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ABSTRACT. A non-parametric symmetric measure of divergence which belongs to the family of
Csiszár’sf -divergences is proposed. Its properties are studied and bounds in terms of some well
known divergence measures obtained. An application to the mutual information is considered. A
parametric measure of information is also derived from the suggested non-parametric measure. A
numerical illustration to compare this measure with some known divergence measures is carried
out.
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1. I NTRODUCTION

Several measures of information proposed in literature have various properties which lead
to their wide applications. A convenient classification to differentiate these measures is to
categorize them as: parametric, non-parametric and entropy-type measures of information [9].
Parametric measures of information measure the amount of information about an unknown
parameterθ supplied by the data and are functions ofθ. The best known measure of this type is
Fisher’s measure of information [10]. Non-parametric measures give the amount of information
supplied by the data for discriminating in favor of a probability distributionf1 against another
f2, or for measuring the distance or affinity betweenf1 andf2. The Kullback-Leibler measure
is the best known in this class [12]. Measures of entropy express the amount of information
contained in a distribution, that is, the amount of uncertainty associated with the outcome of an
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2 PRANESH KUMAR AND ANDREW JOHNSON

experiment. The classical measures of this type are Shannon’s and Rényi’s measures [15, 16].
Ferentimos and Papaioannou [9] have suggested methods for deriving parametric measures of
information from the non-parametric measures and have studied their properties.

In this paper, we present a non-parametric symmetric divergence measure which belongs to
the class of Csiszár’sf -divergences ([2, 3, 4]) and information inequalities. In Section 2, we
discuss the Csiszár’sf -divergences and inequalities. A symmetric divergence measure and its
bounds are obtained in Section 3. The parametric measure of information obtained from the
suggested non-parametric divergence measure is given in Section 4. Application to the mutual
information is considered in Section 5. The suggested measure is compared with other measures
in Section 6.

2. CSISZÁR’ S f−DIVERGENCES AND I NEQUALITIES

Let Ω = {x1, x2, . . . } be a set with at least two elements andP the set of all probability
distributionsP = (p(x) : x ∈ Ω) on Ω. For a convex functionf : [0,∞) → R, the f -
divergenceof the probability distributionsP andQ by Csiszár, [4] and Ali & Silvey, [1] is
defined as

(2.1) Cf (P, Q) =
∑
x∈Ω

q(x)f

(
p(x)

q(x)

)
.

Henceforth, for brevity we will denoteCf (P, Q), p(x), q(x) and
∑
x∈Ω

by C(P, Q), p, q and∑
, respectively.
Österreicher [13] has discussed basic general properties off -divergences including their ax-

iomatic properties and some important classes. During the recent past, there has been a con-
siderable amount of work providing different kinds of bounds on the distance, information and
divergence measures ([5] – [7], [18]). Taneja and Kumar [17] unified and generalized three
theorems studied by Dragomir [5] – [7] which provide bounds onC(P, Q). The main result in
[17] is the following theorem:

Theorem 2.1. Let f : I ⊂ R+ → R be a mapping which is normalized, i.e.,f(1) = 0 and
suppose that

(i) f is twice differentiable on(r, R), 0 ≤ r ≤ 1 ≤ R < ∞ , (f ′ andf ′′ denote the first
and second derivatives off ),

(ii) there exist real constantsm, M such thatm < M andm ≤ x2−sf ′′(x) ≤ M, ∀x ∈
(r, R), s ∈ R.

