
An International Journal 
Available online at www.sciencedirect.com__ computers & 

mathematics 
with applications 

Computers and Mathematics with Applications 49 (2005) 575-588 
www.elsevier.com/locate/camwa 

A Symmetric  Information Divergence 
Measure of the Csisz r's 

f -Divergence Class and Its Bounds 

P .  K U M A R  AND S .  C H H I N A  
Mathematics Department 

College of Science and Management 
University of Northern British Columbia 

Prince George BC V2N4Z9, Canada 
<kumarp>< chhinas©unbc, ca> 

(Received February 2004; accepted July PO04) 

A b s t r a c t - - A  symmetric measure of information divergence is proposed. This measure belongs 
to the class of Csisz~r's f-divergences. Its properties are studied and bounds in terms of well known 
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1. I N T R O D U C T I O N  

There  are several types  of information divergence measures s tudied  in l i te ra ture  which com- 

pare two probabi l i ty  d is t r ibut ions  and have appl icat ions in informat ion theory,  s tat is t ics  and 

engineering. A convenient classification to differentiate these measures  is to categorize them as 

parametr ic ,  nonparamet r ic  and ent ropy- type  measures of informat ion [1]. Pa ramet r i c  measures 

of informat ion measure  the  amount  of information about  an unknown pa ramete r  0 supplied by 

the d a t a  and are functions of 0. The  best  known measure of this  t ype  is F isher ' s  measure of 

informat ion [2]. Nonparamet r ic  measures give the  amount  of informat ion suppl ied by the  da t a  

for d iscr iminat ing in favor of a probabi l i ty  d is t r ibut ion f l  against  another  f2, or for measuring 

the  dis tance or affinity between f l  and f2- The Kullback-Leibler  measure  is the  bes t  known in 

this  class [3]. Measures  of ent ropy express the  amount  of informat ion contained in a dis t r ibut ion,  

t ha t  is, the  amount  of uncer ta in ty  associated with  the  outcome of an exper iment .  The classical 

measures of this  type  are Shannon 's  [4] and Rdnyi 's  measures [5]. The  construct ion of measures 

of informat ion divergence is not an easy task. Methods  for deriving pa ramet r i c  measures of 

informat ion from the nonparamet r ic  ones and from the informat ion matr ices  axe suggested in [1]. 
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In this paper, we present a new symmetric nonparametric information divergence measure 
which belongs to the class of Csiszdr's f-divergences [6,7]. In Section 2, we discuss the Csisz£r's 
f-divergences and their properties. Information inequMities are presented in Section 3. New 
symmetric divergence measure and its bounds are obtained in Section 4. In Section 5, it is shown 
that the suggested measure can be applied to the parametric family of distributions. A numerical 
illustration for studying the behavior of new measure is shown in Section 6. Section 7 concludes 
the paper. 

2. C S I S Z / k R ' S  F - D I V E R G E N C E S  A N D  P R O P E R T I E S  

Let ~ = {xl, x2, ...} be a set with at least two elements, fi(~), the set of all subsets of 
and ~, the set of all probability distributions P = (p(x) : x E f~) on ft. A pair (P, Q) e ~2 
of probability distributions is called a simple versus simple testing problem. Two probability 
distributions P and Q are called orthogonal (P _k Q) if there exists an element A E P(~) 
such that P(A) = Q(A c) = 0, where A c = f~/A. A testing problem (P,Q) E ~2 is called 
least informative if P = Q and most informative if P _L Q. b-hrther, let F be a set of convex 
functions f : [0, co) , ~ ( -co ,  0o)] continuous at 0, that is, f(0) = lim~10 f(u), F0 = {f  E 
F : f(1)  = 0} and let D _ f  and D+f  denote the left-hand side and right-hand side derivatives 
of f ,  respectively. Define f* E F ,  the *-conjugate (convex) function of f ,  by f*(u) = uf(1/u) ,  
u 6 (0, co) and ] = f + f*. For a convex function f : [0, co) -~ •, the f-divergence of the 
probability distributions P and Q is defined [6-8], 

C / ( P , Q )  = Z q(x) f ( p ( x ) ~  (2.1) \q(x)/  
x E ~  

It is well known that C/(P,  Q) is a versatile functional form which results in a number of popu- 
lar divergence measures [9,10]. Most common choices of f satisfy f(1) = 0, so that CI(P, P) = O. 
Convexity ensures that divergence measure Cy(P, Q) is nonnegative. Some examples are f (u)  = 
u l n u  provides the Kullback-Leibler measure [3], f (u)  = ]u - 1] results in the variational dis- 
tance [11,12], f (u)  = (u - 1) 2 yields the x2-divergence [13]. 

The basic general properties of f-divergences including their axiomatic properties and some 
important classes are given in [9]. For f ,  f*, f l  E F, V (P, Q) E p2, u E (0, co), 

(i) c (p,Q) = 
(ii) UNIQUENESS THEOREM. (See [14].) 

I A (P, Q) = I / (P ,  Q), iff ~c E R : f l  (u) - f (u) = c (u - 1). 

