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1. I N T R O D U C T I O N  

The present paper continues the investigations started in [1], where the main result is the follow- 

ing. 

THEOREM 1.1. Let ~k E (0, c~), p k > 0 ,  k = 1,. . . , n w i t h  ~-~=1'~ Pk = 1 a n d b >  1. Then 

0 <_ log b Pk~k -- E Pk lOgb (k 

k=l (1.1) 
n 

1 ~ PkPi 

< ~ k~l  ~ (~ - ~k)2" 

The equality holds in both inequalities simultaneously i f  and only if  ~1 . . . . .  ~,~. 

The authors are grateful to the referee for his valuable suggestions. 
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2. A N E W  A N A L Y T I C  I N E Q U A L I T Y  F O R  L O G A R I T H M S  

We shall start  to the following analytic inequality for logarithms which provides a different 
bound than the inequality of (1.1). 

THEOREM 2.1. Let ~k E [1, oo) and pk > 0 wi th  ~-~=l Pk = 1 and b > 1. Then  we have 

0 _< log b Pk(k -- Pk lOgb ~k 
k = l  

(2.1) 

< PiPJ (~  _ ~j)2. 
- 4 1 n b  

~, j=l  

The  equal i ty  holds in both inequalities s imul taneously  i f  and o n l y / f ~ l  . . . . .  ~,~. 

PROOF. We shall use the well-known Jensen's discrete inequality for convex mappings which 

states that  

f p ix i  <_ p J  (x~), (2.2) 
i = l  

n for all Pi > 0, ~-~i=1Pi = 1, f a convex mapping on a given interval I and xi  E I ( i  = 1 , . . .  ,n ) .  

Now, let consider the mapping f :  [1, ~ )  --~ R, f ( x )  = x2 /2  + lnx. Then 

1 x 2 + l  
f '  (x) = x + - -- - - ,  for all x E [1, oo) 

X X 

and 
1 x 2 - 1 

f " ( x ) = l  x2 x2 , for a l l x e [ 1 , o o ) ,  

i.e., f is a strictly convex mapping on [1, oo). 
Applying Jensen's discrete inequality for convex mappings, we have 

1 ~i  + In Pi(i < "~ Pi(~ + Pi In ~i, 
2 - 

\ i = 1  / i=1 i = l  

( 2 . 3 )  

which is equivalent to 

n n 1 n 2 
in P~i  - Pi ln~i _< ~ Pi~i - P ~  • 

i = l  k i = l  

But 

n 

i , j = l  i , j = l  

Li=I i=1 

and then the above inequality becomes 

n n 1 _  j)2 

In Pi~i - E p i  In ~i _< m 

i ~ 1  i , j = l  

= 2 i~  - P~i  
L i = l  

(2.4) 

Now, as lOgb x = (ln x / l n  b), inequality (2.4) is equivalent to the desired inequality (2.1). 
The case of equality follows by the strict convexity of f and we omit the details. 
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REMARK 2.1. 

and 

Define 
n 

1 ~ p~pj 
B I : =  21nbi, .= ~ - ~ j ( { i - ~ j )  2, 

n 
1 

41nb E PiPj (~ - ~j)2, 

(as in Theorem 1.1) 

B2 : -  (as in Theorem 2.1) 
i,j=l 

and compute the difference 

n [ 1] 
1 E P i P J  (~i - ~j)2 1 B1 - B2 = 2 In b ~ j  

i , j = l  

1 @, P i P j  (~i --  ~j)2 (2 
4 In b Z_, ~ j  

i , j = l  

Consequently, if~i E [1, oc) so that  ~i~j -< 2, for all i , j  E {1, . . .  ,n}, then the bound B2 provided 
by Theorem 2.1 is better than the bound B1 provided by Theorem 1.1. If ~i E [1,cc) so that  
~i~j _> 2, for all i , j  E {1, . . .  ,n}, then Theorem 1.1 provides a better result than Theorem 2.1. 

We give now some applications of the above results for arithmetic mean-geometric mean in- 
equality. 

n Recall that  for qi > 0 with Qn := ~i=lqi ,  the arithmetic mean of xi with the weights qi, i E 
{ 1 , . . . , n }  is 

n 

1 (A) 
An (~,5) := ~ 4=1 

and the geometric mean of xi with the weights qi, i E {1, . . .  ,n}, is 

/ n \ 1/Q~ 

It is well known that the following inequality so-called arithmetic mean-geometric mean in- 
equality, holds 

An (~, 5) Z Gn (~, z) (2.5) 

with equality if and only if xl . . . . .  xn. 
Now, using Theorem 1.1, we can state the following proposition containing a counterpart of 

the arithmetic mean-geometric mean inequality (2.5). 