If P, Q ∈ P2 are discrete probability distributions with0 < r ≤ p
q
≤ R < ∞, then

(2.2) m Φs(P, Q) ≤ C(P, Q) ≤ M Φs(P, Q),

and

(2.3) m (ηs(P, Q)−Φs(P, Q)) ≤ Cρ(P, Q)− C(P, Q) ≤ M (ηs(P, Q)−Φs(P, Q)) ,

where

(2.4) Φs(P, Q) =


2Ks(P, Q), s 6= 0, 1

K(Q,P ), s = 0

K(P, Q), s = 1
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INFORMATION INEQUALITIES 3

2Ks(P, Q) = [s(s− 1)]−1
[∑

psq1−s − 1
]
, s 6= 0, 1,(2.5)

K(P, Q) =
∑

p ln

(
p

q

)
,(2.6)

Cρ(P, Q) = Cf ′

(
P 2

Q
, P

)
− Cf ′ (P, Q) =

∑
(p− q)f ′

(
p

q

)
,(2.7)

and

ηs(P, Q) = Cφ′
s

(
P 2

Q
, P

)
− Cφ′

s
(P, Q)(2.8)

=


(s− 1)−1

∑
(p− q)

(
p
q

)s−1

, s 6= 1∑
(p− q) ln

(
p
q

)
, s = 1

.

The following information inequalities which are interesting from theinformation-theoretic
point of view, are obtained from Theorem 2.1 and discussed in [17]:

(i) The cases = 2 provides the information bounds in terms of the chi-square divergence
χ2(P, Q):

(2.9)
m

2
χ2(P, Q) ≤ C(P, Q) ≤ M

2
χ2(P, Q),

and

(2.10)
m

2
χ2(P, Q) ≤ Cρ(P, Q)− C(P, Q) ≤ M

2
χ2(P, Q),

where

(2.11) χ2(P, Q) =
∑ (p− q)2

q
.

(ii) For s = 1, the information bounds in terms of the Kullback-Leibler divergence,K(P, Q):

(2.12) mK(P, Q) ≤ C(P, Q) ≤ MK(P, Q),

and

(2.13) mK(Q, P ) ≤ Cρ(P, Q)− C(P, Q) ≤ MK(Q,P ).

(iii) The cases = 1
2

provides the information bounds in terms of the Hellinger’s discrimina-
tion, h(P, Q):

(2.14) 4mh(P, Q) ≤ C(P, Q) ≤ 4Mh(P, Q),

and

4 m

(
1

4
η1/2(P, Q)− h(P, Q)

)
≤ Cρ(P, Q)− C(P, Q)(2.15)

≤ 4M

(
1

4
η1/2(P, Q)− h(P, Q)

)
,

where

(2.16) h(P, Q) =
∑ (√

p−√q
)2

2
.
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4 PRANESH KUMAR AND ANDREW JOHNSON

(iv) For s = 0, the information bounds in terms of the Kullback-Leibler andχ2-divergences:

(2.17) mK(P, Q) ≤ C(P, Q) ≤ MK(P, Q),

and

(2.18) m
(
χ2(Q,P )−K(Q, P )

)
≤ Cρ(P, Q)− C(P, Q) ≤ M

(
χ2(Q,P )−K(Q,P )

)
.

3. A SYMMETRIC DIVERGENCE M EASURE OF THE CSISZÁR’ S f−DIVERGENCE

FAMILY

We consider the functionf : (0,∞) → R given by

(3.1) f(u) =
(u2 − 1)

2

2u3/2
,

and thus the divergence measure:

(3.2) ΨM(P, Q) := Cf (P, Q) =
∑(p2−q2)2

2 (pq)3/2
.

Since

(3.3) f ′(u) =
(5u2 + 3) (u2 − 1)

4u5/2

and

(3.4) f ′′(u) =
15u4 + 2u2 + 15

8u7/2
,

it follows thatf ′′(u) > 0 for all u > 0. Hencef(u) is convex for allu > 0 (Figure 3.1).

0
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Figure 1. Graph of the Convex Function fu.

,

Figure 3.1: Graph of the convex functionf(u).

Furtherf(1) = 0. Thus we can say that the measure isnonnegativeandconvexin the pair of
probability distributions(P, Q) ∈ Ω.
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Noticing thatΨM(P, Q) can be expressed as

(3.5) ΨM(P, Q) =
∑ [

(p + q)(p− q)2

pq

] [
(p + q)

2

] [
1
√

pq

]
,

this measure is made up of thesymmetric chi-square, arithmeticandgeometric meandivergence
measures.