(iii) Let c E [D_f(1), D+f(1)]. Then, f l(u) = f(u) - c(u - 1) satisfies f l(u) >_ f(1),  Vu E 
[0, co) while not changing the f-divergence. Hence, without loss of generality f l  (u) >_ f(1), 
Vu c [0,0o). 

(iv) SYMMETRY THEOREM. (See [14].) 

I f . ( P , Q ) = I / ( P , Q ) ,  i f f 3 c e R : f * ( u ) - f ( u ) = c ( u - 1 ) .  

(V) RANGE OF VALUES THEOREM. (See [15].) 

f (1) _< I f  (P, Q) _< f (0) + f* (0). 

In the first inequality, equality holds iff P = Q. The latter provides f is strictly convex at 1. 
The difference I f (P,  Q) - f(1) is a quantity that compares the given testing problem (P, Q) c p2 
with the least informative testing problem. Given f C F, by setting f (u)  := f (u)  - f(1),  we 
can have f(1)  -- 0 and hence, without loss of generality, f E F0. Thus, I f (P,  Q) serves as an 
appropriate measure of similarity between two distributions. 
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In the second inequality, equality holds iff P A_ Q. The latter provides ](0) < f(0)+f*(0)  < co. 
The difference Ig(P, Q) := ](0) - I f ( P ,  Q) is a quantity that compares the given testing prob- 
lem (P, Q) e F2 with the most informative testing problem. Thus, Ig(P, Q) serves as an appropri- 
ate measure of orthogonality for the two distributions where the concave function g : [0, co) ~ R 
is given by g(u) = f(O) + uf*(O) - f(u). 

(vi) CHARACTERIZATION THEOREM. (See [7].) Given a mapping I : ~2 ~ (-oc,  co), 
(a) I is an f-divergence, that is, there exists an f C IF, such that 

I (P, Q) = cs  (P, Q), v (P, Q) e P~. 

(b) Cf(P, Q) is invariant under permutation of ~. 
(c) Let A = (A~, i _> 1) be a partition of ~, and PA = (P(Ai), i _> 1) and QA = 

(Q(Ai), i >_ 1) be the restrictions of the probability distributions P and Q to A. 
Then, I(P,Q) >_ I(PA, QA) with equality if P(Ai) × p(x) = Q(A~) x p(x), Vx c Ai, 

i>_1. 
(d) Let P1, P2 and Q1, Q2 be probability distributions on ft. Then, 

I (aP1 + (1 - a)/)2, aQ1 + (1 - a) Q2) _< aI (P1, Q1) + (1 - a) I (P2, Q2)- 

By characterization theorem, the *-conjugate of a convex function f is f* (u) - uf(1/u). 
For brevity, in what follows now, we will denote Cf(P, Q), p(x), q(x), and ~-~en by C(P, Q), 

p, q, and ~ ,  respectively. 
Some popularly practised information divergence measures are as follows. 

X ~-Divergences. 

VARIATIONAL DISTANCE. (See [11,12].) 

V (P, Q) = ~ [p - q]. 

x2-DIVERGENCE. (See [13].) 

x2(p,Q) E ( p -  q)2 E p  2 
q q 

SYMMETRIC x2-DIVERGENCE. 

(P, Q) = x 2 (p, Q) + x 2 (Q, P) = ~ (P + q) (p - q)~ 
Pq 

KULLBACK AND LEIBLER. (See [3].) 

KULLBACK-LEIBLER SYMMETRIC DIVERGENCE. 

J ( P , Q ) =  K ( P , Q ) +  K ( Q , P ) =  E ( p -  q)ln ( P ) .  

TRIANGULAR DISCRIMINATION. (See [16,17].) 

Ip - ql: A(p,Q) : ? ; q .  

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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SIBSON INFORMATION RADIUS. (See [18-21].) 

(~-1) E - - K -  T - 1 ,  r#1,r>O, 
It (P, Q) = (2.8) 

.--.plnp+qlnq ['P+q'~ 1 ['P+q"l 
L ~- ~ )  = ~ , ~ )  , r = l .  

TANEJA DIVERGENCE MEASURE. (See [22].) 

1 [ /pl-~- + ql -r \  r 
( r - - l ) -  [ } - ' ~ t - - ~ - -  ) (P- -~-q)  - -1] ,  r # l , r > 0 ,  

Tr(P,Q)= ~_..,[,p+q,~, [p+q,~ (2.9) 

t - - r - ) , n  ,-=1. 

The following divergences are famous divergence measures. It may he noted that they are not 
members of the family of CsiszKr's f-divergences (since the functions g'X(u) = u a, a E (0,1) are 
concave). 

BtIATTACHARYYA DISTANCE. (See [23].) 

B (P, Q) = ~ v ~ .  (2.1o) 

HELLINGER DISCRIMINATION. (See [24].) 

h(P,q) = E (2.11) 

RI~NYI MEASURE. (See [5].) 