PROPOSITION 2.2. With the above assumptions for -~ and 5, we have 

1 < An (-~,5) 1 ~ qiqj 

where exPb(X ) = b x, (b > 1). The equa//ty holds in both inequalities simultaneously//:and only 
if Xl . . . .  -= Xn. 

Also, using Theorem 2.1, we have another converse inequality for (2.5). 

PROPOSITION 2.3. Let ~ be as above and 5 E R n with x~ >_ 1, i = 1 , . . . ,  n. Then we have the 
inequality 

1 < An (~,5) 1 ~ qiqj 
- Gn (~,5-------~ <- exPb 4Q21n------b i,~=1 X i X j  ( x i  --  x j ) 2  ' (2.7) 

where b > 1. The equality holds in both inequalities simultaneously i f  and o n l y / f x l  . . . . .  xn. 

REMARK 2.2. As in the previous remark, if 1 _< xixj  <_ 2 then bound (2.7) is better  than (2.6). 
If xixj  >_ 2, then (2.6) is better than (2.7). 
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3. A P P L I C A T I O N S  F O R  T H E  E N T R O P Y  M A P P I N G  

Let us consider now, the b-entropy mapping of the discrete random variable X with n possible 
outcomes and having the probability distribution p -- (p~), i = {1 , . . . ,  n}, 

(1) 
Hb (X) = Z p i  log b . 

i = l  

We know (see [1]) that  the following converse inequality holds: 

O<--l°gbn--Hb(X) <-- 21nb (P~-PJ)  
i , j = l  

(3.1) 

with equality if and only i fpi  = 1in, for all i E {1, . . .  ,n}. 
The following similar result also holds. 

THEOREM 3.1. Let X be as above. Then we have 

1 ~ (Pi : p j ) 2 .  
0 _< logbn -- Hb(X) <_ 41nb PiPj 

i,j----1 

(3.2) 

The equality holds i f  and only i f  p~ = 1in, for ali i E {1 , . . . ,  n}. 

PROOF. As Pi E (0, 1], then ~i = 1/p~ E [1, oc) and we can apply Theorem 2.1 to get 

1 ~ PiPj 0 _< l o g b n -  Hb(X) <_ 41nb 
i , j = l  

_ 1 n ( p i _ p j ) 2  

4 ~n b ,~j l .= PiPj 

(3.3) 

The equality holds iff ~i = ~j, for all i , j  E {1, . . .  ,n} which is equivalent to Pi = Pj, for all 
i , j  E {1 , . . . , n} ,  i.e., Pi = 1in, for all i C {1 , . . . , n} .  | 

The following corollary is important in applications as it provides a sufficient condition on the 
probability p so that  log b n - Hb(X) is small enough. 

COROLLARY 3.2. Let X be as above and ~ > O. I f  the probabifities Pi, i = 1 , . . . ,  n, satisfy the 

conditions 

2 - p j  - 2 

for all 1 <_ i < j <_ n, where 
4e in b 

k - n ( n  - 1 ) '  ( n  > 2 ) ,  

then we have the estimation 
0 < log b n - Hb(X) <_ e. (a.5) 

PROOF. Observe that  

1 ~-~ (pi=_pj) 2 _ 1 ~ ( p i - p j )  2 

4In b~,j=l p~pj 2 In b l<_i<j<_u PiPj 

Suppose that  
(p~ _ pj)2 

<_k, f o r l < _ i < j < n .  
P i P j  
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Then 
2 < 0 ,  f o r l < i < j < n .  p/2 _ (2 + k)p@j  + p j  _ _ _ 

Denoting t = p~ /p j ,  the above inequality is equivalent to t 2 - (2 + k) t  + 1 N 0, i.e., t E It1, t2], 

where 

2 + k - v / ~ + 4 )  and t2 2 + k + v / k ( k + 4 )  
tl  = -- 

2 2 

If we choose k = ( 4 ¢ l n b / n  (n  - 1)), then by (3.3) we have 

In1 b ~ (Pi---pj)2 0 < log b n - H b ( X )  <_ 
4 PiPj i,j=l 

1 v "  _ p J)2 
2 In b A.~ p~pj 

l<i<j<n 

1 n ( n  - 1) 4elnb 
-<21n---b E k =  41nb n ( n - 1 )  

l~.i<j<n 

---~, 

and the corollary is proved. 

Now, consider the bounds 

| 

1 n 
21 b - p ; ) 2 ,  

%j=1 

(given by (3.1)) 

and 

- ~  (p~ _ p j ) 2  (given by (3.3)). 1 
M2 := 4 lab  "~'=, : p-~j ' 

We give an example for which M1 is less than M2 and another example for which M2 is 
less than M1 which will suggest that  we can use both of them to estimate the above difference 

log b n - Hb ( X ) .  

EXAMPLE 3.1. Consider the probability distribution 

Pl = 0.3475, t)2 = 0.2398, P3 = 0.1654, 

P4 = 0.1142, P5 -- 0.0788, P6 = 0.0544. 