Next we prove bounds forΨM(P, Q) in terms of the well known divergence measures in the
following propositions:

Proposition 3.1. LetΨM(P, Q) be as in (3.2) and the symmetricχ2-divergence

(3.6) Ψ(P, Q) = χ2(P, Q) + χ2(Q,P ) =
∑ (p + q)(p− q)2

pq
.

Then inequality

(3.7) ΨM(P, Q) ≥ Ψ(P, Q),

holds and equality, iffP = Q.

Proof. From thearithmetic (AM), geometric (GM)andharmonic mean (HM)inequality, that is,
HM ≤ GM ≤ AM , we have

HM ≤ GM,

or,
2pq

p + q
≤ √

pq,

or,

(
p + q

2
√

pq

)2

≥ p + q

2
√

pq
.(3.8)

Multiplying both sides of (3.8) by2(p−q)2√
pq

and summing over allx ∈ Ω, we prove (3.7). �

Next, we derive the information bounds in terms of the chi-square divergenceχ2(P, Q).

Proposition 3.2. Letχ2(P, Q) andΨM(P, Q) be defined as (2.11) and (3.2), respectively. For
P, Q ∈ P2 and0 < r ≤ p

q
≤ R < ∞, we have

(3.9)
15R4 + 2R2 + 15

16R7/2
χ2(P, Q) ≤ ΨM(P, Q) ≤ 15r4 + 2r2 + 15

16r7/2
χ2(P, Q),

and

15R4 + 2R2 + 15

16R7/2
χ2(P, Q) ≤ ΨMρ(P, Q)−ΨM(P, Q)(3.10)

≤ 15r4 + 2r2 + 15

16r7/2
χ2(P, Q),

where

(3.11) ΨMρ(P, Q) =
∑ (p− q)(p2 − q2)(5p2 + 3q2)

4p5/2q3/2
.

Proof. From the functionf(u) in (3.1), we have

(3.12) f
′
(u) =

(u2 − 1)(3 + 5u2)

4u5/2
,

J. Inequal. Pure and Appl. Math., 6(3) Art. ?, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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and, thus

ΨMρ(P, Q) =
∑

(p− q)f ′
(

p

q

)
(3.13)

=
∑ (p− q)(p2 − q2)(5p2 + 3q2)

4p5/2q3/2
.

Further,

(3.14) f ′′(u) =
15(u4 + 1) + 2u2

8u7/2
.

Now if u ∈ [a, b] ⊂ (0,∞), then

(3.15)
15(b4 + 1) + 2b2

8b7/2
≤ f ′′(u) ≤ 15(a4 + 1) + 2a2

8a7/2
,

or, accordingly

(3.16)
15R4 + 2R2 + 15

8R7/2
≤ f ′′(u) ≤ 15r4 + 2r2 + 15

8r7/2
,

wherer andR are defined above. Thus, in view of (2.9) and (2.10), we get inequalities (3.9)
and (3.10), respectively. �

The information bounds in terms of the Kullback-Leibler divergenceK(P, Q) follow:

Proposition 3.3.LetK(P, Q), ΨM(P, Q) andΨMρ(P, Q) be defined as (2.6), (3.2) and (3.13),
respectively. IfP, Q ∈ P2 and0 < r ≤ p

q
≤ R < ∞, then

(3.17)
15R4 + 2R2 + 15

8R5/2
K(P, Q) ≤ ΨM(P, Q) ≤ 15r4 + 2r2 + 15

8r5/2
K(P, Q),

and

15R4 + 2R2 + 15

8R5/2
K(Q,P ) ≤ ΨMρ(P, Q)−ΨM(P, Q)(3.18)

≤ 15r4 + 2r2 + 15

8r5/2
K(Q,P ).

Proof. From (3.4),f ′′(u) = 15(u4+1)+2u2

8u7/2 . Let the functiong : [r, R] → R be such that

(3.19) g(u) = uf
′′
(u) =

15(u4 + 1) + 2u2

8u5/2
.