{ ( r -1 ) - l ln (Y~p~ql -~) ,  r e ( 0 ,  c¢)\{1}, 

Rr (P, Q) = ~-'~pln P, r = 1. (2.12) 
q 

We have the following inequalities relating to V(P, Q), A(P, Q), K(P, Q), and h(P, Q). 

CSlSZiR. (See [6].) 
V2 (P' Q) (2.13) 

K(P,Q) >_ 2 

CSISZ~,R. (See [6,7].) 
v4 (P' Q) (2.14) K (P, Q) > V2 (P' Q) + - -  

- 2 36 

ToPSCE. (See [17].) 

V6 (P' Q) VS (P' Q) (2.15) V e (P, Q) + V4 (P, Q) ~_ + 
K (P, Q) >_ 2 36 270 340200 

VAJDA AND TOUSSAINT. (See [151 and [25], respectively.) 

K (P, Q) _> max {Lx (V), L2 (V)}, (2.16) 

where, from [15], 

and from [26], 

( 2  + V'~ 2V 
L1 (V) = in \ 2  ---L--V/ 2 + V' 0 < V < 2 ,  

V 2 V 4 V s 
L2 (V) -- -~- + ~ + 28--8' 0 < V < 2. 
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TOPSOE. (See [18].) 

~V2 (P,Q) _< A (P,Q) _< v ( P , Q ) .  

LECAM AND DACUNtIA-CASTELLE (SEE [16] AND [17], RESPECTIVELY.). 

KRAFT. (See [27].) 

ToPSCE. (See [18].) 

and 

2h (P, Q) _< A (P, Q) _< 4h (P, Q). 

~V2(P,Q)  <_ h(P,Q) ( 1 - 1 h ( p , Q ) )  . 

1 (p, Q) V 2 (P, Q) _ h (P, Q) _< ~V , 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

{ 2K~(P,Q), s ¢0 ,1 ,  

• ~ (P, Q) = K (Q, P) ,  s = o, (3.3) 

K ( P , Q ) ,  s = 1 ,  

p2 
C¢" ( v , P )  -C¢"  (P,Q), 

(p)S-1 
( s - 1 ) - l E ( p - q )  , E e l ,  

Y~ ( p -  q)ln ( P ) ,  s = l  

2Ks (P, Q) = 

K ( P , Q )  = 

c .  (p, Q) = 

v~ (P, Q) = 

(3.4) 

(3.5) 

(3.6) 

where 

and 

m (~8 (P, Q) - 4~ (P, Q)) ~< Cp (P, Q) - C (P, Q) ~< M (~  (P, Q) - ~ (P, Q)), (3.2) 

K (P, Q) < (log 2) V (P, Q) + log c, (2.21) 

where c--max(pJqi) ,  Vi = 1,. . .  ,n. 

3. I N F O R M A T I O N  B O U N D S  

Different kinds of bounds on the distance, information and divergence measures have been 
studied recently [28-34]. In [28], authors unified and generalized information bounds for C(P, Q) 
studied in [29-34] given in the following theorem. 

THEOREM 3. Let f : I C R+ --~ R be a mapping which is normalized, i.e., f(1) = 0 and suppose 
that 

(i) f is twice differentiable on (r, R), 0 <. r <~ 1 <. R < c~, (f '  and f "  denote the first and 
second derivatives of f ), 

(ii) there exists real constants m, M, such that m < M and m <. x2-Sftt(x) ~ M, Wx C 
(r, R) ,  s c ~¢. 

If P, Q E p2 are discrete probability distributions with 0 < r <. p/q <. R < oo, 

m ~  (P,Q) <. C(P,Q) <. M~8  (P,Q), (3.1) 
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As a consequence of this theorem, following information inequalities which are interesting from 
the information-theoretic point of view, are also obtained in [28]. 

(i) The case s = 2 provides the information bounds in te~mo of the x2-divergence, x2(P, Q), 

m 2 M 2 ~ X  (P, Q) <~ C (P, Q) ~< ~ - x  (P, Q), (3.7) 

and 
m 2  y x  (P, Q) < c .  (R Q) - c (p, Q) < x 2 (p, Q). (3.8) 

(ii) For s -- 1, the information bounds in terms of the Kullback-Leibler divergence, K(P, Q), 

mK (P, Q) ~< C (P, Q) <. MK (P, Q) (3.9) 

and 
m g  (Q, P) <. Cp (P, Q) - C (P, Q) <. MK (Q, P). (3.10) 

(iii) The case s = 1/2 yields the information bounds in terms of the Hellinger's discrimination, 
h(P, Q), 

4mh (P, Q) < C (P, Q) < 4Mh (P, Q) (3.11) 

and (1 ) (1 ) 
4m ~Th/2 (P, Q) - h (P, Q) ~ < C p ( P , Q ) - C ( P , Q ) ~ < 4 M  ~ I / 2  (P, Q) - h (P, Q) . (3.12) 

(iv) For s = 0, the information bounds in terms of the Kullback-Leibler and x2-divergences, 

mK (P, Q) <~ C (P, Q) <~ MK (P, Q) (3.13) 

and 

m (X 2 (Q, P) - K (Q, P)) <~ Cp (P, Q) - C (P, Q) < M (X 2 (Q, P) - K (Q, P) ) .  (3.14) 