In this case, 

where 

M1 = 6.5119, M2 = 12.1166, 

_ 2 

M1 := -~ (Pi - Pj)  , 
i , j= l  

n 2 
- -  1 ~ ( P i -  P j )  
M2 :-= 4i,~__1 p-~j  , 

EXAMPLE 3.2. Consider the probability distribution 

and n = 6. 

In this case, 

Pl = 0.2468, P2 = 0.2072, P3 = 0.1740, 

P4 -- 0.1461, P5 = 0.1227, P6 = 0.1031. 

M1 = 5.2095, M2 = 2.3706. 
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4. B O U N D S  F O R  J O I N T  E N T R O P Y  

Consider the joint entropy of two random variable X and Y [2, p. 25] 

Hb(X, Y) := E p  (x, y)log b p (x, y ) '  
x,y  

where the joint probability p (x, y) = P {X = x, Y = y}. 
In [3], Dragomir and Goh have proved the following result using Theorem 1.1. 

THEOREM 4.1. With the above assumptions, we have that 

1 
0 < log b (rs) - Hb (X, Y) < 2 In b E E (p (x, y) - p (u, v)) 2 , 

x , y  ~,V 

(4.1) 

where the range of X contains r elements and the range of Y contains s elements. Equality holds 
in both inequalities simultaneously if and only if p (x, y) = p (u, v), for all (x,y), (u,v). 

The following corollary is useful in practice. 

COROLLARY 4.2. With the above assumptions and if 

max [p(x,y) p(u,v)[ </~/2~lnb 
-- _ - - ,  ~ > O~ 

(x,y),(u,v) V rs 

then we have the estimation 

0 _< log b (r, s) - Hb (X, Y) <_ e. 

Now, using the second converse inequality embodied in Theorem 2.1, we are able to prove 
another upper bound for the difference log b (rs) - Hb (X, Y). 

THEOREM 4.3. With the above assumptions, we have 

1 (p (x, y) - p (u, v)) 2 
0 < log b (rs) - Hb (X, Y) < 4 In b E E p (x, y) p (u, v) ' 

X~y U~V 

(4.2) 

where the range of X and Y are as above. Equality holds in both inequalities simultaneously iff 
p (x, y) -- p (u, v), for all (x, y) and (u, v). 

PROOF. Using Theorem 2.1, we have for pi = p(x, y) and (i = (1/p (x, y)), 

1 ) _ E P ( x , y ) l o g  b 1 0 _< log b E p (x, y) .  P (x, y----~ p (x, y-----~ 
x , y  x , y  

) 1 E E P ( x , y ) p ( u , v  ) P(x,Y) p ( l v )  2 -< 41nb 
X~y U,~ 

1 (p (x, y) - p (u, v)) 2 
= p ( x , y ) p ( u , v )  ' 

which is clearly equal to the desired result. The case of equality is obvious by Theorem 2.1. | 

The following corollary is important in practical applications. 
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COROLLARY 4.4. 
minp(x,  y). I f  

where 

then we have the bound 

Let  X and Y be as above and e > O. Denote P 

P _< 1 +  k + v /k (k  +2 ) ,  
P 

2e In b 
k . ' ~  - -  

(rs) ~'  

0 _< log b (rs) - Hb (X, Y) _< ~. 

= m a xp (x , y )  and p = 

(4.3) 

PROOF. At the beginning, let us consider the inequality 

(a - b) 2 <_ k, 
2ab 

fo ra ,  b > 0 ,  a n d k > _ 0 .  

This inequality is clearly equivalent to 

a ~ - 2 ( l + k ) a b + b  2 ~ 0  

or denoting t :-- a/b, to 

i .e.  

Now, let suppose that  

t 2 - 2 ( 1 +  k ) t +  1 < O, 

l + k - v / k ( k + 2 ) < t < l + k + v / k ( k + 2 ) .  

l + k - x / k ( k  + 2 ) < _ - -  
p ( x , y )  

p ( u , v )  
< 1 + k  + ~/k (k + 2), (4.4) 

for all (x, y) and (u, v) and k := (2Eln b/(rs)2). Then by (4.2), we have 

1 (p (x, y) - p (u, v)) 2 
0 _< log b (rs) - Hb (X, Y) < 4 In b E E p (x, y) p (u, v) 

1 (rs) 2 2elnb 
< - - .  ( r s )  2 k = = ~. 
- 21nb 21nb (rs) 2 

Now, let observe that  inequality (4.4) is equivalent to 

P <P<l+k+v/~(k+2)._ l + k - ~ < _ - f _  p _ 

But p / P  >_ 1 + k - X/k (k + 2) is equivalent to 

P 1 _ <  

; - l + k -  v ~ ( k + 2 )  
= k + 1 + x/k (k + 2) 

and the corollary is proved. | 
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