Then

(3.20) inf
u∈[r,R]

g(u) =
15R4 + 2R2 + 15

8R5/2

and

(3.21) sup
u∈[r,R]

g(u) =
15r4 + 2r2 + 15

8r5/2
.

The inequalities (3.17) and (3.18) follow from (2.12), (2.13) using (3.20) and (3.21). �

The following proposition provides the information bounds in terms of the Hellinger’s dis-
criminationh(P, Q) andη1/2(P, Q).
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Proposition 3.4. Let η1/2(P, Q), h(P, Q), ΨM(P, Q) andΨMρ(P, Q) be defined as in (2.7),
(2.15), (3.2) and (3.13), respectively. ForP, Q ∈ P2 and0 < r ≤ p

q
≤ R < ∞,

(3.22)
15r4 + 2r2 + 15

2r2
h(P, Q) ≤ ΨM(P, Q) ≤ 15R4 + 2R2 + 15

2R2
h(P, Q),

and
15r4 + 2r2 + 15

2r2

(
1

4
η1/2(P, Q)− h(P, Q)

)
(3.23)

≤ ΨMρ(P, Q)−ΨM(P, Q)

≤ 15R4 + 2R2 + 15

2R2

(
1

4
η1/2(P, Q)− h(P, Q)

)
.

Proof. We havef ′′(u) = 15(u4+1)+2u2

8u7/2 from (3.4). Let the functiong : [r, R] → R be such that

(3.24) g(u) = u3/2f ′′(u) =
15(u4 + 1) + 2u2

8u2
.

Then

(3.25) inf
u∈[r,R]

g(u) =
15r4 + 2r2 + 15

8r2

and

(3.26) sup
u∈[r,R]

g(u) =
15R4 + 2R2 + 15

8R2
.

Thus, the inequalities (3.22) and (3.23) are established using (2.14), (2.15), (3.25) and (3.26).
�

Next follows the information bounds in terms of the Kullback-Leibler andχ2-divergences.

Proposition 3.5. Let K(P, Q), χ2(P, Q), ΨM(P, Q) and ΨMρ(P, Q) be defined as in (2.5),
(2.10), (3.2) and (3.13), respectively. IfP, Q ∈ P2 and0 < r ≤ p

q
≤ R < ∞, then

(3.27)
15r4 + 2r2 + 15

8r3/2
K(P, Q) ≤ ΨM(P, Q) ≤ 15R4 + 2R2 + 15

8R3/2
K(P, Q),

and
15r4 + 2r2 + 15

8r3/2
(χ2(Q,P )−K(Q, P )(3.28)

≤ ΨMρ(P, Q)−ΨM(P, Q)

≤ 15R4 + 2R2 + 15

8R3/2

(
χ2(Q,P )−K(Q,P )

)
.

Proof. From (3.4),f ′′(u) = 15(u4+1)+2u2

8u7/2 . Let the functiong : [r, R] → R be such that

(3.29) g(u) = u2f ′′(u) =
15(u4 + 1) + 2u2

8u3/2
.

Then

(3.30) inf
u∈[r,R]

g(u) =
15r4 + 2r2 + 15

8r3/2

and

(3.31) sup
u∈[r,R]

g(u) =
15R4 + 2R2 + 15

8R3/2
.
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8 PRANESH KUMAR AND ANDREW JOHNSON

Thus, (3.27) and (3.28) follow from (2.17), (2.18) using (3.30) and (3.31). �

4. PARAMETRIC M EASURE OF I NFORMATION ΨM c(P, Q)

The parametric measures of information are applicable to regular families of probability dis-
tributions, that is, to the families for which the following regularity conditions are assumed to
be satisfied. Let forθ = (θ1, . . . θk), the Fisher [10] information matrix be

(4.1) Ix(θ) =


Eθ

[
∂
∂θ

log f(X, θ)
]2

, if θ is univariate;∥∥∥Eθ

[
∂

∂θi
log f(X, θ) ∂

∂θj
log f(X, θ)