4. N E W  I N F O R M A T I O N  D I V E R G E N C E  M E A S U R E  

Let the convex function f : (0, co) ~ ~ be 

f (u) = (u + 1) (u - 1) 2 In u + 1 (4.1) 
2v " 

Then, we have the following new divergence measure belonging to the Csisz£r's f-divergence 

family, 

S (P, Q) = E (p + q) (p - q)2 in p + q (4.2) 
pq 2vf~" 

Since we can express S(P, Q) as 

S ( P , Q ) = E [  (p+q)(p-q)2pq l n [ P ~ q ' V ~ p q  1 '  

this measure can be termed as the Symmetric Chi-Square, Arithmetic, and Geometric Mean 
divergence measure. 

It may be noted that, f(u) in (4.1) satisfies f(1) = 0, so that S(P, P) = 0. Convexity of f(u) 
ensures that divergence measure S(P, Q) is nonnegative. Thus, we have 

(a) S(P, Q) >_ 0 and S(P, Q) = 0, iff P = Q. 
(b) S(P, Q) is symmetric with respect to probability distribution. 
(c) Since f* (u) - uf(1/u) -- f(u), function f(u) is the *-self conjugate. Therefore, Properties 

(i)-(vi) of Section 2 hold good for f(u). 
We now derive information divergence inequalities providing bounds for S(P, Q) in terms of the 
well known divergence measures in the following propositions. 
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PROPOSITION 4.1. Let S(P, Q) and A(P,Q) be defined as (4.2) and (2.7), respectively. Then, 
inequality 

SM (P, Q) < 4 ~ ( p -  q)2 2A (P, Q). (4.3) 
- v ~  

PROOF. Consider the Arithmetic (AM), Geometric(GM) and Harmonic mean(HM) inequality, 
i.e., HM _< GM < AM. Then, 

HM _< AM 
2pq p + q 

o r ,  ~ < - -  
p+q  - 2 

• p + q  2v'-~ or, m -  > in 
2 v ' ~ -  p+q  

Multiplying both sides of (4.4) by (p + q)(p-  q)2/pq, we have 

(p + q) (p _ q)2 In p + q > (p + q) (p - q)2 in 2x/~ 
pq 2v/-p-q - pq P + q" 

(4.4) 

(4.5) 

From HM < GM, we have 2x/~/p + q __ 1, and thus, 

I n 2 V~  ----ln ( 1 +  ( 2v/~ 1 ) ) ~  4 v ~  
p+q  \ p + q  p+q  

2pq 3 (4.6) 
(p + q)2 2" 

Now, from (4.5), (4.6), and summing over all x E fl, we get 

~_~ (p+q)(p_q)21nP+ q < 4 Z  (p_ q)2 2~-~ (p_ q)2 
;q 2v~-4 - v ~  ; +  q ' 

SM (P, Q) < 4 ~ (p - q)2 2A (P, Q), - v ~  

and hence, the proof. 
Next, we derive the information bounds in terms of the x2-divergence, that is, x2(P, Q). 

PROPOSITION 4.2. Let x2(P, Q) and S(P, Q) be defined as (2.3) and (4.2), respectively. For 
P, Q E p2 and O < r <<. p/q <~ R < oc, we have, 

o <_ s(P,Q) 

( 1 ) [ r T1 ( 3 r 2 + 4 r + 3 ) ( r  1) 2iX 2(P,Q) (4.7) 4r 3 ( r+1)  4(r 2 - r + 1 ) ( r + 1 )  2 1 n - ~  + 

and 

0 < S,(P, Q) - S(P, Q) 
( 1 ) [  r + l  ] (4.8) 

~< 4r 3 ( r + l )  4(r 2 - r + l ) ( r + l )  2 1 n ~ T ( 3 r  2 + 4 r T 3 ) ( r - 1 )  2 X 2(P,Q), 

where 

s p ( P , Q ) = Z ( P - q ) 2  [2(2p2+pq+q2)" P+qin--+p2-2pq+q]. (4.9) 
2p2q 2x/-~ 

PROOF. From the expression of f(u) in (4.1), we have 

f ( ~ )  ~ 2 ( 2 ~ + ~ + 1 )  ~ + 1  = in ~ + (u - 1) 2 , (4.10) 
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and thus, 

Further, 

( 1 ) [  ] 
f"(u)= 2 u a ( u + l )  4 ( u 2 - u + l ) ( u + l ) 2 m - f f - ~ + ( 3 u 2 + 4 ~ + 3 ) ( u _ l )  2 " (4.11) 

Now, if u e jr, R] C (0, ee), then 

( 1 ) [  ] 
0 < f " ( u )  <_ 2r 3 ( r + l )  4(r 2 - r + l ) ( r + 1 )  2 1 n r + l  _ ~ + (3r 2 + 4r + 3) (r - 1) 5 , (4.12) 

where r and R are defined above. In view of (3.7), (3.8), and (4.12), we get inequalities (4.7) 
and (4.8), respectively. 

