k(k+2)} \tag{4.4}
\end{equation*}
$$

for all (x, y) and (u, v) and $k:=\left(2 \varepsilon \ln b /(r s)^{2}\right)$. Then by (4.2), we have

$$
\begin{aligned}
0 & \leq \log _{b}(r s)-H_{b}(X, Y) \leq \frac{1}{4 \ln b} \sum_{x, y} \sum_{u, v} \frac{(p(x, y)-p(u, v))^{2}}{p(x, y) p(u, v)} \\
& \leq \frac{1}{2 \ln b} \cdot(r s)^{2} k=\frac{(r s)^{2}}{2 \ln b} \cdot \frac{2 \varepsilon \ln b}{(r s)^{2}}=\varepsilon .
\end{aligned}
$$

Now, let observe that inequality (4.4) is equivalent to

$$
1+k-\sqrt{k(k+2)} \leq \frac{p}{P} \leq \frac{P}{p} \leq 1+k+\sqrt{k}(k+2)
$$

But $p / P \geq 1+k-\sqrt{k(k+2)}$ is equivalent to

$$
\frac{P}{p} \leq \frac{1}{1+k-\sqrt{k(k+2)}}=k+1+\sqrt{k(k+2)}
$$

and the corollary is proved.

REFERENCES

1. S.S. Dragomir and C.J. Goh, A counterpart of Jensen's discrete inequality for differentiable convex mapping and application in information theory, Mathl. Comput. Modelling 24 (2), 1-4, (1996).
2. S. Roman, Coding and Information Theory, Springer-Verlag, New York.
3. S.S. Dragomir and C.J. Goh, Further counterparts of some inequalities in information theory, (submitted).

[^0]: The authors are grateful to the referee for his valuable suggestions.
 0898-1221/99/\$ - see front matter. © 1999 Elsevier Science Ltd. All rights reserved. Typeset by $\mathcal{A}_{\mathcal{M} S}$-TEX
 PII: S0898-1221(99)00177-7