]∥∥∥
k×k

if θ is k-variate,

where|| · ||k×k denotes ak × k matrix.
The regularity conditions are:

R1) f(x, θ) > 0 for all x ∈ Ω andθ ∈ Θ;
R2) ∂

∂θi
f(X, θ) exists for allx ∈ Ω andθ ∈ Θ and alli = 1, . . . , k;

R3) d
dθi

∫
A

f(x, θ)dµ =
∫

A
d

dθi
f(x, θ)dµ for anyA ∈ A (measurable space(X, A) in respect

of a finite orσ- finite measureµ),all θ ∈ Θ and alli.

Ferentimos and Papaioannou [9] suggested the following method to construct the parametric
measure from the non-parametric measure:

Let k(θ) be a one-to-one transformation of the parameter spaceΘ onto itself withk(θ) 6= θ.
The quantity

(4.2) Ix[θ, k(θ)] = Ix[f(x, θ), f(x, k(θ))],

can be considered as a parametric measure of information based onk(θ).
This method is employed to construct the modified Csiszár’s measure of information about

univariateθ contained inX and based onk(θ) as

(4.3) IC
x [θ, k(θ)] =

∫
f(x, θ)φ

(
f(x, k(θ))

f(x, θ)

)
dµ.

Now we have the following proposition for providing the parametric measure of information
from ΨM(P, Q):

Proposition 4.1. Let the convex functionφ : (0,∞) → R be

(4.4) φ(u) =
(u2 − 1)

2

2u3/2
,

and corresponding non-parametric divergence measure

ΨM(P, Q) =
∑(p2−q2)2

2 (pq)3/2
.

Then the parametric measureΨMC(P, Q)

(4.5) ΨMC(P, Q) := IC
x [θ, k(θ)] =

∑(p2−q2)2

2 (pq)3/2
.

Proof. For discrete random variablesX, the expression (5.3) can be written as

(4.6) IC
x [θ, k(θ)] =

∑
x∈Ω

p(x)φ

(
q(x)

p(x)

)
.
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From (4.4), we have

(4.7) φ

(
q(x)

p(x)

)
=

(p2 − q2)
2

2p5/2q3/2
,

where we denotep(x) andq(x) by p andq, respectively.
Thus,ΨMC(P, Q) in (4.5) follows from (4.6) and (4.7). �

Note that the non-parametric measureΨMC(P, Q) is the same as the parametric measure
ΨM(P, Q). Further, since the properties ofΨMC(P, Q) do not require any regularity condi-
tions,ΨMC(P, Q) is applicable to the broad families of probability distributions including the
non-regular ones.

5. APPLICATIONS TO THE M UTUAL I NFORMATION

Mutual information is the reduction in uncertainty of a random variable caused by the knowl-
edge about another. It is a measure of the amount of information one variable provides about
another. For two discrete random variablesX andY with a joint probability mass function
p(x, y) and marginal probability mass functionsp(x), x ∈ X andp(y), y ∈ Y, mutual informa-
tion I(X; Y ) for random variablesX andY is defined by

(5.1) I(X; Y ) =
∑

(x,y)∈X×Y

p(x, y) ln
p(x, y)

p(x)p(y)
,

that is,

(5.2) I(X; Y ) = K (p(x, y), p(x)p(y)) ,

whereK(·, ·) denotes the Kullback-Leibler distance. Thus,I(X; Y ) is the relative entropy
between the joint distribution and the product of marginal distributions and is a measure of how
far a joint distribution is from independence.

The chain rule for mutual information is

(5.3) I(X1, . . . , Xn; Y ) =
n∑

i=1

I(Xi; Y |X1, . . . , Xi−1).

The conditional mutual information is defined by

(5.4) I(X; Y | Z) = ((X; Y ) |Z) = H(X|Z)−H(X|Y, Z),

whereH(v|u), the conditional entropy of random variablev givenu, is given by

(5.5) H(v | u) =
∑ ∑

p(u, v) ln p(v|u).