Now, the information bounds in terms of the Kullback-Leibler divergence, K(P, Q) follows. 

PROPOSITION 4.3. Let K(P,Q), S(P,Q), and Sp(P, Q) be defined as (2.6), (4.2), and (4.9), 
respectively. If P, Q E F 2 and 0 < r <<. p/q <<. R < oc, then, 

0 < s (P,Q)  

( 1 ) [  r + l  ] (4.13) 
~< 2r 2 ( r + l )  4(r 2 - r + l ) ( r + l )  2 1 n ~ + ( 3 r  2 + 4 r + 3 ) ( r - 1 )  2 K(P,Q),  

and 

0 < Sp(P ,Q) -  S(P,Q) 

] < 2~2 (~ + 1) 4 (r ~ - ~ + 1) (r + 1) 2 in ~ r  + 1 + (ar~ + 4r + 3) (~ - 1) 5 g (Q, P ) .  (4.14) 

PROOF. Consider f"(u) as given m (4.11) and let the function g : [r, R] ~ R be such that, 

1 4 u + 1 +{3u2+4u (u_l)21 g(u)=uf"(u)=(2u2(u+l))  [ (u2-u+1)(u+l)21n-2-~ , +3) . (4.15) 

Then, 

o<_g(u)___  4(~-~+l)(r+l)~ln-~-~-~ +(a~2+4~+3) ( r -1 )  ~ . (4.16) 

The inequalities (4.13) and (4.14) follow from (3.9), (3.10), and (4.16). 

The following proposition provides the information bounds in terms of the Hellinger's discrim- 
ination, h(P, Q) and rh/2(P, Q). 

PROPOSITION 4.4. Let h(P, Q), ~h/2(P,Q), S(P, Q), and Sp(P, Q) be defined as (2.26), (3.6), 
(4.2), and (4.11), respectively. For P,Q e ~2 and 0 < r <~ p/q <. R < co, 

0<s(P,Q) 
~</ 2 (4.17) 

(u + I)) [4 (R2-R+ I) (R + I)21n R + I +(3R2 + 4R+ 3) (R-I)21h (P' Q) 
R3/2 
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and 

0 <_ Sp(P,Q) - s(P,Q) 
( 2 ) [ 4  R + t  ] ~< Rs/2 (~ + 1) (R2-R+I)(R+I)21n-~-x/~+(3R2+4R+3)(R-1)2 

x ~Vl/2 (P ,Q) -  h(P,Q) . 

(4.18) 

and 

PROOF. 
be such 

then, 

0 < g (~) ( 1 ) [  ] 
< 2R (/~ + 1) 4 ( R 2 - R + I ) ( R + I ) 2 1 n R + I  _ ~+(3R 2 ÷ 4 R ÷ 3 ) ( R - 1 )  2 . 

Thus, (4.21) and (4.22) follow from (3.13), (3.14), and (4.24). 

(4.24) 

o <~ s . ( p , Q )  - s ( p , Q )  ( 1 ) [  ] 
< 2 R ( R + I )  4 ( R ~ - R + I ) ( R + I ) 2 I n R + I  - - ~  + (3R 2 ÷4R + 3 ) ( R -  1) 2 

x (X 2 (Q, P) - K (Q, P)).  

(4.22) 

From the expression (4.1), we have f"(u) as given in (4.11). Let the function g:[r, R] ~ 
that, 

g (u) = u2f" (u) 

-- (2u (ul-+ 1)) [4 ( u 2 -  
, u + l  ] ,  u +  1) (u + 1) 2 m ~  + (3u 2 + 4u + 3) ( u -  1) 2 

(4.23) 

PROOF. For f(u) in (4.1), we have f"(u) given by (4.11). Let the function 9 : [r, R] --~ R be such 
that 

g (~) = ~/~f,, (~) 

- -  2ua/2(u+l)  4(u 2 - u + 1 ) ( u + 1 )  2 m ~ + ( 3 u  2 + 4 u + 3 ) ( u - 1 )  2 , (4.19) 

then, 

o <__ g (~) 
( ) [  R + I  ] 1 4 (R 2 - R + 1) (R + 1) 2 In ~ + (3R 2 + 4R + 3) (R - 1) 2 (4.20) 

2R3/2 (u + 1) 

Thus, inequalities (4.17) and (4.18) are established using (3.11), (3.12), and (4.20). 
Next, follows the information bounds in terms of the Kullback-Leibler and x2-divergences. 