In what follows now, we will assume that

(5.6) t ≤ p(x, y)

p(x)p(y)
≤ T , for all (x, y) ∈ X× Y.

It follows from (5.6) thatt ≤ 1 ≤ T .
Dragomir, Glŭsc̆evíc and Pearce [8] proved the following inequalities for the measureCf (P, Q):

Theorem 5.1. Let f : [0,∞) → R be such thatf ′ : [r, R] → R is absolutely continuous on
[r, R] andf ′′ ∈ L∞[r, R]. Definef ∗ : [r, R] → R by

(5.7) f ∗(u) = f(1) + (u− 1)f ′
(

1 + u

2

)
.
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10 PRANESH KUMAR AND ANDREW JOHNSON

Suppose that0 < r ≤ p
q
≤ R < ∞. Then

|Cf (P, Q)− Cf∗(P, Q)| ≤ 1

4
χ2(P, Q)||f ′′||∞

≤ 1

4
(R− 1)(1− r)||f ′′||∞

≤ 1

16
(R− r)2||f ′′||∞,(5.8)

whereCf∗(P, Q) is the Csiszár’sf -divergence (2.1) withf taken asf ∗ andχ2(P, Q) is defined
in (2.11).

We define the mutual information:

(5.9) Inχ2-sense:Iχ2(X; Y ) =
∑

(x,y)∈X×Y

p2(x, y)

p(x)q(y)
− 1.

(5.10) InΨM -sense:IΨM(X; Y ) =
∑

(x,y)∈X×Y

[p2(x, y)− p2(x)q2(y)]

2[p(x)q(y)]3/2
.

Now we have the following proposition:

Proposition 5.2. Letp(x, y), p(x) andp(y) be such thatt ≤ p(x,y)
p(x)p(y)

≤ T , for all (x, y) ∈ X×Y
and the assumptions of Theorem 5.1 hold good. Then

(5.11)

∣∣∣∣∣∣I(X; Y )−
∑

(x,y)∈X×Y

[p(x, y)− p(x)q(y)] ln

[
p(x, y) + p(x)q(y)

2p(x)q(y)

]∣∣∣∣∣∣
≤

Iχ2(X; Y )

4t
≤ 4T 7/2

t(15T 4 + 2T 2 + 15)
IΨM(X; Y ).

Proof. Replacingp(x) by p(x, y) and q(x) by p(x)q(y) in (2.1), the measureCf (P, Q) ≡
I(X; Y ). Similarly, forf(u) = u ln u, and

f ∗(u) = f(1) + (u− 1)f ′
(

1 + u

2

)
,

we have

I∗(X; Y ) := Cf∗(P, Q)

=
∑
x∈Ω

[p(x)− q(x)]

[
ln

(
p(x) + q(x)

2q(x)

)]
=

∑
x∈Ω

[p(x, y)− p(x)q(y)]

[
ln

(
p(x, y) + p(x)q(y)

2p(x)q(y)

)]
.(5.12)

Since||f ′′||∞ = sup ||f ′′(u)|| = 1
t
, the first part of inequality (5.11) follows from (5.8) and

(5.12).
For the second part, consider Proposition 3.2. From inequality (3.9),

(5.13)
15T 4 + 2T 2 + 15

16T 7/2
χ2(P, Q) ≤ ΨM(P, Q).
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Under the assumptions of Proposition 5.2, inequality (5.13) yields

(5.14)
Iχ2(X; Y )

4t
≤ 4T 7/2

t(15T 4 + 2T 2 + 15)
IΨM(X; Y ),

and hence the desired inequality (5.11). �

6. NUMERICAL I LLUSTRATION

We consider two examples of symmetrical and asymmetrical probability distributions. We
calculate measuresΨM(P, Q), Ψ(P, Q), χ2(P, Q), J(P, Q) and compare bounds. Here,J(P, Q)
is the Kullback-Leibler symmetric divergence:

J(P, Q) = K(P, Q) + K(Q,P ) =
∑

(p− q) ln

(
p

q

)
.

Example 6.1 (Symmetrical). Let P be the binomial probability distribution for the random
variableX with parameters(n = 8, p = 0.5) and Q its approximated normal probability
distribution. Then

Table 1. Binomial probability Distribution(n = 8, p = 0.5).
x 0 1 2 3 4 5 6 7 8
p(x) 0.004 0.031 0.109 0.219 0.274 0.219 0.109 0.031 0.004
q(x) 0.005 0.030 0.104 0.220 0.282 0.220 0.104 0.030 0.005
p(x)/q(x) 0.774 1.042 1.0503 0.997 0.968 0.997 1.0503 1.042 0.774

The measuresΨM(P, Q), Ψ(P, Q), χ2(P, Q) andJ(P, Q) are:

ΨM(P, Q) = 0.00306097, Ψ(P, Q) = 0.00305063,

χ2(P, Q) = 0.00145837, J(P, Q) = 0.00151848.

It is noted that

r (= 0.774179933) ≤ p

q
≤ R (= 1.050330018).

The lower and upper bounds forΨM(P, Q) from (3.9):

Lower Bound =
15R4 + 2R2 + 15

16R7/2
χ2(P, Q) = 0.002721899

Upper Bound=
15r4 + 2r2 + 15

8r7/2
χ2(P, Q) = 0.004819452

and, thus,0.002721899 < ΨM(P, Q) = 0.003060972 < 0.004819452. The width of the
interval is0.002097553.

Example 6.2(Asymmetrical). Let P be the binomial probability distribution for the random
variableX with parameters(n = 8, p = 0.4) and Q its approximated normal probability
distribution. Then

Table 2. Binomial probability Distribution(n = 8, p = 0.4).
x 0 1 2 3 4 5 6 7 8
p(x) 0.017 0.090 0.209 0.279 0.232 0.124 0.041 0.008 0.001
q(x) 0.020 0.082 0.198 0.285 0.244 0.124 0.037 0.007 0.0007
p(x)/q(x) 0.850 1.102 1.056 0.979 0.952 1.001 1.097 1.194 1.401
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From the above data, measuresΨM(P, Q), Ψ(P, Q), χ2(P, Q) andJ(P, Q) are calculated:

ΨM(P, Q) = 0.00658200, Ψ(P, Q) = 0.00657063,

χ2(P, Q) = 0.00333883, J(P, Q) = 0.00327778.

Note that
r (= 0.849782156) ≤ p

q
≤ R (= 1.401219652),

and the lower and upper bounds forΨM(P, Q) from (4.5):

Lower Bound =
15R4 + 2R2 + 15

16R7/2
χ2(P, Q) = 0.004918045

Upper Bound=
15r4 + 2r2 + 15

16r7/2
χ2(P, Q) = 0.00895164.

Thus,0.004918045 < ΨM(P, Q) = 0.006582002 < 0.00895164. The width of the interval is
0.004033595.

It may be noted that the magnitude and width of the interval for measureΨM(P, Q) increase
as the probability distribution deviates from symmetry.

Figure 6.1 shows the behavior ofΨM(P, Q)-[New], Ψ(P, Q)- [Sym-Chi-square] andJ(P, Q)-
[Sym-Kull-Leib]. We have consideredp = (a, 1 − a) andq = (1 − a, a), a ∈ [0, 1]. It is clear
from Figure 3.1 that measuresΨM(P, Q) andΨ(P, Q) have a steeper slope thanJ(P, Q).

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a

Sym-Chi-Square New Sym-Kullback-Leibler

Figure 2. New MP,Q, Sym-Chi-Square P,Q and Sym-Kullback-Leibler JP,Q.

,

Figure 6.1: NewΨM(P,Q), Sym-Chi-SquareΨ(P,Q), and Sym-Kullback-LeiblerJ(P,Q).
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