PROPOSITION 4.5. Let x2(P, Q), K(P, Q), S(P, Q), and Sp(P, Q) be defined as (2.3), (2.6), (4.2), 
and (4.11), respectively. If P, Q E p2 and 0 < r <. p/q <. R < c~, then, 

0 <. S(P,Q) 

1 R + I  (3R2+4R+3)(R-l )  2] j K(P,Q) (4.21) <. (2R(R + I)) [4(R2-R+I) (R+I)21n-~--~ + 
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5. PARAMETRIC MEASURE OF INFORMATION 

The parametric measures of information are applicable to regular families of probability dis- 
tributions, that is, to the families for which the following regularity conditions are assumed to be 

satisfied. Let for 0 -- (01, ...Ok), the Fisher information matrix [2] be 

0 log f (X, O) , if 0 is univariate, 

I~ (o) = (5.1) 
E° [o-~i l°gf (X'O) o-~J l°gf (X'O)] k×k' i f0 isk-var ia te ,  

where [[ [[kxk denotes a k x k matrix. 
The regularity conditions are, 

(R1) f(x,O) > 0, for all x C ~ and 0 E O, 
(R2) -~e~f(X, O) exists, for all x e ~t and 0 • O and all i = 1 , . . . ,  k, 

(R3) ~ fA f(x, 0) d# = fA -~f(x, O) dtt, for any A • A (measurable space (X, A) in respect of 
a finite or a-finite measure #), all 0 • O, and all i. 

In [1], authors suggested the following method to construct the parametric measure from the 
nonparametric measure. 

Let k(O) be a one-to-one transformation of the parameter space O onto itself, with k(O) ~ O. 
The quantity 

I~ [0, k (0)] = I~ [f (x, 0), f (x, k (0))], (5.2) 

can be considered as a parametric measure of information based on k (0). 
This method is employed to construct the modified Csisz£r's measure of information about 

univariate 0 contained in X and based on k(O) as, 

(s(x,k(0)) Ic~ [O'k(O)]=/f(x'O)¢\ f(x,O) )d#.  (5.3) 

Now, we have the following proposition for the parametric measure of information from S(P, Q). 
PROPOSITION 5.1. Let the convex function ¢ : ( 0 ,  oe) --~ ~ be 

u + l  ¢ (u) = (u + 1) (u - 1) 2 In - -  (5.4) 
u 2 ~ / - ~  ' 

and the corresponding nonparametric divergence measure, 

S(P,Q) E (p+q)(p-q)2" P+q I n - - .  pq 2v'~ 

Then, the parametric measure S°(P, Q) is the same as S(P, Q). 
PROOF. For discrete random variables X, the expression (5.3) can be written as 

{ q ( x ) )  (5.5) r~ [0, k (0)] = ~ p (x) ¢ \p  (x) ] .  
xEft  

From (5.4), we have 

( q  (x) ~ (; + q) (p _ q)2 In p + q ¢ \p (x) ] = p2q 2v/- ~ '  
where we denote p(x), and q(x) by p and q, respectively. 

Then, sC(p,Q) follows from (5.5) and (5.6) as 

S c (P, Q) := I C [0, k (0)] = E (p + q) (p - q)2 in p + q 

and hence, the proposition. 

(5.6) 

(5.7) 
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6 .  N U M E R I C A L  I L L U S T R A T I O N  

We consider two examples of symmetrical  and asymmetr ical  probabil i ty distributions. We cal- 
culate measures S(P, Q), ~(P ,  Q), x2(P, Q), J(P, Q), and verify bounds derived above for S(P, Q). 
EXAMPLE 1 SYMMETRICAL. Let P be the binomial probabil i ty distribution for the random vari- 
able X with parameters  (n = 8, p = 0.5) and Q its approximated normal  probabil i ty  distribution. 
Then,  we have Table 1. 

Table 1. Binomial Probability Distribution (n ---- 8, p --- 0.5). 

x 0 1 2 3 4 5 6 7 8 

p(x) 0.004 0 .031  0.109 0.219 0 .274  0 .219  0.109 0.031 0.004 

q(x) 0.005 0 .030  0.104 0.220 0 .282  0 .220  0.104 0.030 0.005 
p(x)/q(x) 0.774 1 .042  1.0503 0 .997  0 .968  0.997 1.0503 1 .042  0.774 

The  measures S(P, Q), ff2(P, Q), X2(p, Q), and J(P, Q) are, 

s (P, Q) = 0.00001030, 

x 2 (P, Q) = 0.00145837, 

q~ (P, Q) = 0.00305063, 

J (P, Q) = 0.00151848. 

I t  is noted that ,  

r (=  0.774179933) ~< p ~ R (=  1.050330018). 
q 

The  upper  bound for S(P, Q) based on x2(P, Q) divergence from (4.7), 

1 
Upper  B ° u n d =  ( 4 r 3  (r + 1) / 

=0.00158357, 

4 ( r 2 - r + l )  ( r+1)2  in r + 1 1)21 X2 (p,Q) + (3T2+4T+3)(T-- 

and, thus, 0 < S(P, Q) = 0.00001134 < 0.001575814. The length of the interval is 0.001575814. 
The  upper  bound for S(P, Q) based on K(P, Q) from (4.13), 

B o u n d =  1 r+l+(3r2+4r+3 ( r - 1 ) 2 J  K(P,Q) Upper  (2r2(r.+_i)) [4(r2-r+l)(r+i)21n-~--~ ~ ) 

= 0.002850183, 

and therefore, 0 < S(P, Q)=0.00001134 < 0.002850183. The  length of the interval is 0.002850183. 

EXAMPLE 2 ASYMMETRICAL. Let P be the binomial probabil i ty distribution for the random 
variable X,  with parameters  (n = 8, p = 0.4) and Q its approximated  normal  probabil i ty 
distribution. Then,  we have Table 2. 

Table 2. Binomial Probability Distribution (n = 8,p -- 0.4). 

x 0 1 2 3 4 5 6 7 8 

p(x) 0.017 0 .090  0 .209  0 .279  0 .232  0 . 1 2 4  0 .041  0 . 0 0 8  0.001 

q(x) 0.020 0 .082  0 .198  0 .285  0 .244  0 . 1 2 4  0 . 0 3 7  0.007 0.0007 
p(x)/q(x) 0 . 8 5 0  1 .102  1 .056  0 .979  0 .952  1 .001  1 .097  1 .194  1.401 

The measures S(P, Q), ~I,(P, Q), x2(P, Q), and J(P, Q) are, 

• M (P, Q) = 0.00001134, 

x 2 (P, Q) -- 0.00145837, 

• (p, Q) = 0.00305063, 

J (p, Q) = 0.00151848. 
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It is noted that, 

r (= 0.774179933) < p • R (= 1.050330018). 
q 

The upper bound for S(P, Q) based on x2(P, Q) divergence from (4.7), 

= 1 r+1+{3r2_~4r÷ 3 (r_l)2]x2(p,Q) UpperBound (4r3(r + i)) [4(r2-r+l) (r+l)21n-~-~-~ , ) 
= 0.001575814, 

and thus, 0 < S(P, Q) = 0.00001134 < 0.001575814. The length of the interval is 0.001575814. 
The upper bound for S(P, Q) based on K(P, Q) from (4.13), 

1 
Upper B o u n d =  ( 2 r 2 ( r + l ) )  [4 ( r2 - r+ l ) ( r+1 )21nr+ l+ (3 r2+4r+3)2x /7  ( r - l )  2] K ( P , Q )  

= 0.007996539, 

and 0 < S(P, Q) =- 0.00001134 < 0.007996539. The length of the interval is 0.007996539. 

I . . . . .  Sym-Chi-Square . . . . .  Sym-KulI-Leib New I 

2.5 

1.5 

i 
\ : 

/ 
'~ ./, 

\ [ 
\ t / /  

0.1 o.2 o.3 0.4 o . s  o .e  o.7 0.8 o.9 

Figure Figure 1. Measures S(P, Q)-New, ~(P, Q)-Sym Chi Square, and J(P, Q)- Sym 
Kullback Leibler. 

Figure 1 shows the behavior of S(P, Q)-[New], ~(P,  Q)-[Sym-Chi-square] and 3(P, Q)-[Sym- 
Kull-Leib]. We have considered p = (a, 1 - a) and q = (1 - a, a), a E [0, 1]. It is clear from 
Figure 1 that measures ~(P,  Q) and J(P, Q) have a steeper slope than S(P, Q). 

7. C O N C L U D I N G  R E M A R K S  

The CsiszAr's f-divergence is a general class of divergence measures which includes several di- 
vergences used in measuring the distance or affinity between two probability distributions. This 
class is introduced by using a convex function f ,  defined on (0, co). An important property of this 
divergence is that many known divergences can be obtained from this measure by appropriately 
defining the convex function f .  Nonparametric measures for the Csisz£r's f-divergences are also 
available. For this class of divergences, its properties, bounds, and relations among well known 
divergences have been of interest to the researchers. We have introduced a new symmetric diver- 
gence measure by considering a convex function and have investigated its properties. Further, 
we have established its bounds in terms of known divergence measures• Work on one parametric 
generalization of this measure is in progress and will be reported elsewhere. 



A Symmetric Information Divergence 587 

R E F E R E N C E S  

1. K. Ferentimos and T. Papaiopannou, New parametric measures of information, Information and Control 51, 
193-208, (1981). 

2. R. A. Fisher, Theory of statistical estimation, Proe. Cambridge Philos. Soc. 22, 700-725, (1925). 
3. S. Kullback and A.S. Leibler, On information and sufficiency 22~ 79-86, (1951). 
4. C.E. Shannon, A mathematical theory of communications, Bell Syst. Teeh. Jour. 27, 623-659, (1958). 
5. A. P~nyi, On measures of entropy and information, In Proc. Fourth Berkeley Syrup. on Math. Statist. and 

Prob., 1 pp. 547-561, University of California Press, Berkeley, CA U.S.A, (1961). 
6. I. Csisz~r, Information-type measures of difference of probability distributions and indirect observations, 

Studia Sci. Math. Hungar. 2, 299-318, (1967). 
7. I. Csisz~r, Information measures: A critical survey, In Trans. Seventh Prague Conf. on Information Theory, 

A, pp. 73-86, Academia, Prague, (1974). 
8. S.M. Ali and S.D. Silvey, A general class of coefficients of divergence of one distribution from another, dour. 

Roy. Statist. Soc. B (28), 131-142, (1966). 
9. F. Osterreicher, Csisz£r's f-divergences-Basic properties, Res. Report Collection h t t p  : / / r g r a i a .  vu. edu. au 

/ m o n o g r a p h s / c s i s z a r .  htm, (2002). 
10. P. Kumar and A. Johnson, On information inequalities for the Csisz£r's f-divergences and a new symmetric 

divergence measure, (submitted). 
11. A.N. Kolmogorov, A new invariant for transitive dynamical system, Dokl. Akad. Nauk USSR 119, 861-869, 

(1957). 
12. A.N. Kolmogorov, Entropy per unit time as a metric invariant of automorphisms, Dokl. Akad. Nauk USSR 

120, 754-758, (1958). 
13. K. Pearson, On the criterion that a given system of deviations from the probable in the case of correlated 

system of variables is such that it can be reasonable supposed to have arisen from random sampling, Phil. 
Mag. 50, 157-172, (1900). 

14. F. Liese and I. Vajda, Teubner-Temte zur Mathematik 95, Leipzig, (1987). 
15. I. Vajda, On f-divergence and singularity of probability measures, Period. Math. Hungar. 2, 223-234, (1972). 
16. L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York, (1986). 
17. F. Topsee, 85-98, Res. Rep. Collection: RGMIA 2 (1), (1999). 
18. R. Sibson, Information radius, Z. Wahrs. und Verw Geb. 14, 149-160, (1969). 
19. J. Burbea and C.R. Rao, Entropy differential metric, distance and divergence measures in probability spaces: 

A unified approach, Jour. Multi. Analysis 12, 575-596, (1982). 
20. J. Burbea and C.R. Rao, On the convexity of some divergence measures based on entropy functions, IEEE 

Trans. on Information Theory IT-28, 489-495, (1982). 
21. M. Salicru and I.J. Taneja, Connections of generalized divergence measures with Fisher information matrix, 

Information Sciences 72, 251-269, (1993). 
22. I.J. Taneja, New developments in generalized information measures, Advances in Electronics and Electron 

Physics (Edited by P.W. Hawkes) 91, 37-135, (1995). 
23. A. Bhattacharyya, On some analogues to the amount of information and their uses in statistical estimation, 

Sankh~a 8, 1-14, (1946). 
24. E. Hellinger, Neue begriindung der theorie quadratischen formen von unendlichen vielen ver~inderlichen, Jour. 

Reine Ang. Math. 13{], 210-271, (1909). 
25. Toussaint, Probability of error, expected divergence, and the affinity of several distributions, IEEE Trans. 

on Syst. Man. and Cybern. SMC-8,482-485, (1978). 
26. D. Dacunha-Castelle, Ecole d'dtg de probabilitds de saint-Fleur, VII-1977, Springer, (1978). 
27. C. Kraft, Some conditions of consistency and uniform consistency of statistical procedure, Univ. of Califor- 

nia Publ. in Statistics, Ph.D. Thesis 2, (1955). 
28. I.J. Taneja and P. Kumar, Relative information of type-s, Csiszar's f-divergence and information inequalities, 

Information Sciences, (2003). 
29. S.S. Dragomir, Some inequalities for the Csisz£r's C-divergence, Inequalities for the Csisz£r's f-divergence in 

Information Theory, (Edited by S.S. Dragomir), ht'cp : / / r g m i a . v u .  edu. au /monographs /c s i sza r .h tm,  
(2000). 

30. S.S. Dragomir, A converse inequality for the Csisz£r's e-divergence,Inequalities for the Csisz£r's f-divergence 
in Information Theory, (Edited by S.S. Dragomir), h t t p  : / / r g m i a .  vu. edu. au/monographs/cs  i s z a r ,  htm, 
(2ooo). 

31. S.S. Dragomir, Some inequalities for (m, M)-convex mappings and applications for the Csisz~r's e-divergence 
in information theory, Inequalities for the CsiszgLr's f-divergence in Information Theory, (Edited by S.S. 
Dragomir), h t t p  : / / rgm±a.  vu.  edu. au / rnonographs /cs i sza r ,  htra, (2000). 

32. S.S. Dragomir, Upper and lower bounds for Csisz~r's f-divergence in terms of the Kullback-Leibler distance 
and applications, Inequalities for the Csiszelr~s f-divergence in Information Theory, (Edited by S.S. Dragomir), 
h'ctp : / / r g m i a .  vu. edu. au /monographs / c s i s za r ,  htm, (2000). 

33. S.S. Dragomir, Upper and lower bounds for Csisz~.r's f-divergence in terms of the Hellinger discrimination and 
applications, Inequalities for the Csiszetr's f-divergence in Information Theory, (Edited by S.S. Dragomir), 
http://rgmia.vu, edu. au/mono~raphs/csiszar.htm, (2000). 



588 P. KUMAR AND S. CHHINA 

34. S.S. Dragomir, V. Glu~evid and C.E.M. Pearce, Inequality Theory and Applications, (Edited by Y.J. Cho, 
J.K. Kim and S.S. Dragomir), Nova Science Publishers, Huntington, New York, (2001). 


